References: |
[1] Majda A J and Bertozzi A L 2001 Vorticity and Incompressible Flow (Cambridge: Cambridge University Press) [2] Constantin P 2008 Proc. Conf. “Euler Equations 250 Years On” (Aussois, France, June 2007) Physica D to appear August 2008 [3] Morf R H, Orszag S A and Frisch U 1980 Spontaneous singularity in three-dimensional, inviscid incompressible flow Phys. Rev. Lett. 44 572–5 [4] Bardos C, Benachour S and Zerner M 1976 Analyticit´e des solutions p´eriodiques de l’´equation d’Euler en deux dimensions C. R. Acad. Sci. Paris 282A 995–8 [5] Bardos C and Benachour S 1977 Domaine d’analyticit´e des solutions de l’´equation d’Euler dans un ouvert de Rn Ann. Sc. Norm. Super. Pisa, Cl. Sci. IV Ser. 4 647–87 [6] Pauls W, Matsumoto T, Frisch U and Bec J 2006 Nature of complex singularities for the 2D Euler equation Physica D 219 40–59 [7] Chorin A J 1982 The evolution of a turbulent vortex Commun. Math. Phys. 83 517–35 [8] Brachet M E, Meiron D I, Orszag S A, Nickel B G, Morf R H and Frisch U 1983 Small-scale structure of the Taylor–Green vortex J. Fluid Mech. 130 411–52 [9] Siggia E D 1984 Collapse and amplification of a vortex filament Phys. Fluids 28 794–805 [10] Ashurst W and Meiron D 1987 Numerical study of vortex reconnection Phys. Rev. Lett. 58 1632–5 [11] Pumir A and Kerr R M 1987 Numerical simulation of interacting vortex tubes Phys. Rev. Lett. 58 1636–39 [12] Pumir A and Siggia E 1990 Collapsing solutions to the 3D Euler equations, Phys. Fluids A 2 220–41 [13] Bell J B and Marcus D L 1992 Vorticity intensification and transition to turbulence in the three-dimensional Euler equations Commun. Math. Phys. 147 371–94 [14] Brachet M E, Meneguzzi V, Vincent A, Politano H and Sulem P-L 1992 Numerical evidence of smooth selfsimilar dynamics and the possibility of subsequent collapse for ideal flows Phys. Fluids A 4 2845–54 [15] Kerr RM1993 Evidence for a singularity of the three-dimensional incompressible Euler equations Phys. Fluids A 5 1725–46 [16] Kerr R M 2005 Vorticity and scaling of collapsing Euler vortices Phys. Fluids A 17 075103–114 [17] BustamanteMD and Kerr RM2008 3D Euler about a 2D symmetry plane Proc. of “Euler Equations 250 Years On” (Aussois, France, June 2007) Physica D to appear August 2008 (doi:10.1016/j.physd.2008.02.007) [18] Hou T Y and Li R 2006 Dynamic depletion of vortex stretching and non-blowup of the 3-D incompressible Euler Equations J. Nonlinear Sci. 16 639–64 [19] Hou T Y and Li R 2008 Blowup or no blowup? The interplay between theory and numerics Proc. “Euler Equations 250 Years On” (Aussois, France, June 2007) Physica D to appear August 2008 [20] Orlandi P and Carnevale G 2007 Nonlinear amplification of vorticity in inviscid interaction of orthogonal Lamb dipoles Phys. Fluids 19 057106 [21] Grauer R, Marliani C and Germaschewski K 1998 Adaptive mesh refinement for singular solutions of the incompressible Euler equations Phys. Rev. Lett. 80 4177–80 [22] Grafke T, Homann H, Dreher J and Grauer R 2008 Numerical simulations of possible finite time singularities in the incompressible Euler equations: comparison of numerical methods Proc. “Euler Equations 250 Years On” (Aussois, France, June 2007) Physica D to appear August 2008 [23] Kida S 1985 Three-dimensional periodic flows with high-symmetry J. Phys. Soc. Japan 54 2132–6 [24] Kerr R M 2005 Vortex collapse and turbulence Fluid Dyn. Res. 36 249–60 [25] Boratav O N and Pelz R B 1994 Direct numerical simulation of transition to turbulence from a high-symmetry initial condition Phys. Fluids 6 2757–84 [26] Boratav O N and Pelz R B 1995 On the local topology evolution of a high-symmetry flow Phys. Fluids 7 1712–31 [27] Pelz R B 1997 Locally self-similar, finite-time collapse in a high-symmetry vortex filament model Phys. Rev. E 55 1617–26 [28] Pelz R B and Gulak Y 1997 Evidence for a real-time singularity in hydrodynamics from time series analysis