Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Complex earthquakes and deformations of the unit disk

Tools
- Tools
+ Tools

Epstein, D. B. A., Marden, A. and Markovic, V. (Vladimir) (2006) Complex earthquakes and deformations of the unit disk. Journal of Differential Geometry, Vol.73 (No.1). pp. 119-166.

Research output not available from this repository, contact author.

Request Changes to record.

Abstract

We define deformations of certain geometric objects in hyperbolic 3-space. Such an object starts life as a hyperbolic plane with a measured geometric lamination. Initially the hyperbolic plane is embedded as a standard hyperbolic subspace. Given a complex number t, we obtain a corresponding object in hyperbolic 3-space by earthquaking along the lamination, parametrized by the real part of t, and then bending along the image lamination, parametrized by the complex part of t. In the literature, it is usually assumed that there is a quasifuchsian group that preserves the structure, but this paper is more general and makes no such assumption. Our deformation is holomorphic, as in the lambda-lemma, which is a result that underlies the results in this paper. Our deformation is used to produce a new, more natural proof of Sullivan's theorem: that, under standard topological hypotheses, the boundary of the convex hull in hyperbolic 3-space of the complement of an open subset U of the 2-sphere is quasi-conformally equivalent to U, and that, furthermore, the constant of quasiconformality is a universal constant. Our paper presents a precise statement of Sullivan's Theorem. We also generalize much of McMullen's Disk Theorem, describing certain aspects of the parameter space for certain parametrized spaces of 2-dimensional hyperbolic structures.

Item Type: Journal Article
Subjects: Q Science > QA Mathematics
Divisions: Faculty of Science > Mathematics
Journal or Publication Title: Journal of Differential Geometry
Publisher: Lehigh University * Department of Mathematics
ISSN: 0022-040X
Official Date: May 2006
Dates:
DateEvent
May 2006Published
Volume: Vol.73
Number: No.1
Number of Pages: 48
Page Range: pp. 119-166
Status: Peer Reviewed
Publication Status: Published

Data sourced from Thomson Reuters' Web of Knowledge

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us