References: |
[1] J. W. ANDERSON and R. D. CANARY, Cores of hyperbolic 3-manifolds and limits of Kleinian groups, II, J. London Math. Soc. (2) 61 (2000), 489 – 505. MR 1760675 [2] R. BENEDETTI and C. PETRONIO, Lectures on Hyperbolic Geometry, Universitext, Springer, Berlin, 1992. MR 1219310 [3] L. BERS, Simultaneous uniformization, Bull. Amer. Math. Soc. 66 (1960), 94 – 97. MR 0111834 [4] ———, Fiber spaces over Teichm¨uller spaces, Acta. Math. 130 (1973), 89 – 126. MR 0430318 [5] M. BESTVINA, Questions in geometric group theory, preprint, 2004. [6] J. S. BIRMAN, Mapping class groups and their relationship to braid groups, Comm. Pure Appl. Math. 22 (1969), 213 – 238. MR 0243519 [7] ———, Braids, Links, and Mapping Class Groups, Ann. of Math. Stud. 82, Princeton Univ. Press, Princeton, 1974. MR 0375281 [8] F. BONAHON, Bouts des vari´et´es hyperboliques de dimension 3, Ann. of Math. (2) 124 (1986), 71 – 158. MR 0847953 [9] B. H. BOWDITCH, Intersection numbers and the hyperbolicity of the curve complex, J. Reine Angew. Math. 598 (2006), 105 – 129. MR 2270568 [10] J. F. BROCK, Continuity of Thurston’s length function, Geom. Funct. Anal. 10 (2000), 741 – 797. MR 1791139 [11] J. F. BROCK and K. W. BROMBERG, On the density of geometrically finite Kleinian groups, Acta Math. 192 (2004), 33 – 93. MR 2079598 [12] J. F. BROCK, R. D. CANARY, and Y. N. MINSKY, The classification of Kleinian surface groups, II: The ending lamination conjecture, preprint, arXiv:math/0412006v1 [math.GT] [13] R. D. CANARY, A covering theorem for hyperbolic 3-manifolds and its applications, Topology 35 (1996), 751 – 778. MR 1396777 [14] R. D. CANARY, D. B. A. EPSTEIN, and P. GREEN, “Notes on notes of Thurston” in Analytical and Geometric Aspects of Hyperbolic Space (Coventry/Durham, England, 1984), London Math. Soc. Lecture Note Ser. 111, Cambridge Univ. Press, Cambridge, 1987, 3 – 92. MR 0903850 [15] C. J. EARLE and J. EELLS, A fibre bundle description of Teichm¨uller theory, J. Differential Geometry 3 (1969), 19 – 43. MR 0276999 [16] A. ESKIN, H. MASUR, and A. ZORICH, Moduli spaces of abelian differentials: The principal boundary, counting problems, and the Siegel-Veech constants, Publ. Math. Inst. Hautes ´ Etudes Sci. 97 (2003), 61 – 179. MR 2010740 [17] B. FARB and L. MOSHER, Convex cocompact subgroups of mapping class groups, Geom. Topol. 6 (2002), 91 – 152. MR 1914566 [18] A. FATHI, F. LAUDENBACH, and V. PO´ENARU, eds., Travaux de Thurston sur les surfaces, reprint of the 1979 ed., Ast´erisque 66 – 67, S´eminaire Orsay, Soc. Math. France, Montrouge, 1991. MR 1134426 [19] D. GABAI, Almost filling laminations and the connectivity of ending lamination space, Geom. Topol. 