References: |
1. Y.F. Atchade, F. Perron (2007): On the geometric ergodicity of Metropolis-Hastings algorithms. Statistics 41, 77–84. 2. K.B. Athreya and P. Ney (1978): A new approach to the limit theory of recurrent Markov chains, Trans. Amer. Math. Soc. 245, 493–501. 3. P.H. Baxendale (2005): Renewal Theory and Computable Convergence Rates for Geometrically Ergodic Markov Chains. Ann. Appl. Prob. 15, 700-738. 4. W. Bednorz, R. Latała and K. Łatuszy´nski (2008): A Regeneration Proof of the Central Limit Theorem for Uniformly Ergodic Markov Chains. Elect. Comm. in Probab. 13, 85–98. 5. L.A. Breyer and G.O. Roberts (2001): Catalytic perfect simulation. Methodol. Comput. Appl. Probab. 3 161–177. 6. J.T. Chang (1994): Inequalities for the overshoot. Ann. Appl. Probab. 4, 1223–1233. 7. G. Fort and E. Moulines (2000): V-subgeometric ergodicity for a Hastings–Metropolis algorithm. Statist. Probab. Lett. 49, 401–410. 8. G. Fort, E. Moulines, G.O. Roberts, and J.S. Rosenthal (2003): On the geometric ergodicity of hybrid samplers. J. Appl. Probab. 40 (1), 123-146. 9. W.R. Gilks, S. Richardson, D.J. Spiegelhalter: Markov chain Monte Carlo in practice. Chapman & Hall, 1998. 10. P.W. Glynn and D. Ormoneit (2002): Hoeffding’s inequality for uniformly ergodic Markov chains, Statist. Probab. Lett. 56, 143–146. 11. O. H¨aggstr¨om J.S. Rosenthal (2007): On variance conditions for Markov chain CLTs. Elect. Comm. in Probab. 12 , 454–464. 12. J.P. Hobert and C.J. Geyer (1998): Geometric ergodicity of Gibbs and block Gibbs samplers for Hierarchical Random Effects Model. J. Multivariate Anal. 67, 414–439. 13. J.P. Hobert and G.L. Jones (2004): Sufficient burn-in for Gibbs samplers for a hierarchical random effects model. Ann. Statist. 32 (2), 784–817 14. J.P. Hobert, G.L. Jones, B. Presnell, and J.S. Rosenthal (2002): On the Applicability of Regenerative Simulation in Markov Chain Monte Carlo. Biometrika 89, 731-743. 15. J.P. Hobert and C.P. Robert (2004): A mixture representation of p with applications in Markov chain Monte Carlo and perfect smpling. Ann. Appl. Probab. 14 1295–1305. 16. M.R. Jerrum, L.G. Valiant, V.V. Vizirani (1986): Random generation of combinatorial structures fro, a uniform distribution. Theoretical Computer Science 43, 169–188. 17. G.J. Jones, J.P. Hobert (2004): Sufficient burn-in for Gibbs samplers for a hierarchical random effects model. Ann. Statist. 32, pp. 784–817. 18. A.A. Johnson and G.L. Jones (2010): Gibbs sampling for a Bayesian hierarchical general linear model. Electronic J. Statist. 4, 313–333. 19. I. Kontoyiannis, L. Lastras-Montano, S.P. Meyn (2005): Relative Entropy and Exponential Deviation Bounds for General Markov Chains. 2005 IEEE International Symposium on Information Theory. 20. K. Łatuszy´nski, B. Miasojedow annd W. Niemiro (2009): Nonasymptotic bounds on the estimation error for regenerative MCMC algorithms. arXiv:0907.4915v1 21. K. Łatuszy´nski,W. Niemiro (2011): Rigorous confidence bounds for MCMC under a geometric drift condition. J. of Complexity 27, 23–38. 22. G. Lorden: On excess over the boundary. Ann. Math. Statist. 41, 520–527, 1970. 23. K.L. Mengersen, L.R. Tweedie (1996): Rates of convergence of the Hastings and Metropolis algorithms. Ann. Statist. 24, 1, 101–121. 24. S.P. Meyn and R.L. Tweedie: Markov Chains and Stochastic Stability. Springer-Verlag, 1993. 25. P. Mykland, L. Tierney and B. Yu (1995): Regeneration in Markov chain samplers. J. Am. Statist. Assoc.., 90, 233–241. 26. R. Neath, G.L. Jones (2009): Variable-at-a-time implementation of Markov chain Monte Carlo. Preprint. arXiv:0903.0664v1 27. W. Niemiro, P. Pokarowski (2009): Fixed precision MCMC Estimation by Median of Products of Averages. J. Appl. Probab. 46 (2), 309–329. 28. E. Nummelin (1978): A splitting technique for Harris recurrent Markov chains, Z. Wahr. Verw. Geb. 43, 309–318. 29. E. Nummelin (2002): MC’s for MCMC’ists, International Statistical Review, 70, 215–240. 30. C.P. Robert and G. Casella: Monte Carlo Statistical Methods. Springer-Verlag, New York, 2004. 31. G.O. Roberts and J.S. Rosenthal (1997): Geometric ergodicity and hybrid Markov chains. Elec. Comm. Prob. 2 (2). 32. G.O. Roberts and J.S. Rosenthal (2004): General state space Markov chains and MCMC algorithms. Probability Surveys 1, 20–71. 33. J.S. Rosenthal (1995): Minorization conditions and convergence rates for Markov chains. J. Amer. Statist. Association 90, 558–566. 34. D. Rudolf (2008): Explicit error bounds for lazy reversible Markov chain Monte Carlo. J. of Complexity. 25, 11–24. 35. V. Roy, J.P. Hobert (2010): On Monte Carlo methods for Bayesian multivariate regression models with heavy-tailed errors. J. Multivariate Anal. 101, 1190–1202 36. D.B. Wilson (2000): How to couple from the past using a read-once source of randomness. Random Structures Algorithms 16 (1), 85–113. |