Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Effect of composition on the conductivity and morphology of poly (3-hexylthiophene)/gold nanoparticle composite Langmuir-Schaeffer films

Tools
- Tools
+ Tools

Nicholson, Patrick G., Ruiz, Virginia, Macpherson, Julie V. and Unwin, Patrick R. (2006) Effect of composition on the conductivity and morphology of poly (3-hexylthiophene)/gold nanoparticle composite Langmuir-Schaeffer films. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 8 (43). pp. 5096-5105. doi:10.1039/b605691c

Research output not available from this repository, contact author.
Official URL: http://dx.doi.org/10.1039/b605691c

Request Changes to record.

Abstract

Ultrathin Langmuir-Schaeffer (LS) films were fabricated from blends of regioregular poly(3-hexylthiophene) (P3HT) and highly monodispersed dodecanethiolate-capped gold nanoparticles (Au NPs) mixed in varying weight ratios. The morphology of the ultrathin films was investigated by UV-visible absorption spectroscopy, atomic force microscopy (AFM) and field-emission scanning electron microscopy (FE-SEM). The results of the structural investigations were correlated with the lateral conductivity of the films, with P3HT in its unintentionally doped state, probed by scanning electrochemical microscopy (SECM), which proved to be a very sensitive technique. Control over the P3HT/Au NP ratio led to remarkable changes in the morphology and lateral conductivity of the films. Inclusion of Au NPs into P3HT was found to influence the ordering of P3HT, which ultimately determined the macroscopic charge transport characteristics of the films. Composite films with ca. 33% by weight of Au NPs were found to be the most ordered and exhibited the highest conductivity, substantially higher than P3HT alone. To provide insight into the film formation process, LS composite films comprising equal quantities of P3HT and Au NPs (by weight) were transferred at several surface pressures and investigated by SECM, AFM and FE-SEM.

Item Type: Journal Article
Subjects: Q Science > QD Chemistry
Q Science > QC Physics
Journal or Publication Title: PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Publisher: ROYAL SOC CHEMISTRY
ISSN: 1463-9076
Official Date: 2006
Dates:
DateEvent
2006UNSPECIFIED
Volume: 8
Number: 43
Number of Pages: 10
Page Range: pp. 5096-5105
DOI: 10.1039/b605691c
Publication Status: Published

Data sourced from Thomson Reuters' Web of Knowledge

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us