# The Library

### Transient electrothermal simulation of power semiconductor devices

Tools

Du, Bin, Hudgins, Jerry L., Santi, Enrico, Bryant, Angus T., Palmer, Patrick R. and Mantooth, H. Alan, 1963- .
(2010)
*Transient electrothermal simulation of power semiconductor devices.*
IEEE Transactions on Power Electronics, Vol.25
(No.1).
pp. 237-248.
ISSN 0885-8993

PDF
WRAP_Bryant_Transient_electrothermal.pdf - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader Download (1790Kb) |

Official URL: http://dx.doi.org/10.1109/TPEL.2009.2029105

## Abstract

In this paper, a new thermal model based on the Fourier series solution of heat conduction equation has been introduced in detail. 1-D and 2-D Fourier series thermal models have been programmed in MATLAB/Simulink. Compared with the traditional finite-difference thermal model and equivalent RC thermal network, the new thermal model can provide high simulation speed with high accuracy, which has been proved to be more favorable in dynamic thermal characterization on power semiconductor switches. The complete electrothermal simulation models of insulated gate bipolar transistor (IGBT) and power diodes under inductive load switching condition have been successfully implemented in MATLAB/Simulink. The experimental results on IGBT and power diodes with clamped inductive load switching tests have verified the new electrothermal simulation model. The advantage of Fourier series thermal model over widely used equivalent RC thermal network in dynamic thermal characterization has also been validated by the measured junction temperature.

Item Type: | Journal Article |
---|---|

Subjects: | T Technology > TK Electrical engineering. Electronics Nuclear engineering Q Science > QA Mathematics Q Science > QC Physics |

Divisions: | Faculty of Science > Engineering |

Library of Congress Subject Headings (LCSH): | Fourier series -- Computer programs, Heat -- Conduction -- Computer programs, Semiconductors -- Research, MATLAB/Simulink |

