Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

An illustration of modeling cataclysmic variables: HST, FUSE, and SDSS spectra of SDSS J080908.39+381406.2

Tools
- Tools
+ Tools

Linnell, Albert P., Hoard, D. W. (Donald Wayne), Szkody, Paula, Long, Knox S., Hubeny, Ivan, Gänsicke, B. T. (Boris T.) and Sion, Edward M. (2007) An illustration of modeling cataclysmic variables: HST, FUSE, and SDSS spectra of SDSS J080908.39+381406.2. Astrophysical Journal, Vol.654 (No.2 Part 1). pp. 1036-1051. doi:10.1086/507455 ISSN 0004-637X.

Research output not available from this repository.

Request-a-Copy directly from author or use local Library Get it For Me service.

Official URL: http://dx.doi.org/10.1086/507455

Request Changes to record.

Abstract

FUSE, HST, and SDSS spectra of the cataclysmic variable SDSS J080908.39+381406.2 provide a spectral flux distribution from 900 to 9200 angstrom. This data set is used to illustrate procedures for calculating and testing system models. The spectra are not contemporaneous; it is necessary to assume that the combined spectra are representative of the system. The illustrations are based on a system with a 1.0 M-. white dwarf, a 0.30 M-., 3500 K, Roche lobe-filling secondary star, and an accretion disk extending to the tidal cutoff radius. Assuming a similar accretion state for the nonsimultaneous spectra, the best standard model fit is with a mass transfer rate of 3.0 x 10(-9) M-. yr(-1). Extensive simulations demonstrate that the accretion disk must be truncated at its inner edge if the temperature profile follows the standard model, but truncated models face severe objections, which we address. Following additional simulation tests, we obtain a model accretion disk with a temperature profile comparable to the profile for SW Sex as determined from tomographic image reconstruction. This model fits the discovery SDSS spectrum well but has a flux deficit in the UV and FUV. Emission from a white dwarf is a plausible source of additional flux. Adding this source to the disk synthetic spectrum produces FUV flux that can explain the observed flux. An additional ( archival) SDSS spectrum is fainter by about 0.3 mag in the optical. Additional analysis showed that UV residuals from a model fitting the archival optical wavelength spectrum are unacceptably large. Contemporaneous spectra from all wavelength regions would be necessary for a reliable system model. Our discussion illustrates how this conclusion follows from the system models.

Item Type: Journal Article
Subjects: Q Science > QB Astronomy
Divisions: Faculty of Science, Engineering and Medicine > Science > Physics
Journal or Publication Title: Astrophysical Journal
Publisher: IOP Publishing
ISSN: 0004-637X
Official Date: 10 January 2007
Dates:
DateEvent
10 January 2007Published
Volume: Vol.654
Number: No.2 Part 1
Number of Pages: 16
Page Range: pp. 1036-1051
DOI: 10.1086/507455
Status: Peer Reviewed
Publication Status: Published
Access rights to Published version: Restricted or Subscription Access

Data sourced from Thomson Reuters' Web of Knowledge

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us