Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

FUSE and HST STIS far-ultraviolet observations of AM Herculis in an extended low state

Tools
- Tools
+ Tools

Gaensicke, B. T. (Boris T.), Long, Knox S., Barstow, Martin A. and Hubeny , Ivan (2006) FUSE and HST STIS far-ultraviolet observations of AM Herculis in an extended low state. Astrophysical Journal, Volume 639 (Number 2 Part 1). pp. 1039-1052. ISSN 0004-637X.

Research output not available from this repository.

Request-a-Copy directly from author or use local Library Get it For Me service.

Request Changes to record.

Abstract

We have obtained FUSE and HST STIS time- resolved spectroscopy of the Polar AM Herculis during a deep low state. The spectra are entirely dominated by the emission of the white dwarf. Both the far- ultraviolet ( FUV) flux and the spectral shape vary substantially over the orbital period, with maximum flux occurring at the same phase as during the high state. The variations are due to the presence of a hot spot on the white dwarf, which we model quantitatively. The white dwarf parameters can be determined from a spectral fit to the faint- phase data, when the hot spot is self- eclipsed. Adopting the distance of 79(-6)(+8) pc determined by Thorstensen, we find an effective temperature of 19; 800 +/- 700 K and a mass of MWD 0: 78 + 0: 12 - 0: 17 M circle dot. The hot spot has a lower temperature than during the high state, similar to 34,000 - 40,000 K, but covers a similar area, similar to 10% of the white dwarf surface. Low-state FUSE and STIS spectra taken during four different epochs in 2002 - 2003 show no variation of the FUV flux level or spectral shape, implying that the white dwarf temperature and the hot spot temperature, size, and location do not depend on the amount of time the system has spent in the low state. Possible explanations are ongoing accretion at a low level or deep heating; both alternatives have some weaknesses, which we discuss. No photospheric metal absorption lines are detected in the FUSE and STIS spectra, suggesting that the average metal abundances in the white dwarf atmosphere are lower than similar to 10(-3) times their solar values.

Item Type: Journal Article
Subjects: Q Science > QB Astronomy
Divisions: Faculty of Science, Engineering and Medicine > Science > Physics
Journal or Publication Title: Astrophysical Journal
Publisher: IOP Publishing
ISSN: 0004-637X
Official Date: 10 March 2006
Dates:
DateEvent
10 March 2006Published
Volume: Volume 639
Number: Number 2 Part 1
Number of Pages: 14
Page Range: pp. 1039-1052
Status: Peer Reviewed
Publication Status: Published
Access rights to Published version: Restricted or Subscription Access

Data sourced from Thomson Reuters' Web of Knowledge

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us