# The Library

### Boundary-crossing identities for diffusions having the time-inversion property

Tools

Alili, Larbi and Patie, P..
(2010)
*Boundary-crossing identities for diffusions having the time-inversion property.*
Journal of Theoretical Probability, Vol.23
(No.1).
pp. 65-84.
ISSN 0894-9840

PDF
WRAP_Alili_alili_patie_#JOTP-241R1.pdf - Draft Version - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader Download (264Kb) |

Official URL: http://dx.doi.org/10.1007/s10959-009-0245-3

## Abstract

We review and study a one-parameter family of functional transformations, denoted by (S (β)) β∈ℝ, which, in the case β<0, provides a path realization of bridges associated to the family of diffusion processes enjoying the time-inversion property. This family includes Brownian motions, Bessel processes with a positive dimension and their conservative h-transforms. By means of these transformations, we derive an explicit and simple expression which relates the law of the boundary-crossing times for these diffusions over a given function f to those over the image of f by the mapping S (β), for some fixed β∈ℝ. We give some new examples of boundary-crossing problems for the Brownian motion and the family of Bessel processes. We also provide, in the Brownian case, an interpretation of the results obtained by the standard method of images and establish connections between the exact asymptotics for large time of the densities corresponding to various curves of each family.

Item Type: | Journal Article |
---|---|

Subjects: | Q Science > QA Mathematics |

Divisions: | Faculty of Science > Statistics |

Library of Congress Subject Headings (LCSH): | Brownian motion processes, Self-similar processes, Bessel functions, Diffusion processes, Markov processes |

