Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

A fast hybrid algorithm for exoplanetary transit searches

Tools
- Tools
+ Tools

Cameron, A. Collier, Pollacco, Don, Street, R. A., Lister, T. A., West, Richard G., Wilson, D. M., Pont, F., Christian, D. J., Clarkson, W. I., Enoch, B. et al.
(2006) A fast hybrid algorithm for exoplanetary transit searches. Monthly Notices of the Royal Astronomical Society, 373 (2). pp. 799-810. doi:10.1111/j.1365-2966.11074.x

Research output not available from this repository, contact author.
Official URL: http://dx.doi.org/10.1111/j.1365-2966.11074.x

Request Changes to record.

Abstract

We present a fast and efficient hybrid algorithm for selecting exoplanetary candidates from wide-field transit surveys. Our method is based on the widely used SysRem and Box Least-Squares (BLS) algorithms. Patterns of systematic error that are common to all stars on the frame are mapped and eliminated using the SysRem algorithm. The remaining systematic errors caused by spatially localized flat-fielding and other errors are quantified using a boxcar-smoothing method. We show that the dimensions of the search-parameter space can be reduced greatly by carrying out an initial BLS search on a coarse grid of reduced dimensions, followed by Newton-Raphson refinement of the transit parameters in the vicinity of the most significant solutions. We illustrate the method's operation by applying it to data from one field of the SuperWASP survey, comprising 2300 observations of 7840 stars brighter than V = 13.0. We identify 11 likely transit candidates. We reject stars that exhibit significant ellipsoidal variations caused indicative of a stellar-mass companion. We use colours and proper motions from the Two Micron All Sky Survey and USNO-B1.0 surveys to estimate the stellar parameters and the companion radius. We find that two stars showing unambiguous transit signals pass all these tests, and so qualify for detailed high-resolution spectroscopic follow-up.

Item Type: Journal Article
Subjects: Q Science > QB Astronomy
Divisions: Faculty of Science > Physics
Journal or Publication Title: Monthly Notices of the Royal Astronomical Society
Publisher: Wiley
ISSN: 0035-8711
Official Date: 1 December 2006
Dates:
DateEvent
1 December 2006Published
Volume: 373
Number: 2
Number of Pages: 12
Page Range: pp. 799-810
DOI: 10.1111/j.1365-2966.11074.x
Status: Peer Reviewed
Publication Status: Published
Access rights to Published version: Restricted or Subscription Access

Data sourced from Thomson Reuters' Web of Knowledge

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us