Phys. Rev. Lett. 79 4998–5001 [29] Pelz R B 2001 Symmetry and the hydrodynamic blow-up problem J. Fluid Mech. 444 299–320 [30] Cichowlas C and Brachet M-E 2005 Evolution of complex singularities in Kida–Pelz and Taylor–Green inviscid flows Fluid Dyn. Res. 36 239–48 [31] Gulak Y and Pelz R B 2005 High-symmetry Kida flow: time series analysis and resummation Fluid Dyn. Res. 36 211–20 [32] Pelz R B and Ohkitani K 2005 Linearly strained flows with and without boundaries—the regularizing effect of the pressure term Fluid Dyn. Res. 36 193–210 [33] Gibbon J D 2008 The three dimensional Euler equations: how much do we know? Proc. “Euler Equations 250 Years On” (Aussois, France, June 2007) PhysicaDto appear August 2008 (doi:10.1016/j.physd.2007.10.014) [34] Bardos C and Titi E S 2007 Euler equations of incompressible ideal fluids Russ. Math. Surv. 62 409–51 [35] Beale J T, Kato T and Majda A J 1984 Remarks on the breakdown of smooth solutions for the 3D Euler equations Commun. Math. Phys. 94 61–6 [36] Ferrari A 1993 On the blow-up of solutions of the 3D Euler equations in a bounded domain Commun. Math. Phys. 155 277–94 [37] Kozono H and Taniuchi Y 2000 Limiting case of the Sobolev inequality in BMO, with applications to the Euler equations Commun. Math. Phys. 214 191–200 [38] Ponce G 1985 Remarks on a paper by J. T. Beale, T. Kato and A. Majda Commun. Math. Phys. 98 349–53 [39] Chae D 2003 Remarks on the blow-up of the Euler equations and the related equations Commun. Math. Phys. 245 539–50 [40] Chae D 2004 Local existence and blow-up criterion for the Euler equations in the Besov spaces Asymptotic Analysis 38 339–58 [41] Chae D 2005 Remarks on the blow-up criterion of the 3D Euler equations Nonlinearity 18 1021–9 [42] Chae D 2007 On the finite time singularities of the 3D incompressible Euler equations Commun. Pure Appl. Math. 60 597–617 [43] Constantin P 1994 Geometric statistics in turbulence SIAM Rev. 36 73–98 [44] Constantin P, Fefferman Ch and Majda A J 1996 Geometric constraints on potentially singular solutions for the 3D Euler equation Commun. Partial Diff. Eqns 21 559–71 [45] Cordoba D and Fefferman Ch 2001 On the collapse of tubes carried by 3D incompressible flows Commun. Math. Phys. 222 293–8 [46] Deng J, Hou T Y and Yu X 2005 Geometric properties and non-blowup of 3D incompressible Euler flow Commun. Partial Diff. Eqns 30 225–43 [47] Deng J, Hou T Y and Yu X 2003 Improved geometric condition for non-blowup of the 3D incompressible Euler equation Commun. Partial Diff. Eqns 31 293–306 [48] Gibbon J D 2007 Ortho-normal quaternion frames, Lagrangian evolution equations and the three-dimensional Euler equations Russ. Math. Surv. 62 1–26 Gibbon J D 2007 Uspekhi Mat. Nauk 62 47–72 [49] Constantin P and Foias C 1988 Navier–Stokes Equations (Chicago, IL: The University of Chicago Press) [50] Foias C, Manley O, Rosa R and Temam R 2001 Navier–Stokes equations & Turbulence (Cambridge: Cambridge University Press) [51] Brenier Y 1999 Minimal geodesics on groups of volume-preserving maps and generalized solutions of the Euler equations Commun. Pure Appl. Math. 52 411–52 [52] Shnirelman A 1997 On the non-uniqueness of weak solution of the Euler equation Commun. Pure Appl. Math. 50 1260–86 [53] De Lellis C and Sz´ekelyhidi L 2007 The Euler equations as a differential inclusion Ann. Math. to be published [54] Gibbon J D and Doering C R 2003 Intermittency is solutions of the three-dimensional Navier–Stokes equations J. Fluid Mech. 478 227–35 [55] Gibbon J D and Doering 2005 Intermittency & regularity issues in three-dimensional Navier–Stokes turbulence Arch. Rat. Mech. Anal. 177 115–50 [56] Gibbon J D and Titi E S 2005 Cluster formation in complex multi-scale systems Proc. R. Soc. 461 3089–97 [57] Gibbon J D and Pavliotis G A 2007 Estimates for the two-dimensional Navier–Stokes equations in terms of the Reynolds number J. Math. Phys. 48 065202 |