Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Ultrasonic characterisation of rolled aluminium and steel sheet correlated with electron backscatter diffraction measurements

Tools
- Tools
+ Tools

Essex, Stephen (2009) Ultrasonic characterisation of rolled aluminium and steel sheet correlated with electron backscatter diffraction measurements. PhD thesis, University of Warwick.

[img] PDF
WRAP_THESIS_ESSEX_2010.pdf - Requires a PDF viewer.

Download (4Mb)
Official URL: http://webcat.warwick.ac.uk/record=b2334296~S15

Request Changes to record.

Abstract

This thesis is based on the characterization of material properties of interest in rolled aluminium and steel sheet, both popular materials used across a wide-range of applications. The forming processes involved in producing rolled sheet metal depend on plastic deformation, inducing elastic anisotropy as a consequence. These changes result in a variation from the simple isotropic and cubic symmetry systems possessed by steel and aluminium prior to cold-working. The most significant changes include the introduction of crystallographic texture and the morphology of the crystallographic grains in size and shape to accommodate the plastic deformation.
It is desirable in industries that use rolled product for manufacturing components to quantify such changes. The literature has postulated links between plastic and elastic properties, and hence any quantification of the elasticity, crystallographic texture and grain morphology can aid in the prediction of future formability behaviour.
This thesis presents non-destructive, rapid ultrasonic measurements to characterize some of the changes that are evident in rolled aluminium and steel sheet. These ultrasonic results have then been correlated to crystallographic orientation measurements generated from using a microscopic technique called electron backscatter diffraction (EBSD). The level of agreement between the two contrasting methods has been analysed and is presented here.
The non-destructive ultrasonic measurements include quantifying crystallographic texture utilising theory linking the S0 Lamb wave velocity and the direction of propagation in a rolled sheet with respect to the rolling direction. This leads to the determination of texture coefficients known as orientation distribution coefficients (ODC). Through-thickness linearly polarized SH waves have then been used to analyse grain morphology using attenuation data, and elasticity measurements from velocity data.
EBSD datasets have been manipulated to produce predictions of the effective elastic stiffness constants, which in turn can be used to generate comparable S0 Lamb wave velocity predictions to be directly compared to the ultrasonic measurements. This process has required a novel method to generate such ultrasonic velocity predictions as a function of angle, together with predictions for the nine effective elastic stiffness constants inherent to rolled orthorhombic sheet. The facility to measure grain size and shape accurately from EBSD data has been utilized.
The thesis starts with a general introduction in non-destructive testing and microscopy, with focussed discussion on ultrasound, electromagnetic acoustic transducers (EMATs), EBSD and metallurgy in the subsequent chapters. Chapter 6 introduces the development of correlation methods between the ultrasound and EBSD results, with chapters 7 and 8 displaying the empirical ultrasound and EBSD data respectively. Chapter 9 compares the data from the two methods, with the final conclusions given in chapter 10.

Item Type: Thesis or Dissertation (PhD)
Subjects: Q Science > QC Physics
Library of Congress Subject Headings (LCSH): Nondestructive testing -- Research, Ultrasonic testing -- Research, Aluminum -- Testing, Steel -- Testing
Official Date: September 2009
Dates:
DateEvent
September 2009Submitted
Institution: University of Warwick
Theses Department: Department of Physics
Thesis Type: PhD
Publication Status: Unpublished
Supervisor(s)/Advisor: Dixon, S. M.
Sponsors: UK Research Centre for Non-Destructive Evaluation (RCNDE)
Format of File: pdf
Extent: 234 leaves : ill., charts
Language: eng

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics

twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us