Journal or Publication Title: | Journal of Theoretical Probability |

Publisher: | Springer New York LLC |

ISSN: | 0894-9840 |

Date: | March 2010 |

Volume: | Vol.23 |

Number: | No.1 |

Page Range: | pp. 65-84 |

Identification Number: | 10.1007/s10959-009-0245-3 |

Status: | Peer Reviewed |

Access rights to Published version: | Restricted or Subscription Access |

References: | [1] L. Alili and P. Patie. On the �rst crossing times of a Brownian motion and a family of continuous curves. C. R. Math. Acad. Sci. Paris, 340(3): 225{228, 2005. [2] L. Alili, P. Patie, and J.L. Pedersen. Representations of the �rst hitting time density of an Ornstein- Uhlenbeck process. Stoch. Models, 21(4):967{980, 2005. [3] J.M. Anderson and L.D. Pitt. Large time asymptotics for Brownian hitting densities of transient concave curves. J. Theoret. Probab., 10(4):921{934, 1997. [4] L. Bachelier, Probabilit�es des oscillations maxima, C. R. Acad. Sci. Paris 212 (1941), 836{838. [5] T.R. Bielecki, M. Jeanblanc, and M. Rutkowski. Hedging of defaultable claims. In Paris-Princeton Lectures on Mathematical Finance 2003, volume 1847 of Lecture Notes in Math., pages 1{132. Springer, Berlin, 2004. [6] A.N. Borodin and P. Salminen. Handbook of Brownian Motion - Facts and Formulae. Probability and its Applications. Birkh�auser Verlag, Basel, 2nd edition, 2002. [7] K. Borovkov and A.A. Novikov. Explicit bounds for approximation rates of boundary crossing probabilities for the Wiener process. J. Appl. Probab., 42(1):82{92, 2005. [8] L. Breiman. First exit times from a square root boundary. In Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66), Vol. II: Contributions to Probability Theory, Part 2, pages 9{16. Univ. California Press, Berkeley, Calif., 1967. [9] H.E. Daniels. The minimum of a stationary Markov process superimposed on a U-shaped trend. J. App. Probab., 6:399{408, 1969. [10] H.E. Deniels, V.S.F. Lo and G. Roberts. Inverse method of images. Bernoulli, 8(1), 53{80, 2002. [11] D.M. Delong. Crossing probabilities for a square root boundary for a Bessel process. Comm. Statist. A{Theory Methods, 10(21):2197{2213, 1981. [12] J. Durbin. The �rst-passage density of a continuous Gaussian process to a general boundary. J. Appl. Prob., 22:99{122, 1985. [13] J. Durbin. A reconciliation of two di�erent expressions for the �rst-passage density of Brownian motion to a curved boundary. J. Appl. Probab., 25(4):829{832, 1988. [14] P. Erd�os. On the law of the iterated logarithm. Ann. of Math., 43(2):419{436, 1942. [15] B. Ferebee. An asymptotic expansion for one-sided Brownian densities. Z. Wahr. Verw. Gebiete, 63(1):1{15, 1983. [16] P.J. Fitzsimmons, J. Pitman, and M. Yor. Markovian bridges: construction, Palm interpretation, and splicing. In Seminar on Stochastic Processes, 1992 (Seattle, WA, 1992), volume 33 of Progr. Probab., pages 101{134. Birkh�auser Boston, Boston, MA, 1993. [17] P. J. Fitzsimmons. Markov processes with identical bridges. Electron. J. Probab., 3:no. 12, 12 pp. (electronic), 1998. [18] L. Gallardo and M. Yor. Some new examples of Markov processes which enjoy the time-inversion property. Probab. Theory Related Fields, 132(1):150{162, 2005. [19] P. Groeneboom. Brownian motion with a parabolic drift and Airy functions. Prob. Theory and Related Fields, 81(1):79{109, 1989. [20] W.S. Kendall. Boundary crossing for Brownian motion. Personnal communication, 2004. [21] W.S. Kendall, J.M. Martin, and C.P. Robert. Brownian con�dence bands on Monte Carlo output. Preprint available at http:// www.ceremade.dauphine.fr/ xian/brownie.pdf, 2004. [22] J.T. Kent. Eigenvalue expansions for di�usion hitting times. Z. Wahrsch. Verw. Gebiete, 52:309{319, 1980. [23] P. L�ansk�y and L. Sacerdote. The Ornstein-Uhlenbeck neuronal model with signal dependent noise. Physics Letters A, 285(3-4):132{140, 2001. [24] S. Lawi. Towards a characterization of Markov processes enjoying the time-inversion property. J. Theoret. Probab., 21(1):144 { 168, 2008. [25] N.N. Lebedev. Special Functions and their Applications. Dover Publications, New York, 1972. [26] H.R. Lerche. Boundary crossing of Brownian motion: Its relation to the law of the iterated logarithm and to sequential analysis. Lecture Notes in Statistics, 40, 1986. [27] P. Lescot and J.-C. Zambrini. Probabilistic deformation of contact geometry, di�usion processes and their quadratures. In Seminar on Stochastic Analysis, Random Fields and Applications V, volume 59 of Progr. Probab., pages 203{226. Birkh�auser, Basel, 2008. [28] A. Martin-L�of. The �nal size of a nearly critical epidemic, and the �rst passage time of a Wiener process to a parabolic barrier. J. Appl. Prob., 35:671{682, 1998. [29] A.A. Novikov. The stopping times of a Wiener process. Teor. Verojatnost. i Primenen., 16:458{465, 1971. Translation in Theory Probab. Appl. 16 (1971), 449-456. [30] P. Patie. On some First Passage Time Problems Motivated by Financial Applications. PhD Thesis, ETH Z�urich, 2004. [31] P. Patie. q-invariant functions associated to some generalizations of the Ornstein-Uhlenbeck semigroup. ALEA Lat. Am. J. Probab. Math. Stat., 4:31{43, 2008. [32] G. Peskir. Limit at zero of the Brownian �rst-passage density. Prob. Theory Related Fields, Vol. 124(1):100{111, 2002. [33] G. Peskir. On integral equations arising in the �rst-passage problem for Brownian motion. J. Integral Equations Appl., Vol. 14(4):397{423, 2002. [34] J. Pitman and M. Yor. Bessel processes and in�nitely divisible laws. In Stochastic integrals (Proc. Sympos., Univ. Durham, Durham, 1980), volume 851 of Lecture Notes in Math., pages 285{370. Springer, Berlin, 1981. [35] K. P�otzelberger and L. Wang. Boundary crossing probability for Brownian motion. J. Appl. Prob., 38:152{164, 2001. [36] D. Revuz and M. Yor. Continuous Martingales and Brownian Motion, volume 293. Springer-Verlag, Berlin-Heidelberg, 3rd edition, 1999. [37] H. Robbins and D. Siegmund. Boundary crossing probabilities for the Wiener process and sample sums. Ann. Math. Stat., 41:1410{1429, 1970. [38] P. Salminen. On the �rst hitting time and the last exit time for a Brownian motion to/from a moving boundary. Adv. in Appl. Probab., 20(2):411{426, 1988. [39] T. Shiga and S. Watanabe. Bessel di�usions as a one-parameter family of di�usion processes. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 27:37{46, 1973. [40] V. Strassen. Almost sure behavior of sums of independent random variables and martingales. Proc. Fifth Berkeley Symp. Math. Statis. Prob. (Berkeley 1965/66), Vol. II, 1967. [41] S. Watanabe. On time inversion of one-dimensional di�usion processes. Z. Wahr. und Verw. Gebiete, 31:115{124, 1974/75. [42] M. Yor. On square-root boundaries for Bessel processes and pole seeking Brownian motion. Stochastic analysis and applications (Swansea, 1983). Lecture Notes in Mathematics, 1095:100{107, 1984. |

URI: | http://wrap.warwick.ac.uk/id/eprint/3298 |

Data sourced from Thomson Reuters' Web of Knowledge

### Actions (login required)

View Item |