The Library
Faster 3D finite element time domain : Floquet absorbing boundary condition modelling using recursive convolution and vector fitting
Tools
Cai, Yong and Mias, Christos. (2009) Faster 3D finite element time domain : Floquet absorbing boundary condition modelling using recursive convolution and vector fitting. IET Microwaves Antennas & Propagation, Vol.3 (No.2). pp. 310324. ISSN 17518725

PDF
WRAP_Mias_0170228es121211iet_cai_mias_4_6_2008.pdf  Accepted Version  Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader Download (1154Kb) 
Official URL: http://dx.doi.org/10.1049/ietmap:20080029
Abstract
A recursive convolution (RC) based on the vector fitting (VF) method and triangular temporal basis functions is employed to compute the Floquet absorbing boundary condition (FABC) formulation in the vector 3D finite element timedomain (FETD) modelling of doubly periodic structures. This novel implementation (VFRCFETDFABC) results in significantly lower computation time requirements than the standard convolution (SC) implementation. The numerical examples presented show a reduction in computation time requirements by a factor of at least 3.5. In addition, a time window in excess of 50 000 time steps is recorded over which practically stable results are obtained. This temporal window is sufficiently large to allow the modelling of many practical problems. The results from four such problems are presented, confirming the accuracy and speed of the VFRCFETDFABC software.
Item Type:  Journal Article 

Subjects:  Q Science > QA Mathematics T Technology > TJ Mechanical engineering and machinery 
Divisions:  Faculty of Science > Engineering 
Library of Congress Subject Headings (LCSH):  Floquet theory, Finite element method, Convolutions (Mathematics) 
Journal or Publication Title:  IET Microwaves Antennas & Propagation 
Publisher:  The Institution of Engineering and Technology 
ISSN:  17518725 
Date:  March 2009 
Volume:  Vol.3 
Number:  No.2 
Number of Pages:  15 
Page Range:  pp. 310324 
Identification Number:  10.1049/ietmap:20080029 
Status:  Peer Reviewed 
Publication Status:  Published 
Access rights to Published version:  Restricted or Subscription Access 
References:  [1] Petersson, L. E. R., and Jin, J. M.: ‘Analysis of periodic structures via a timedomain finiteelement formulation with a Floquet ABC’, IEEE Trans. Antennas Propag., 2006, 54, (3), pp. 933944 [2] Petersson, L. E. R., and Jin, J. M.: ‘ThreeDimensional TimeDomain FiniteElement Formulation for Periodic Structures’, IEEE Trans. Antennas Propag., 2006, 54, (1), pp. 1219 [3] Semlyen, A., and Dabuleanu, A.: ‘Fast and accurate switching transient calculations on transmission lines with ground return using recursive convolutions’, IEEE Trans. Power App. Syst., 1975, PAS94, (2), pp. 561–571 [4] Cai, Y., and Mias, C.: ‘Fast Finite Element Time Domain – Floquet Absorbing Boundary Condition modelling of periodic structures using recursive convolution’, IEEE Trans. Antennas Propag., 2007, 55, (9), pp. 25502558 [5] Gustavsen, B., and Semlyen, A.: ‘Rational Approximation of Frequency Domain Responses by Vector Fitting’, IEEE Trans. on Power Delivery, 1999, 14, (3), pp. 10521061 [6] Rao, S. M., and Wilton, D. R.: ‘Transient scattering by conducting surfaces of arbitrary shape’, IEEE Trans. Antennas Propag., 1991, 39, (1), pp.5661 [7] Ferrari, R. L.: ‘Finite element solution of timeharmonic modal field in periodic structures’, Electronics Letters, 1991, 27, (3), pp.3334 [8] Ferrari, R. L.: ‘Spatially Periodic Structures’, in Itoh, T., Pelosi, G., and Silvester, P. P. (Eds.): ‘Finite Element Software for Microwave Engineering’, (Wiley, 1996) [9] Watkins, D. A.: ‘Topics in Electromagnetic Theory’, (John Wiley & Sons, 1958) [10]Maloney, J. G., and Kesler, M. P.: ‘Analysis of periodic structures’, in Taflove, A., and Hagness, S. C. (Eds.): ‘Computational electrodynamics: The finite difference time domain method’, (Artech House, 2000, 2nd edn.). [11] Jin, J. M.: ‘The finite element method in electromagnetics’, (WileyIEEE press, 2002) [12] Newmark, N. M.: ‘A method of computation for structural dynamics’, J. Engineering Mechanics Division, ASCE, 1959, 85, pp. 6794 [13]Zienkiewicz, O. C.: ‘A new look at the Newmark, HouBolt, and other timestepping formulas: a weighted residual approach’, Earthquake Engineering and Structural Dynamics, 1977, 5, pp.413418 [14]VECTFIT package version 1. Retrieved from www.energy.sintef.no/produkt/VECTFIT/index.asp on 02/06/2008. [15]Kelley, D. F., and Luebbers, R. J.: ‘Piecewise linear recursive convolution for dispersive media using FDTD’, IEEE Trans. Antennas Propag., 1996, 44, (6), pp.792797 [16]Navarro, E. A., Gimeno, B., and Cruz, J. L.: ‘Modelling of periodic structrues using the finite difference time domain method combined with the Floquet theorem’, Electronics Letters, 1993, 29, (5), pp. 446447 [17]Yang, H. Y. D., Diaz, R., and Alexopoulos, N. G.: ‘Reflection and transmission of waves from multilayer structures with planarimplanted periodic material blocks’, Journal of the Optical Society of America B, 1997, 14, (10), pp.25132521 [18]Roberts, A., and McPhedran, R. C.: ‘Bandpass grids with annular apertures’, IEEE Trans. Antennas Propag., 1988, 36, (5), pp.607611 [19]Cai, Y., and Mias, C.: ‘Finiteelement timedomain modelling of plane wave scattering by a periodic structure using an exact boundary condition’, IET Microwaves, Antennas and Propagation, 2007, 1, (3), pp. 609616. [20]CST (Computer Simulation Technology) Microwave Studio (CST MWS), frequency domain solver, Darmstadt, Germany, www.cst.com. [21]Lou, Z., and Jin, J. M.: ‘Highorder finiteelement analysis of periodic absorbers’, Microwave and Optical Technology Letters, 2003, 37, (3), pp. 203207 [22]Volakis, J.L., Eibert, T.F., Filipovic, D.S., Erdemli, Y.E., and Topsakal E.: ‘Hybrid finite element methods for array and FSS analysis using multiresolution elements and fast integral techniques’, Electromagnetics, 2002, 22, (4), pp. 297–313 [23]Zhu, Y., and Cangellaris, A. C.: ‘Multigrid finite element methods for electromagnetic field modeling’, (John Wiley & Sons, 2006) [24]Chilton, R. A., and Lee, R.: ‘The discrete origin of FETDNewmark late time instability, and a correction scheme’, Journal of Computational Physics, 2007, 224, (2), pp. 1293–1306 [25]Adve, R. S., Sarkar, T. K., PereiraFilho, O. M. C., and Rao, S. M.: ‘Extrapolation of Timedomain responses from threedimensional conducting objects utilizing the matrix pencil technique’, IEEE Trans. Antennas Propag., 1997, 45, (1), pp. 147156 [26]Tuma, J. J., and Walsh, R. A.: ‘Engineering Mathematics Handbook’, (McGrawHill, 1998, 4th edn.) 
URI:  http://wrap.warwick.ac.uk/id/eprint/28339 
Data sourced from Thomson Reuters' Web of Knowledge
Actions (login required)
View Item 