Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Effect of earthworms on the community structure of active methanotrophic bacteria in a landfill cover soil

Tools
- Tools
+ Tools

Hery, Marina, Singer, Andrew C., Kumaresan, Deepak, Bodrossy, Levente, Stralis-Pavese, Nancy, Prosser, James I. (James Ivor), Thompson, Ian P. and Murrell, J. C. (J. Colin) (2008) Effect of earthworms on the community structure of active methanotrophic bacteria in a landfill cover soil. The ISME Journal, Vol.2 (No.1). pp. 92-104. doi:10.1038/ismej.2007.66

Research output not available from this repository, contact author.
Official URL: http://dx.doi.org/10.1038/ismej.2007.66

Request Changes to record.

Abstract

In the United Kingdom, landfills are the primary anthropogenic source of methane emissions. Methanotrophic bacteria present in landfill biocovers can significantly reduce methane emissions via their capacity to oxidize up to 100% of the methane produced. Several biotic and abiotic parameters regulate methane oxidation in soil, such as oxygen, moisture, methane concentration and temperature. Earthworm-mediated bioturbation has been linked to an increase in methanotrophy in a landfill biocover soil (AC Singer et al, unpublished), but the mechanism of this trophic interaction remains unclear. The aims of this study were to determine the composition of the active methanotroph community and to investigate the interactions between earthworms and bacteria in this landfill biocover soil where the methane oxidation activity was significantly increased by the earthworms. Soil microcosms were incubated with C-13-CH4 and with or without earthworms. DNA and RNA were extracted to characterize the soil bacterial communities, with a particular emphasis on methanotroph populations, using phylogenetic (16S ribosomal RNA) and functional methane monooxygenase (pmoA and mmoX) gene probes, coupled with denaturing gradient-gel electrophoresis, clone libraries and pmoA microarray analyses. Stable isotope probing (SIP) using C-13-CH4 substrate allowed us to link microbial function with identity of bacteria via selective recovery of 'heavy' C-13-labelled DNA or RNA and to assess the effect of earthworms on the active methanotroph populations. Both types I and II methanotrophs actively oxidized methane in the landfill soil studied. Results suggested that the earthworm-mediated increase in methane oxidation rate in the landfill soil was more likely to be due to the stimulation of bacterial growth or activity than to substantial shifts in the methanotroph community structure. A Bacteroidetes-related bacterium was identified only in the active bacterial community of earthworm-incubated soil but its capacity to actually oxidize methane has to be proven.

Item Type: Journal Article
Subjects: Q Science > QH Natural history > QH301 Biology
Q Science > QR Microbiology
Divisions: Faculty of Science > Life Sciences (2010- )
Library of Congress Subject Headings (LCSH): Earthworms -- Ecology, Fills (Earthwork) -- Environmental aspects, Methanotrophs, Stable isotopes in ecological research
Journal or Publication Title: The ISME Journal
Publisher: Nature Publishing Group
ISSN: 1751-7362
Official Date: January 2008
Dates:
DateEvent
January 2008Published
Volume: Vol.2
Number: No.1
Number of Pages: 13
Page Range: pp. 92-104
DOI: 10.1038/ismej.2007.66
Status: Peer Reviewed
Publication Status: Published
Funder: Natural Environment Research Council (Great Britain) (NERC)
Grant number: NE/B505389/1 (NERC)

Data sourced from Thomson Reuters' Web of Knowledge

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us