Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Fate and effects of enrofloxacin in aquatic systems under different light conditions

Tools
- Tools
+ Tools

UNSPECIFIED (2005) Fate and effects of enrofloxacin in aquatic systems under different light conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 39 (23). pp. 9140-9146. doi:10.1021/es0508951 ISSN 0013-936X.

Research output not available from this repository.

Request-a-Copy directly from author or use local Library Get it For Me service.

Official URL: http://dx.doi.org/10.1021/es0508951

Request Changes to record.

Abstract

The fate and effects of fluoroquinolone antibacterials (FQ) in the environment is of significance because of apparent increased FQ resistance in environmental and clinical organisms. Here we simultaneously assessed the fate and effects of enrofloxacin (enro), an FQ often used in agriculture, on the chemistry and in situ microbial communities in receiving waters. We added enro to 25 mu g/L in nine outdoor mesocosms maintained under three light conditions (in triplicate): full sunlight typical of the upper epilimnion (100% full-light exposure, FLE), partial shading typical of the lower epilimnion (28% FILE), and near-complete shading typical of the hypolimnion (0.5% FILE). Enro disappearance and ciprofloxacin (cipro) formation were monitored overtime using LC/MS, and water chemistry and ambient microbial communities (using denaturing gradient gel electrophoresis; DGGE) were characterized. Enro half-lives were 0.8, 3.7, and 72 days for the 100%, 28%, and 0.5% FLE treatments, respectively, creating three distinct FQ exposure scenarios. Although FQ exposures ranged from similar to 6 mu g/L for 24 h to similar to 21 mu g/L for 30 days, no statistically significant exposure effects were noted in water quality or microbial communities (as indicated by whole-community 16S rDNA DGGE analysis and specific amplification of the QRDR region of gyrase A). Small changes in water chemistry were noted over time; however, changes could not be specifically attributed to FQs. In general, enro addition had minimal effect on water column conditions at the levels and durations used here; however, further investigation is needed to assess effects in aquatic sediments.

Item Type: Journal Article
Subjects: T Technology > TD Environmental technology. Sanitary engineering
G Geography. Anthropology. Recreation > GE Environmental Sciences
Journal or Publication Title: ENVIRONMENTAL SCIENCE & TECHNOLOGY
Publisher: AMER CHEMICAL SOC
ISSN: 0013-936X
Official Date: 1 December 2005
Dates:
DateEvent
1 December 2005UNSPECIFIED
Volume: 39
Number: 23
Number of Pages: 7
Page Range: pp. 9140-9146
DOI: 10.1021/es0508951
Publication Status: Published

Data sourced from Thomson Reuters' Web of Knowledge

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us