Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Broad-band microwave amplifier design considerations

Tools
- Tools
+ Tools

Temple, Gordon John (1985) Broad-band microwave amplifier design considerations. PhD thesis, University of Warwick.

[img] PDF
WRAP_THESIS_Temple_1985.pdf - Requires a PDF viewer.

Download (16Mb)
Official URL: http://webcat.warwick.ac.uk/record=b1447094~S9

Request Changes to record.

Abstract

Broad-band microwave integrated circuit (MIC) amplifier design is a complex, multi-disciplinary process. This work focuses on three important aspects: the behaviour of microstrip transmission lines, discontinuities, and related structures; the accurate measurement of components and devices mounted in microstrip circuits; and the circuit design methodology. Techniques for microstrip quasi-static analysis are reviewed in order to identify methods suitable for extension to deal with the effects of substrate anisotropy. An integral equation method is described and the anisotropic Green's function derived using an extension to the method of partial images. Proposed transform methods are assessed and the preferred option implemented by adaption of a microstrip analysis computer program. A method, by which accurate measurements of microstrip properties may be made, is developed. Involving measurements of the resonant behaviour of half-wavelength short circuit resonators with two arbitrary coupling conditions, this technique allows the unloaded properties to be deduced. Results for microstrip on a sapphire substrate concur with the analysis. A pragmatic but effective approach to the calculation of the capacity component of microstrip discontinuities, and some other three dimensional MIC structures, is described and developed to allow existing data for isotropic substrates to be applied to the anisotropic situation. The computer corrected network analyser (CCNA) is a widely used microwave measurement tool. Weaknesses in popular correction strategies are identified and remedies developed. In particular, revised calibration equations that better accommodate test port mismatch variation with s-parameter selection, and a model for quadrature error are presented. A 2-port calibration scheme suitable for use with MIC transmission lines, using only simple standards, is described. The standards are partially self-calibrating;the values of propagation constant, loss, and end effect are deduced in the calibration process. An effective jig for use with microstrip is described and the results of measurements on microwave transistors presented. Conventionally microwave amplifiers are designed using reactive components both to achieve good port matches and compensate the frequency dependent gain of the active devices. The problems associated with this approach are enumerated and the alternatives reviewed. A methodology which combines the benefits of frequency dependant dissipative networks with the elegance of reactive network synthesis is described. The device gain slope is compensated by simple lumped or distributed circuits incorporating a resistive element to produce a composite `device' with a specififed (flat) maximum available gain frequency response. Reactive matching networks are then used to interface these gain blocks. By this structured approach the amplifier gain breakdown can be defined at the outset and preserved through the design process. Other advantages stemming from the use of dissipative compensation include improved tolerance to device parameter and component value scatter, reduced group delay variations and enhanced reverse isolation. The method is demonstrated by the design and characterisation of 4 to 9 GHz amplifier having a representative specification. The close conformance of the performance of the untrimmed amplifier to that predicted by computer simulation testifies to the inherent accuracy of the design method, the microstrip (and related structures) analysis techniques and the CCNA MIC calibration scheme.

Item Type: Thesis (PhD)
Subjects: T Technology > TK Electrical engineering. Electronics Nuclear engineering
Library of Congress Subject Headings (LCSH): Microwave amplifiers -- Research, Strip transmission lines -- Research, Anisotropy, Multiconductor transmission lines
Official Date: April 1985
Dates:
DateEvent
April 1985Submitted
Institution: University of Warwick
Theses Department: School of Engineering
Thesis Type: PhD
Publication Status: Unpublished
Supervisor(s)/Advisor: Shurmer, Harold
Sponsors: Marconi Instruments Ltd. (MIL)
Format of File: pdf
Extent: 398 leaves : ill., charts
Language: eng

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics

twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us