Journal or Publication Title: | IEEE Transactions on Power Electronics |

Publisher: | IEEE |

ISSN: | 0885-8993 |

Date: | January 2010 |

Volume: | Vol.25 |

Number: | No.1 |

Page Range: | pp. 237-248 |

Identification Number: | 10.1109/TPEL.2009.2029105 |

Status: | Peer Reviewed |

Access rights to Published version: | Open Access |

References: | [1] P. M. Fabis, D. Shun, and H. Windischmann, “Thermal modelling of diamond-based power electronics package,” in Proc. 15th Annu. IEEE Semicond. Therm. Meas. Manage. Symp., 1999, pp. 98–104. [2] Z. Luo, H. Ahn, andM. A. El Nokali, “A thermal model for insulated gate bipolar transistor module,” IEEE Trans. Power Electron., vol. 19, no. 4, pp. 902–907, Jul. 2004. [3] J. Lohan and M. Davis, “Transient thermal behavior of a board-mounted 160-lead plastic quad flat pack,” in Proc. 1994 InterSociety Conf. Therm. Phenom. Electro-Syst., 1994, pp. 108–116. [4] S. J. Ham, M. S. Cho, and S. B. Lee, “Thermal deformation of CSP assembly during temperature and power cycling,” in Proc. Int. Symp. Electr. Mater. Pack., 2000, pp. 350–357. [5] M. Thoben, W. Staiger, and J. Wilde. (2000). Modeling and experimental investigations on degradation of microcomponents in power cycling [Online]. Available: http://ansys.net/ansys/papers/mw/ 2000_1031.pdf [6] A. Syed, “Predicting solder joint reliability for thermal, power and bend cycle within 25% accuracy,” in Proc. 51st ECTC, 2001, pp. 255– 263. [7] E. R. Brown andM. C. Shaw, “Thermomechatronics of power electronics packages,” in Proc. 2000 InterSociety Conf. Therm. Phenom., pp. 270– 278. [8] F. P. Incropera and D. P. Dewitt, Heat and Mass Transfer. NewYork: Wiley, 2002. [9] Q. Chen, X. Yang, Z. Wang, L. Zhang, and M. Zheng, “Thermal design considerations for integrated power electronics modules based on temperature distribution cases study,” in IEEE PESC Rec., Orlando, FL, Jun. 17–21, 2007, pp. 1029–1035. [10] A. Ammous, K. Ammous, H. Morel, B. Allard, D. Bergogne, F. Sellami, and J. P. Chante, “Choosing a thermal model for electrothermal simulation of power semiconductor devices,” IEEE Trans. Power Electron., vol. 14, no. 2, pp. 300–307, Mar. 1999. [11] A. Lakhsasi andY. Hamri, “Transient thermal analysis of fast switching devices by partially coupled FEM method,” in Proc. IEEE CCECE/CCGEI, Ottawa, ON, May 2006, pp. 1098–1103. [12] S. M’Rad, “An experimentally verified compact transient electro-thermal modeling procedure for power systems,” in EPE Conf. Rec,, Aalborg, Denmark, Sep. 2–5, 2007, pp. 1–8. [13] E. Santi, J. L. Hudgins, and H. A. Mantooth, “Variable model levels for power semiconductor devices,” presented at the Soc. Model. Simul. Int. Conf. Rec., San Diego, CA, Jul. 2007, Session W13, Paper 3. [14] E. Santi, L. Lu, Z. Chen, J. L. Hudgins, and H. A. Mantooth, “Simulating power semiconductor devices using variable model levels,” presented at the Soc.Model. Simul. Int. Conf. Rec., San Diego, CA, Jul. 2007, Session W13, Paper 4. [15] A. T. Bryant, P. A. Mawby, P. R. Palmer, E. Santi, and J. L. Hudgins, “Exploration of power device reliability using compact device models and fast electro-thermal simulation,” IEEE Trans. Ind. Appl., vol. 44, no. 3, pp. 894–903, May/Jun. 2008. [16] A. T. Bryant, P. R. Palmer, E. Santi, J. L. Hudgins, and P. A. Mawby, “Review of advanced power device models for converter design and simulation,” in Proc. IET Inf. Commun. Tech. Electr. Sci. (ICTES) Conf. Rec., Chennai, India, Dec. 20–22, 2007, pp. 85–90. [17] P. R.Wilson, H. A. Mantooth, E. Santi, and J. L. Hudgins, “Model creation for all electric ship (AES) power systems,” presented at the Soc. Model. Simul. Int. Conf. Rec., London, U.K., Jun. 2008. [18] W. Li, Y. Feng, P. R.Wilson, H. A. Mantooth, E. Santi, and J. L. Hudgins, “Certify: A parameter extraction tool for power semiconductor device models,” presented at the Soc. Model. Simul. Int. Conf. Rec., London, U.K., Jun. 2008. [19] P. R. Palmer, E. Santi, J. L. Hudgins, X. Kang, J. C. Joyce, and P. Y. Eng, “Circuit simulator models for the diode and IGBT with full temperature dependent features,” IEEE Trans. Power Electron., vol. 18, no. 5, pp. 1220–1229, Sep. 2003. [20] P. Leturcq, O. Berraies, J. L. Debrie, P. Gillet, M. A. Kallala, and J. L. Massol, “Bipolar semiconductor devices models for computer-aided design in power electronics,” in Proc. 6th Eur. Conf. Power Electron., 1995, vol. 2, p. 84. [21] Y. C. Gerstenmaier, A. Castellazzi, and G. K. M.Wachutka, “Electrothermal simulation of multichip-modules with novel transient thermal model and time-dependent boundary conditions,” IEEE Trans. Power Electron., vol. 21, no. 1, pp. 45–55, Jan. 2006. [22] B. Du, J. L. Hudgins, A. T. Bryant, E. Santi, and P. R. Palmer, “Expanded thermal model for IGBT modules,” IEEE IAS Annu. Meeting Conf. Rec., vol. 2, pp. 777–784, Oct. 2006. [23] X. Kang, “Characterization and modeling of trench gate IGBT,” Ph.D. dissertation, Dept. Electr. Eng., Univ. South Carolina, Columbia, Dec. 2002. [24] A. Bryant, “Simulation and optimization of diode and IGBT interaction in a chopper cell,” Ph.D. dissertation, Univ. Cambridge, Cambridge, U.K., Jan. 2005. [25] C. Van Godbold, V. A. Sankaran, and J. L. Hudgins, “Thermal analysis of high-power modules,” IEEE Trans. Power Electron., vol. 12, no. 1, pp. 3–11, Jan. 1997. [26] F. P. Incropera and D. P. Dewitt, Heat and Mass Transfer. NewYork: Wiley, 2002. [27] The MathWorks, Inc. (2008). [Online]. Available: http://www. mathworks.com/products/simulink/description1.html [28] B. Du, J. L. Hudgins, A. T. Bryant, E. Santi, P. R. Palmer, and H. A. Mantooth, “Transient thermal analysis of power devices based on Fourier-series thermal models,” in IEEE PESC Rec., Rhodes, Greece, Jun. 22-26, 2008, pp. 3129–3135. [29] M. Rencz and V. Szekely, “Studies on the nonlinearity effects in dynamic compact model generation of packages,” IEEE Trans. Compon. Packag. Technol., vol. 27, no. 1, pp. 124–130, Mar. 2004. [30] S. D. Conte and C. deBoor, Elementary Numerical Analysis. NewYork: McGraw-Hill, 1972. [31] H. D. Barber, “Effective mass and intrinsic concentration in silicon,” Solid-State Electron., vol. 10, pp. 1039–1051, May 1967. [32] C. Jacoboni, C. Canali, G. Ottaviantand, and A. A. Quaranta, “A review of some charge transport properties of silicon,” Solid-State Electron., vol. 20, pp. 77–89, Jul. 1977. [33] A. Caiafa, X.Wang, J. L. Hudgins, E. Santi, and P. R. Palmer, “Cryogenic study and modeling of IGBTs,” in Proc. IEEE Power Electron. Spec. Conf., Jun. 2003, vol. 4, pp. 1897–1903. [34] OMEGA Inc., Manual of Unsheathed Fing-Gage Thermocouples. (2007). [Online]. Available: www.omega.com/ppt/pptsc.asp?ref=IRCO_CHAL_ P13R_P10R [35] National Instruments Corp. Austin TX, Getting Started With NI 783xR. (2006). [Online].Available: http://www.ni.com/pdf/manuals/370489d.pdf [36] T. Ferguson, “Measuring temperature with thermocouples—A tutorial,” National Instruments Corp., Austin, TX, Appl. Note 043, 1996. |

URI: | http://wrap.warwick.ac.uk/id/eprint/3284 |

### Actions (login required)

View Item |