# The Library

### Lower semicontinuity of attractors for non-autonomous dynamical systems

Tools

Carvalho, Alexandre Nolasco de, Langa, José A. and Robinson, James C. (James Cooper), 1969-.
(2009)
*Lower semicontinuity of attractors for non-autonomous dynamical systems.*
Ergodic Theory and Dynamical Systems, Vol.29
.
pp. 1765-1780.
ISSN 0143-3857

PDF
WRAP_Robinson_lower-Semicontinuity.pdf - Draft Version - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader Download (243Kb) |

Official URL: http://dx.doi.org/10.1017/S0143385708000850

## Abstract

This paper is concerned with the lower semicontinuity of attractors for semilinear non-autonomous differential equations in Banach spaces. We require the unperturbed attractor to be given as the union of unstable manifolds of time-dependent hyperbolic solutions, generalizing previous results valid only for gradient-like systems in which the hyperbolic solutions are equilibria. The tools employed are a study of the continuity of the local unstable manifolds of the hyperbolic solutions and results on the continuity of the exponential dichotomy of the linearization around each of these solutions.

Item Type: | Journal Article |
---|---|

Subjects: | Q Science > QA Mathematics |

Divisions: | Faculty of Science > Mathematics |

Library of Congress Subject Headings (LCSH): | Banach spaces, Differential equations, Hyperbolic, Attractors (Mathematics), Perturbation (Mathematics) |

Journal or Publication Title: | Ergodic Theory and Dynamical Systems |

Publisher: | Cambridge University Press |

ISSN: | 0143-3857 |

Date: | 2009 |

Volume: | Vol.29 |

Page Range: | pp. 1765-1780 |

Identification Number: | 10.1017/S0143385708000850 |

Status: | Peer Reviewed |

Access rights to Published version: | Restricted or Subscription Access |

Funder: | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil. Coordenação do Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) |

Grant number: | 305447/2005-0 (CNPq), 1353/06-3 (CAPES BEX), 03/10042-0 (FAPESP) |

