References: |
[1] F. Spitzer. Interaction of markov processes. Adv. Math., 5:246–290, 1970. [2] E. D. Andjel. Invariant measures for the zero range process. Ann. Probability, 10 (3):525–547, 1982. [3] M. R. Evans and T. Hanney. Nonequilibrium statistical mechanics of the zerorange process and related models. J. Phys. A: Math. Gen., 38:R195–R239, 2005. [4] M. R. Evans. Phase transitions in one-dimensional nonequilibriumsystems. Braz. J. Phys., 30(1):42–57, 2000. [5] S. Großkinsky, G. M. Sch¨utz, and H. Spohn. Condensation in the zero range process: stationary and dynamical properties. J. Stat. Phys., 113(3/4):389–410, 2003. [6] D. Ruelle. Statistical mechanics: rigorous results. W.A. Benjamin, New York- Amsterdam, 1969. [7] G. M. Sch¨utz. Critical phenomena and universal dynamics in one-dimensional driven diffusive systems with two species of particles. J. Phys. A: Math. Gen, 36 (36):R339–R379, 2003. [8] M. R. Evans and T. Hanney. Phase transition in two species zero-range process. J. Phys. A: Math. Gen., 36(28):L441–L447, 2003. [9] I. Csisz´ar. Sanov property, generalized i-projection and a conditional limit theorem. Ann. Prob., 12:768–793, 1984. [10] H.-O. Georgii. Large deviations and maximum entropy principle for interacting random fields on Zd. Ann. Prob., 21(4):1845–1875, 1993. [11] H.-O. Georgii and H. Zessin. Large deviations and the maximum entropy principle for marked point random fields. Probab. Th. Rel. Fields, 96:177–204, 1993. [12] J. T. Lewis, C.-E. Pfister, andW. G. Sullivan. Entropy, concentration of probability and conditional limit theorems. Markov Processes Relat. Fields, 1:319–386, 1995. [13] R. S. Ellis, K. Haven, and B. Turkington. Large deviation principles and complete equivalence and nonequivalence results for pure and mixed ensembles. J. Stat. Phys., 101:999–1064, 2000. [14] H. Touchette, R. S. Ellis, and B. Turkington. An introduction to the thermodynamic and macrostate levels of nonequivalent ensembles. Physica A, 340:138– 146, 2004. [15] A. Baltrunas and C. Kl¨uppelberg. Subexponential distributions - large deviations with applications to insurance and queueing models. Aust. N. Z. J. Stat., 46(1): 141–150, 2002. [16] V. Vinogradov. Refined large deviation limit theorems. Volume 315 of Pitman Research Notes in Mathematics Series. Longman, Harlow (England), 1994. [17] E. L. Rvaceva. On domains of attraction of multi-dimensional distributions. Lvov. Gos. Univ., Uc. Zap. Ser. Meh.-Mat., 29(6):5–44, 1954. [18] A. B. Mukhin. Local limit theorems for lattice random variables. Teor. Verojatnost. i Primenen., 36(4):660–674, 1991. [19] R. Pemantle and M. Wilson. Twenty combinatorial examples of asymptotics derived from multivariate generating functions. math.CO/0512548, 2005. [20] I. Jeon, P. March, and B. Pittel. Size of the largest cluster under zero-range invariant measures. Ann. Probab., 28(3):1162–1194, 2000. [21] C. Kipnis and C. Landim. Scaling Limits of Interacting Particle Systems. Volume 320 of Grundlehren der mathematischen Wissenschaften. Springer Verlag, Berlin, 1999. [22] M. R. Evans, S. N. Majumdar, and R. K. P. Zia. Canonical analysis of condensation in factorised steady state. J. Stat. Phys., 123:357–390, 2006. [23] S. Großkinsky and T. Hanney. Coarsening dynamics in a two-species zero-range process. Phys. Rev. E, 72(1):016129, 2005. [24] L. A. Santal´o. Integral Geometry and Geometric Probability. Cambridge Mathematical Library. Cambridge University Press, Cambridge, UK, 2nd edition, 2004. [25] I. Csisz´ar. I-divergence geometry of probability distributions and minimization problems. Ann. Prob., 3(1):146–158, 1975. [26] S. R. S. Varadhan. Large deviations and applications. Ecole d’Et´e de Probabilit´es de Saint-Flour XV-XVII. Lecture Notes in Math. Springer, Berlin, 1988. [27] I. Benjamini, P. A. Ferrari, and C. Landim. Asymmetric conservative processes with random rates. Stoch. Proc. Appl., 61:181–204, 1996. [28] M. R. Evans. Bose-einstein condensation in disordered exclusion models and relation to traffic flow. Europhys. Lett., 36(1):13–18, 1996. [29] M. van den Berg, J. T. Lewis, and J. V. Pul´e. The large deviation principle and some models of an interacting boson gas. Commun. Math. Phys., 118:61–85, 1988. [30] S. Großkinsky and H. Spohn. Stationary measures and hydrodynamics of zero range processes with several species of particles. Bull. Braz. Math. Soc., 34(3): 1–19, 2003. [31] C. Godr`eche. Nonequilibrium phase transition in a non integrable zero-range process. J. Phys. A: Math. Gen., 39:9055–9069, 2006. [32] M. R. Evans, T. Hanney, and S. N. Majumdar. Interaction-driven real-space condensation. Phys. Rev. Lett., 97:010602, 2006. [33] R. T. Rockafellar and R. J.-B. Wets. Variational Analysis. Volume 317 of Grundlehren der mathematischenWissenschaften. Springer Verlag, Berlin, 2004. |