The Library
Equivalence of ensembles for twospecies zerorange invariant measures
Tools
Grosskinsky, Stefan. (2008) Equivalence of ensembles for twospecies zerorange invariant measures. Stochastic Processes and their Applications, Vol.118 (No.8). pp. 13221350. ISSN 03044149

PDF
WRAP_Grossinsky_Equivalence_ensembles_two.pdf  Accepted Version  Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader Download (421Kb) 
Official URL: http://dx.doi.org/10.1016/j.spa.2007.09.006
Abstract
We study the equivalence of ensembles for stationary measures of interacting particle systems with two conserved quantities and unbounded local state space. The main motivation is a condensation transition in the zerorange process which has recently attracted attention. Establishing the equivalence of ensembles via convergence in specific relative entropy, we derive the phase diagram for the condensation transition, which can be understood in terms of the domain of grandcanonical measures. Of particular interest, also from a mathematical point of view, are the convergence properties of the Gibbs free energy on the boundary of that domain, involving large deviations and multivariate local limit theorems of subexponential distributions.
Item Type:  Journal Article 

Subjects:  Q Science > QC Physics 
Divisions:  Faculty of Science > Mathematics 
Library of Congress Subject Headings (LCSH):  Stochastic systems, Condensation 
Journal or Publication Title:  Stochastic Processes and their Applications 
Publisher:  Elsevier Science BV 
ISSN:  03044149 
Date:  August 2008 
Volume:  Vol.118 
Number:  No.8 
Number of Pages:  29 
Page Range:  pp. 13221350 
Identification Number:  10.1016/j.spa.2007.09.006 
Status:  Peer Reviewed 
Publication Status:  Published 
Access rights to Published version:  Open Access 
References:  [1] F. Spitzer. Interaction of markov processes. Adv. Math., 5:246–290, 1970. [2] E. D. Andjel. Invariant measures for the zero range process. Ann. Probability, 10 (3):525–547, 1982. [3] M. R. Evans and T. Hanney. Nonequilibrium statistical mechanics of the zerorange process and related models. J. Phys. A: Math. Gen., 38:R195–R239, 2005. [4] M. R. Evans. Phase transitions in onedimensional nonequilibriumsystems. Braz. J. Phys., 30(1):42–57, 2000. [5] S. Großkinsky, G. M. Sch¨utz, and H. Spohn. Condensation in the zero range process: stationary and dynamical properties. J. Stat. Phys., 113(3/4):389–410, 2003. [6] D. Ruelle. Statistical mechanics: rigorous results. W.A. Benjamin, New York Amsterdam, 1969. [7] G. M. Sch¨utz. Critical phenomena and universal dynamics in onedimensional driven diffusive systems with two species of particles. J. Phys. A: Math. Gen, 36 (36):R339–R379, 2003. [8] M. R. Evans and T. Hanney. Phase transition in two species zerorange process. J. Phys. A: Math. Gen., 36(28):L441–L447, 2003. [9] I. Csisz´ar. Sanov property, generalized iprojection and a conditional limit theorem. Ann. Prob., 12:768–793, 1984. [10] H.O. Georgii. Large deviations and maximum entropy principle for interacting random fields on Zd. Ann. Prob., 21(4):1845–1875, 1993. [11] H.O. Georgii and H. Zessin. Large deviations and the maximum entropy principle for marked point random fields. Probab. Th. Rel. Fields, 96:177–204, 1993. [12] J. T. Lewis, C.E. Pfister, andW. G. Sullivan. Entropy, concentration of probability and conditional limit theorems. Markov Processes Relat. Fields, 1:319–386, 1995. [13] R. S. Ellis, K. Haven, and B. Turkington. Large deviation principles and complete equivalence and nonequivalence results for pure and mixed ensembles. J. Stat. Phys., 101:999–1064, 2000. [14] H. Touchette, R. S. Ellis, and B. Turkington. An introduction to the thermodynamic and macrostate levels of nonequivalent ensembles. Physica A, 340:138– 146, 2004. [15] A. Baltrunas and C. Kl¨uppelberg. Subexponential distributions  large deviations with applications to insurance and queueing models. Aust. N. Z. J. Stat., 46(1): 141–150, 2002. [16] V. Vinogradov. Refined large deviation limit theorems. Volume 315 of Pitman Research Notes in Mathematics Series. Longman, Harlow (England), 1994. [17] E. L. Rvaceva. On domains of attraction of multidimensional distributions. Lvov. Gos. Univ., Uc. Zap. Ser. Meh.Mat., 29(6):5–44, 1954. [18] A. B. Mukhin. Local limit theorems for lattice random variables. Teor. Verojatnost. i Primenen., 36(4):660–674, 1991. [19] R. Pemantle and M. Wilson. Twenty combinatorial examples of asymptotics derived from multivariate generating functions. math.CO/0512548, 2005. [20] I. Jeon, P. March, and B. Pittel. Size of the largest cluster under zerorange invariant measures. Ann. Probab., 28(3):1162–1194, 2000. [21] C. Kipnis and C. Landim. Scaling Limits of Interacting Particle Systems. Volume 320 of Grundlehren der mathematischen Wissenschaften. Springer Verlag, Berlin, 1999. [22] M. R. Evans, S. N. Majumdar, and R. K. P. Zia. Canonical analysis of condensation in factorised steady state. J. Stat. Phys., 123:357–390, 2006. [23] S. Großkinsky and T. Hanney. Coarsening dynamics in a twospecies zerorange process. Phys. Rev. E, 72(1):016129, 2005. [24] L. A. Santal´o. Integral Geometry and Geometric Probability. Cambridge Mathematical Library. Cambridge University Press, Cambridge, UK, 2nd edition, 2004. [25] I. Csisz´ar. Idivergence geometry of probability distributions and minimization problems. Ann. Prob., 3(1):146–158, 1975. [26] S. R. S. Varadhan. Large deviations and applications. Ecole d’Et´e de Probabilit´es de SaintFlour XVXVII. Lecture Notes in Math. Springer, Berlin, 1988. [27] I. Benjamini, P. A. Ferrari, and C. Landim. Asymmetric conservative processes with random rates. Stoch. Proc. Appl., 61:181–204, 1996. [28] M. R. Evans. Boseeinstein condensation in disordered exclusion models and relation to traffic flow. Europhys. Lett., 36(1):13–18, 1996. [29] M. van den Berg, J. T. Lewis, and J. V. Pul´e. The large deviation principle and some models of an interacting boson gas. Commun. Math. Phys., 118:61–85, 1988. [30] S. Großkinsky and H. Spohn. Stationary measures and hydrodynamics of zero range processes with several species of particles. Bull. Braz. Math. Soc., 34(3): 1–19, 2003. [31] C. Godr`eche. Nonequilibrium phase transition in a non integrable zerorange process. J. Phys. A: Math. Gen., 39:9055–9069, 2006. [32] M. R. Evans, T. Hanney, and S. N. Majumdar. Interactiondriven realspace condensation. Phys. Rev. Lett., 97:010602, 2006. [33] R. T. Rockafellar and R. J.B. Wets. Variational Analysis. Volume 317 of Grundlehren der mathematischenWissenschaften. Springer Verlag, Berlin, 2004. 
URI:  http://wrap.warwick.ac.uk/id/eprint/29607 
Data sourced from Thomson Reuters' Web of Knowledge
Actions (login required)
View Item 