13 (2009), 1017 – 1041. MR 2470969 [20] F. P. GARDINER, Teichm¨uller Theory and Quadratic Differentials, Pure Appl. Math. (N.Y.), Wiley-Interscience, New York, 1987. MR 0903027 [21] U. HAMENST¨ADT, “Train tracks and the Gromov boundary of the complex of curves” in Spaces of Kleinian Groups, London Math. Soc. Lecture Note Ser. 329, Cambridge Univ. Press, Cambridge, 2006, 187 – 207. MR 2258749 [22] J. HUBBARD and H. MASUR, Quadratic differentials and foliations, Acta Math. 142 (1979), 221 – 274. MR 0523212 [23] S. P. HUMPHRIES, “Generators for the mapping class group” in Topology of Low-Dimensional Manifolds (Chelwood Gate, England, 1977), Lecture Notes in Math. 722, Springer, Berlin, 1979, 44 – 47. MR 0547453 [24] N. V. IVANOV, Subgroups of Teichm¨uller Modular Groups, revised by the author, trans. by E. J. F. Primrose, Trans. Math. Monogr. 115, Amer. Math. Soc., Providence, 1992. MR 1195787 [25] R. P. KENT IV and C. J. LEININGER, Shadows of mapping class groups: Capturing convex cocompactness, Geom. Funct. Anal. 18 (2008), 1270 – 1325. MR 2465691 [26] R. P. KENT IV, C. J. LEININGER, and S. SCHLEIMER, Trees and mapping class groups, preprint, arXiv:math/0611241v2 [math.GT] [27] S. KERCKHOFF, H. MASUR, and J. SMILLIE, Ergodicity of billiard flows and quadratic differentials, Ann. of Math. (2) 124 (1986), 293 – 311. MR 0855297 [28] E. KLARREICH, The boundary at infinity of the curve complex and the relative Teichm¨uller space, preprint, 1999. [29] R. S. KULKARNI and P. B. SHALEN, On Ahlfors’ finiteness theorem, Adv. Math. 76 (1989), 155 – 169. MR 1013665 [30] C. J. LEININGER, M. MJ, and S. SCHLEIMER, The universal Cannon-Thurston map and the boundary of the curve complex, preprint, arXiv:0808.3521v2 [math.GT] [31] A. MARDEN and K. STREBEL, The heights theorem for quadratic differentials on Riemann surfaces, Acta Math. 153 (1984), 153 – 211. MR 0766263 [32] H. A. MASUR and Y. N. MINSKY, Geometry of the complex of curves, I: Hyperbolicity, Invent. Math. 138 (1999), 103 – 149. MR 1714338 [33] D. MCCULLOUGH, Compact submanifolds of 3-manifolds with boundary, Quart. J. Math. Oxford Ser. (2) 37 (1986), 299 – 307. MR 0854628 [34] Y. N. MINSKY, “Curve complexes, surfaces and 3-manifolds” in International Congress of Mathematicians, Vol. II, Eur. Math. Soc., Z¨urich, 2006, 1001 – 1033. MR 2275633 [35] ———, The classification of Kleinian surface groups, I: Models and bounds, preprint, arXiv:math/0302208v3 [math.GT] [36] M. MITRA, Cannon-Thurston maps for hyperbolic group extensions, Topology 37 (1998), 527 – 538. MR 1604882 [37] L. MOSHER, Train track expansions of measured foliations, preprint, 2003. [38] J.-P. OTAL, The Hyperbolization Theorem for Fibered 3-Manifolds, translated from the 1996 French original by Leslie D. Kay, SMF/AMS Texts Monogr. 7, Amer. Math. Soc., Providence, 2001. MR 1855976 [39] K. RAFI and S. SCHLEIMER, Curve complexes with connected boundary are rigid, preprint, arXiv:0710.3794v1 [math.GT] [40] G. P. SCOTT, Compact submanifolds of 3-manifolds, J. London Math. Soc. (2) 7 (1973), 246 – 250. MR 0326737 [41] W. P. THURSTON, Three-Dimensional Geometry and Topology, Vol. 1, Princeton Math. Ser. 35, Princeton Univ. Press, Princeton, 1997. MR 1435975 [42] ———, The geometry and topology of 3-manifolds, Princeton lecture notes, 1979. [43] ———, Hyperbolic structures on 3-manifolds, II: Surface groups and 3-manifolds which fiber over the circle, preprint, arXiv:math/9801045v1 [math.GT] |