
The Library
Overproduction of abscisic acid in tomato increases transpiration efficiency and root hydraulic conductivity and influences leaf expansion
Tools
Thompson, Andrew J., Andrews, John, Mulholland, Barry J., McKee, John M. T., Hilton, Howard W., Horridge, Jon S., Farquhar, Graham D., Smeeton, Rachel C., Smillie, Ian R. A., Black, Colin R. and Taylor, Ian B. (2007) Overproduction of abscisic acid in tomato increases transpiration efficiency and root hydraulic conductivity and influences leaf expansion. Plant Physiology, Vol.143 (No.4). pp. 1905-1917. doi:10.1104/pp.106.093559 ISSN 0032-0889.
Research output not available from this repository.
Request-a-Copy directly from author or use local Library Get it For Me service.
Official URL: http://dx.doi.org/10.1104/pp.106.093559
Abstract
Overexpression of genes that respond to drought stress is a seemingly attractive approach for improving drought resistance in crops. However, the consequences for both water-use efficiency and productivity must be considered if agronomic utility is sought. Here, we characterize two tomato (Solanum lycopersicum) lines (sp12 and sp5) that overexpress a gene encoding 9-cisepoxycarotenoid dioxygenase, the enzyme that catalyzes a key rate-limiting step in abscisic acid (ABA) biosynthesis. Both lines contained more ABA than the wild type, with sp5 accumulating more than sp12. Both had higher transpiration efficiency because of their lower stomatal conductance, as demonstrated by increases in delta C-13 and delta O-18, and also by gravimetric and gas-exchange methods. They also had greater root hydraulic conductivity. Under well-watered glasshouse conditions, mature sp5 plants were found to have a shoot biomass equal to the wild type despite their lower assimilation rate per unit leaf area. These plants also had longer petioles, larger leaf area, increased specific leaf area, and reduced leaf epinasty. When exposed to root-zone water deficits, line sp12 showed an increase in xylem ABA concentration and a reduction in stomatal conductance to the same final levels as the wild type, but from a different basal level. Indeed, the main difference between the high ABA plants and the wild type was their performance under well-watered conditions: the former conserved soil water by limiting maximum stomatal conductance per unit leaf area, but also, at least in the case of sp5, developed a canopy more suited to light interception, maximizing assimilation per plant, possibly due to improved turgor or suppression of epinasty.
Item Type: | Journal Article | ||||
---|---|---|---|---|---|
Subjects: | S Agriculture > SB Plant culture | ||||
Divisions: | Faculty of Science, Engineering and Medicine > Science > Life Sciences (2010- ) > Warwick HRI (2004-2010) | ||||
Journal or Publication Title: | Plant Physiology | ||||
Publisher: | American Society of Plant Biologists | ||||
ISSN: | 0032-0889 | ||||
Official Date: | April 2007 | ||||
Dates: |
|
||||
Volume: | Vol.143 | ||||
Number: | No.4 | ||||
Number of Pages: | 13 | ||||
Page Range: | pp. 1905-1917 | ||||
DOI: | 10.1104/pp.106.093559 | ||||
Status: | Peer Reviewed | ||||
Publication Status: | Published | ||||
Access rights to Published version: | Restricted or Subscription Access |
Data sourced from Thomson Reuters' Web of Knowledge
Request changes or add full text files to a record
Repository staff actions (login required)
![]() |
View Item |