# The Library

### Numerical simulation of dealloying by surface dissolution via the evolving surface finite element method

Tools

Eilks, C. and Elliott, Charles M..
(2008)
*Numerical simulation of dealloying by surface dissolution via the evolving surface finite element method.*
Journal of Computational Physics, Vol.227
(No.23).
pp. 9727-9741.
ISSN 0021-9991

**Full text not available from this repository.**

Official URL: http://dx.doi.org/10.1016/j.jcp.2008.07.023

## Abstract

In this article we formulate a numerical method for the simulation of dealloying of a binary alloy by the selective removal of one component via electrochemical dissolution such that there is phase separation of the other component at the solid/electrolyte interface. The evolution of the interface is modelled by a forced mean curvature flow strongly coupled to the solution of a Cahn-Hilliard equation modelling surface phase separation. The method is based on a triangulated hypersurface whose evolution is calculated as well as the solution of the Cahn-Hilliard equation by the evolving surface finite element method (ESFEM). The numerical experiments simulate complex morphology and concentration patterns providing evidence that the mathematical model may describe the formation of nanoporosity. (C) 2008 Published by Elsevier Inc.

[error in script] [error in script]Item Type: | Journal Article |
---|---|

Subjects: | Q Science > QA Mathematics Q Science > QC Physics |

Divisions: | Faculty of Science > Mathematics |

Library of Congress Subject Headings (LCSH): | Phase transformations (Statistical physics) -- Mathematical models, Phase rule and equilibrium -- Mathematical models, Finite element method |

Journal or Publication Title: | Journal of Computational Physics |

Publisher: | Academic Press Inc. Elsevier Science |

ISSN: | 0021-9991 |

Date: | 1 December 2008 |

Volume: | Vol.227 |

Number: | No.23 |

Number of Pages: | 15 |

Page Range: | pp. 9727-9741 |

Identification Number: | 10.1016/j.jcp.2008.07.023 |

Status: | Peer Reviewed |

Publication Status: | Published |

Access rights to Published version: | Restricted or Subscription Access |

Funder: | Deutsche Forschungsgemeinschaft (DFG) |

References: | [1] J.W. Barrett, J.F. Blowey, H. Garcke, Finite element approximation of the Cahn-Hilliard equation with degenerate mobility, SIAM J. Numer. Anal. 37 (1999) 286–318. [2] M. Copetti, C.M. Elliott, Numerical analysis of the Cahn-Hilliard equation with a logarithmic free energy, Numer. Math. 63 (1992) 39–65. [3] K.P. Deckelnick, G. Dziuk, C.M. Elliott, Computation of geometric PDEs and mean curvature flow, Acta Numer (2005) 139–232. [4] J. Dogel, R. Tsekov, W. Freyland, Two dimensional connective nano-structures of electrodeposited Zn on Au (111) induced by spinodal decomposition, J. Chem. Phys. 122 (2005) 094703. [5] G. Dziuk, Finite elements for the Beltrami operator on arbitrary surfaces, in: S. Hildebrandt, R. Leis (Eds.), (Herausgeber): Partial Differential Equations and Calculus of Variations. Lecture Notes in Mathematics, vol. 1357, Springer, Berlin, Heidelberg, New York, London, Paris, Tokyo, 1988, pp. 142–155. [6] G. Dziuk, C.M. Elliott, Finite elements on evolving surfaces, IMA J. Numer. Anal. 27 (2007) 262–292. [7] G. Dziuk, C.M. Elliott, Surface finite elements for parabolic equations, J. Comp. Math. 25 (2007) 385–407. [8] G. Dziuk, C.M. Elliott, Eulerian finite element method for parabolic PDES on implicit surfaces, Interface. Free Bound. 10 (2008) 119–138. [9] G. Dziuk, C.M. Elliott, Eulerian level set method for PDEs on evolving surfaces, Comput. Visual. Sci., in press, doi:10.1007/s00791-008-0122-0. [10] G. Dziuk, An algorithm for evolutionary surfaces, Numer. Math. 58 (1991) 603–611. [11] G. Dziuk, U. Clarenz, Numerical methods for conformally parametrized surfaces, Talk at CPDW04-Interphase 2003: numerical methods for free boundary problems. <www.newton.cam.ac.uk/webseminars/pg+ws/2003/CPDW04/0415/dziuk>. [12] C.M. Elliott, D. French, F. Milner, A second order splitting method for the Cahn-Hilliard equation, Numer. Math. 54 (1989) 575–590. [13] Xianfeng Gu, Shing-Tung Yau, Global conformal surface parameterization, in: SGP’03: Proceedings of the 2003 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, 2003, pp. 127–137. [14] J. Erlebacher, An atomistic description of dealloying, J. Electrochem. Soc. 151 (10) (2004) C614–C626. [15] J. Erlebacher, M.J. Aziz, A. Karma, N. Dimitrov, K. Sieradzki, Evolution of nanoporosity in dealloying, Nature 410 (2001) 450–453. [16] J. Erlebacher, K. Sieradzki, Pattern formation during dealloying, Scripta Mater. 49 (2003) 991–996. [17] P.L. Lions, B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM J. Numer. Anal. 16 (1979) 964–979. [18] O. Schönborn, R.C. Desai, Kinetics of phase ordering on curved surfaces, Physica A 239 (1997) 412–419. [19] A. Schmidt, K.G. Siebert, Design of Adaptive Finite Element Software: The Finite Element Toolbox ALBERTA, Lecture Notes in Computational Science and Engineering, vol. 42, Springer, 2004. [20] Ping Tang, Feng Qiu, Hongdong Zhang, Yuliang Yang, Phase separation patterns for diblock copolymers on spherical surfaces: a finite volume method, Phys. Rev. E 72 (2005) 016710. |

URI: | http://wrap.warwick.ac.uk/id/eprint/29014 |

Data sourced from Thomson Reuters' Web of Knowledge

### Actions (login required)

View Item |