
The Library
Slow energy dissipation in anharmonic oscillator chains
Tools
Hairer, Martin and Mattingly, Jonathan C. (2009) Slow energy dissipation in anharmonic oscillator chains. Communications on Pure and Applied Mathematics, Vol.62 (No.8 Sp. Iss. SI). pp. 999-1032. doi:10.1002/cpa.20280 ISSN 0010-3640.
Research output not available from this repository.
Request-a-Copy directly from author or use local Library Get it For Me service.
Official URL: http://dx.doi.org/10.1002/cpa.20280
Abstract
We study the dynamic behavior at high energies of a chain of anharmonic oscillators Coupled at its ends to heat baths at possibly different temperatures. In our setup, each oscillator is Subject to I homogeneous anharmonic pinning potential V-1(q(i)) = vertical bar q(i)vertical bar(2k)/2k and harmonic coupling potentials V-2(q(i) - q(i-1)) = (q(i) - q(i-1))(2)/2 between itself and its nearest neighbors. We consider the case k > 1 when the pinning potential is stronger than the coupling potential. At high energy, when a large fraction of the energy is located in the bulk of the chain, breathers appear and block the transport of energy through the system, thus slowing its convergence to equilibrium.
In such it regime, we obtain equations for an effective dynamics by averaging Out the fast oscillation of the breather. Using this representation and related ideas, we can prove a number of results. When the chain is of length 3 and k > 3/2, we show that there exists it unique invariant measure. If k > 2 we further show that the system does not relax exponentially fast to this equilibrium by demonstrating that 0 is in the essential spectrum of the generator of the dynamics. When the chain has five or more oscillators and k > 3/2, we show that the generator again has 0 in its essential spectrum.
In addition to these rigorous results, a theory is given for the rate of decrease of the energy when it is concentrated in one of the oscillators Without dissipation. Numerical simulations are included that confirm the theory. (C) 2009 Wiley Periodicals, Inc.
Item Type: | Journal Article | ||||
---|---|---|---|---|---|
Subjects: | Q Science > QA Mathematics | ||||
Divisions: | Faculty of Science, Engineering and Medicine > Science > Mathematics | ||||
Journal or Publication Title: | Communications on Pure and Applied Mathematics | ||||
Publisher: | John Wiley & Sons | ||||
ISSN: | 0010-3640 | ||||
Official Date: | August 2009 | ||||
Dates: |
|
||||
Volume: | Vol.62 | ||||
Number: | No.8 Sp. Iss. SI | ||||
Number of Pages: | 34 | ||||
Page Range: | pp. 999-1032 | ||||
DOI: | 10.1002/cpa.20280 | ||||
Status: | Peer Reviewed | ||||
Publication Status: | Published | ||||
Access rights to Published version: | Restricted or Subscription Access | ||||
Funder: | Engineering and Physical Sciences Research Council (EPSRC), Sloan Foundation, National Science Foundation (U.S.) (NSF) | ||||
Grant number: | EP/D071593/1 (EPSRC), DMS 04-49910, DMS 06-16710 |
Data sourced from Thomson Reuters' Web of Knowledge
Request changes or add full text files to a record
Repository staff actions (login required)
![]() |
View Item |