References: | [1] E. A. M. Abreu and A. N. Carvalho. Lower semicontinuity of attractors for parabolic problems with Dirichlet boundary conditons in varying domains. Mat. Contemp. 27 (2004), 37–51. [2] J. M. Arrieta and A. N. Carvalho. Spectral convergence and nonlinear dynamics of reaction-diffusion equations under perturbations of the domain. J. Differential Equations 199 (2004), 143–178. [3] P. Bates, K. Lu and C. Zeng. Existence and persistence of invariant manifolds for semiflows in Banach spaces. Mem. Amer. Math. Soc. 135(645) (1999). [4] A. Berger and S. Siegmund. Uniformly attracting solutions of nonautonomous differential equations. Nonlinear Anal. 68(12) (2008), 3789–3811. [5] S. M. Bruschi, A. N. Carvalho, J. W. Cholewa and T. Dłotko. Uniform exponential dichotomy and continuity of attractors for singularly perturbed damped wave equations. J. Dynam. Differential Equations 18 (2006), 767–814. [6] T. Caraballo, J. A. Langa and J. C. Robinson. Upper semicontinuity of attractors for small random perturbations of dynamical systems. Comm. Partial Differential Equations 23(9–10) (1998), 1557–1581. [7] T. Caraballo and J. A. Langa. On the upper semicontinuity of cocycle attractors for non-autonomous and random dynamical systems. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 10(4) (2003), 491–513. [8] V. L. Carbone, A. N. Carvalho and K. Schiabel-Silva. Continuity of attractors for parabolic problems with localized large diffusion. Nonlinear Anal. 68(3) (2008), 515–535. [9] A. N. Carvalho and S. Piskarev. A general approximation scheme for attractors of abstract parabolic problems. Numer. Funct. Anal. Optim. 27 (2006), 785–829. [10] A. N. Carvalho and J. A. Langa. Non-autonomous perturbation of autonomous semilinear differential equations: continuity of local stable and unstable manifolds. J. Differential Equations 233(2) (2007), 622–653. [11] A. N. Carvalho, J. A. Langa, J. C. Robinson and A. Suárez. Characterization of non-autonomous attractors of a perturbed gradient system. J. Differential Equations 236 (2007), 570–603. [12] H. Crauel, A. Debussche and F. Flandoli. Random attractors. J. Dynam. Differential Equations 9 (1995), 307–341. [13] D. N. Cheban, P. E. Kloeden and B. Schmalfuß. The relationship between pullback, forward and global attractors of nonautonomous dynamical systems. Nonlinear Dyn. Syst. Theory 2(2) (2002), 125–144. [14] V. V. Chepyzhov and M. I. Vishik. Attractors for Equations of Mathematical Physics (AMS Colloquium Publications, 49). American Mathematical Society, Providence, RI, 2002. [15] M. Efendiev, S. Zelik and A. Miranville. Exponential attractors and finite-dimensional reduction for nonautonomous dynamical systems. Proc. Roy. Soc. Edinburgh Sect. A 135(4) (2005), 703–730. [16] C. M. Elliott and I. N. Kostin. Lower semicontinuity of a non-hyperbolic attractor for the viscous Cahn- Hilliard equation. Nonlinearity 9 (1996), 687–702. [17] J. K. Hale, X. B. Lin and G. Raugel. Upper semicontinuity of attractors for approximation of semigroups and partial differential equations. J. Math. Comput. 50 (1988), 89–123. [18] J. K. Hale. Asymptotic Behavior of Dissipative Systems (Mathematical Surveys and Monographs, 25). American Mathematical Society, Providence, RI, 1988. [19] J. K. Hale and G. Raugel. Lower semicontinuity of attractors of gradient systems and applications. Ann. Mat. Pura Appl. 154(4) (1989), 281–326. [20] D. Henry. Geometric Theory of Semilinear Parabolic Equations (Lecture Notes in Mathematics, 840). Springer, Berlin, 1981. [21] P. E. Kloeden and B. Schmalfuß. Asymptotic behaviour of non-autonomous difference inclusions. Systems Control Lett. 33 (1998), 275–280. [22] I. N. Kostin. Lower semicontinuity of a non-hyperbolic attractor. J. London Math. Soc. 52 (1995), 568–582. [23] J. A. Langa, J. C. Robinson, A. Suárez and A. Vidal-López. The structure of attractors in non-autonomous perturbations of gradient-like systems. J. Differential Equations 234(2) (2007), 607–625. [24] J. A. Langa, J. C. Robinson and A. Suárez. Bifurcation from zero of a complete trajectory for nonautonomous logistic PDEs. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 15(8) (2005), 2663–2669. [25] V. A. Pliss and G. R. Sell. Robustness of exponential dichotomies in infinite dimensional dynamical systems. J. Dynam. Differential Equations 11 (1999), 471–513. [26] V. A. Pliss and G. R. Sell. Perturbations of foliated bundles and evolutionary equations. Ann. Mat. Pura Appl. (4) 185(Suppl.) (2006), S325–S388. [27] J. C. Robinson. Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors. Cambridge University Press, Cambridge, 2001. [28] A. Rodríguez-Bernal and A. Vidal-López. Extremal equilibria and asymptotic behavior of parabolic nonlinear reaction-diffusion equations. Nonlinear Elliptic and Parabolic Problems (Progress in Nonlinear Differential Equations and their Applications, 64). Birkhäuser, Basel, 2005, pp. 509–516. [29] A. M. Stuart and A. R. Humphries. Dynamical Systems and Numerical Analysis. Cambridge University Press, Cambridge, 1996. [30] R. Temam. Infinite Dimensional Dynamical Systems in Mechanics and Physics. Springer, New York, 1988. |

URI: | http://wrap.warwick.ac.uk/id/eprint/3137 |

Data sourced from Thomson Reuters' Web of Knowledge

### Actions (login required)

View Item |