References: |
[1] L. Alili and P. Patie. On the �rst crossing times of a Brownian motion and a family of continuous curves. C. R. Math. Acad. Sci. Paris, 340(3): 225{228, 2005. [2] L. Alili, P. Patie, and J.L. Pedersen. Representations of the �rst hitting time density of an Ornstein- Uhlenbeck process. Stoch. Models, 21(4):967{980, 2005. [3] J.M. Anderson and L.D. Pitt. Large time asymptotics for Brownian hitting densities of transient concave curves. J. Theoret. Probab., 10(4):921{934, 1997. [4] L. Bachelier, Probabilit�es des oscillations maxima, C. R. Acad. Sci. Paris 212 (1941), 836{838. [5] T.R. Bielecki, M. Jeanblanc, and M. Rutkowski. Hedging of defaultable claims. In Paris-Princeton Lectures on Mathematical Finance 2003, volume 1847 of Lecture Notes in Math., pages 1{132. Springer, Berlin, 2004. [6] A.N. Borodin and P. Salminen. Handbook of Brownian Motion - Facts and Formulae. Probability and its Applications. Birkh�auser Verlag, Basel, 2nd edition, 2002. [7] K. Borovkov and A.A. Novikov. Explicit bounds for approximation rates of boundary crossing probabilities for the Wiener process. J. Appl. Probab., 42(1):82{92, 2005. [8] L. Breiman. First exit times from a square root boundary. In Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66), Vol. II: Contributions to Probability Theory, Part 2, pages 9{16. Univ. California Press, Berkeley, Calif., 1967. [9] H.E. Daniels. The minimum of a stationary Markov process superimposed on a U-shaped trend. J. App. Probab., 6:399{408, 1969. [10] H.E. Deniels, V.S.F. Lo and G. Roberts. Inverse method of images. Bernoulli, 8(1), 53{80, 2002. [11] D.M. Delong. Crossing probabilities for a square root boundary for a Bessel process. Comm. Statist. A{Theory Methods, 10(21):2197{2213, 1981. [12] J. Durbin. The �rst-passage density of a continuous Gaussian process to a general boundary. J. Appl. Prob., 22:99{122, 1985. [13] J. Durbin. A reconciliation of two di�erent expressions for the �rst-passage density of Brownian motion to a curved boundary. J. Appl. Probab., 25(4):829{832, 1988. [14] P. Erd�os. On the law of the iterated logarithm. Ann. of Math., 43(2):419{436, 1942. [15] B. Ferebee. An asymptotic expansion for one-sided Brownian densities. Z. Wahr. Verw. Gebiete, 63(1):1{15, 1983. [16] P.J. Fitzsimmons, J. Pitman, and M. Yor. Markovian bridges: construction, Palm interpretation, and splicing. In Seminar on Stochastic Processes, 1992 (Seattle, WA, 1992), volume 33 of Progr. Probab., pages 101{134. Birkh�auser Boston, Boston, MA, 1993. [17] P. J. Fitzsimmons. Markov processes with identical bridges. Electron. J. Probab., 3:no. 12, 12 pp. (electronic), 1998. [18] L. Gallardo and M. Yor. Some new examples of Markov processes which enjoy the time-inversion property. Probab. Theory Related Fields, 132(1):150{162, 2005. [19] P. Groeneboom. Brownian motion with a parabolic drift and Airy functions. Prob. Theory and Related Fields, 81(1):79{109, 1989. [20] W.S. Kendall. Boundary crossing for Brownian motion. Personnal communication, 2004. [21] W.S. Kendall, J.M. Martin, and C.P. Robert. Brownian con�dence bands on Monte Carlo output. Preprint available at http:// www.ceremade.dauphine.fr/ xian/brownie.pdf, 2004. [22] J.T. Kent. Eigenvalue expansions for di�usion hitting times. Z. Wahrsch. Verw. Gebiete, 52:309{319, 1980. [23] P. L�ansk�y and L. Sacerdote. The Ornstein-Uhlenbeck neuronal model with signal dependent noise. Physics Letters A, 285(3-4):132{140, 2001. [24] S. Lawi. Towards a characterization of Markov processes enjoying the time-inversion property. J. Theoret. Probab., 21(1):144 { 168, 2008. [25] N.N. Lebedev. Special Functions and their Applications. Dover Publications, New York, 1972. [26] H.R. Lerche. Boundary crossing of Brownian motion: Its relation to the law of the iterated logarithm and to sequential analysis. Lecture Notes in Statistics, 40, 1986. [27] P. Lescot and J.-C. Zambrini. Probabilistic deformation of contact geometry, di�usion processes and their quadratures. In Seminar on Stochastic Analysis, Random Fields and Applications V, volume 59 of Progr. Probab., pages 203{226. Birkh�auser, Basel, 2008. [28] A. Martin-L�of. The �nal size of a nearly critical epidemic, and the �rst passage time of a Wiener process to a parabolic barrier. J. Appl. Prob., 35:671{682, 1998. [29] A.A. Novikov. The stopping times of a Wiener process. Teor. Verojatnost. i Primenen., 16:458{465, 1971. Translation in Theory Probab. Appl. 16 (1971), 449-456. [30] P. Patie. On some First Passage Time Problems Motivated by Financial Applications. PhD Thesis, ETH Z�urich, 2004. [31] P. Patie. q-invariant functions associated to some generalizations of the Ornstein-Uhlenbeck semigroup. ALEA Lat. Am. J. Probab. Math. Stat., 4:31{43, 2008. [32] G. Peskir. Limit at zero of the Brownian �rst-passage density. Prob. Theory Related Fields, Vol. 124(1):100{111, 2002. [33] G. Peskir. On integral equations arising in the �rst-passage problem for Brownian motion. J. Integral Equations Appl., Vol. 14(4):397{423, 2002. [34] J. Pitman and M. Yor. Bessel processes and in�nitely divisible laws. In Stochastic integrals (Proc. Sympos., Univ. Durham, Durham, 1980), volume 851 of Lecture Notes in Math., pages 285{370. Springer, Berlin, 1981. [35] K. P�otzelberger and L. Wang. Boundary crossing probability for Brownian motion. J. Appl. Prob., 38:152{164, 2001. [36] D. Revuz and M. Yor. Continuous Martingales and Brownian Motion, volume 293. Springer-Verlag, Berlin-Heidelberg, 3rd edition, 1999. [37] H. Robbins and D. Siegmund. Boundary crossing probabilities for the Wiener process and sample sums. Ann. Math. Stat., 41:1410{1429, 1970. [38] P. Salminen. On the �rst hitting time and the last exit time for a Brownian motion to/from a moving boundary. Adv. in Appl. Probab., 20(2):411{426, 1988. [39] T. Shiga and S. Watanabe. Bessel di�usions as a one-parameter family of di�usion processes. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 27:37{46, 1973. [40] V. Strassen. Almost sure behavior of sums of independent random variables and martingales. Proc. Fifth Berkeley Symp. Math. Statis. Prob. (Berkeley 1965/66), Vol. II, 1967. [41] S. Watanabe. On time inversion of one-dimensional di�usion processes. Z. Wahr. und Verw. Gebiete, 31:115{124, 1974/75. [42] M. Yor. On square-root boundaries for Bessel processes and pole seeking Brownian motion. Stochastic analysis and applications (Swansea, 1983). Lecture Notes in Mathematics, 1095:100{107, 1984. |