Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Influence of the centrifugal force and parallel dynamics on the toroidal momentum transport due to small scale turbulence in a tokamak

Tools
- Tools
+ Tools

Peeters, A. G., Strintzi, D., Camenen, Y., Angioni, C., Casson, F. J. (Francis James), Hornsby, W. A. and Snodin, A. P. (2009) Influence of the centrifugal force and parallel dynamics on the toroidal momentum transport due to small scale turbulence in a tokamak. Physics of Plasmas, Vol.16 (No.4). Article no. 042310. doi:10.1063/1.3097263 ISSN 1070-664X.

Research output not available from this repository.

Request-a-Copy directly from author or use local Library Get it For Me service.

Official URL: http://dx.doi.org/10.1063/1.3097263

Request Changes to record.

Abstract

The paper derives the gyro-kinetic equation in the comoving frame of a toroidally rotating plasma, including both the Coriolis drift effect [A. G. Peeters et al., Phys. Rev. Lett. 98, 265003 (2007)] as well as the centrifugal force. The relation with the laboratory frame is discussed. A low field side gyro-fluid model is derived from the gyro-kinetic equation and applied to the description of parallel momentum transport. The model includes the effects of the Coriolis and centrifugal force as well as the parallel dynamics. The latter physics effect allows for a consistent description of both the Coriolis drift effect as well as the ExB shear effect [R. R. Dominguez and G. M. Staebler, Phys. Fluids B 5, 3876 (1993)] on the momentum transport. Strong plasma rotation as well as parallel dynamics reduce the Coriolis (inward) pinch of momentum and can lead to a sign reversal generating an outward pinch velocity. Also, the ExB shear effect is, in a similar manner, reduced by the parallel dynamics and stronger rotation. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3097263]

Item Type: Journal Article
Subjects: Q Science > QC Physics
Divisions: Faculty of Science, Engineering and Medicine > Science > Physics
Journal or Publication Title: Physics of Plasmas
Publisher: American Institute of Physics
ISSN: 1070-664X
Official Date: April 2009
Dates:
DateEvent
April 2009Published
Volume: Vol.16
Number: No.4
Number of Pages: 10
Page Range: Article no. 042310
DOI: 10.1063/1.3097263
Status: Peer Reviewed
Publication Status: Published
Access rights to Published version: Restricted or Subscription Access
Related URLs:
  • Related item in WRAP

Data sourced from Thomson Reuters' Web of Knowledge

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us