References: |
[1] Allman, E. S. and Rhodes, J. A. (2007). Phylogenetic invariants. In Reconstructing evolution. Oxford Univ. Press, Oxford, 108{146. MR2359351 [2] Allman, E. S. and Rhodes, J. A. (2008). Phylogenetic ideals and varieties for the general Markov model. Adv. in Appl. Math. 40, 2, 127{148. MR2388607 (2008m:60145) [3] Auvray, V., Geurts, P., and Wehenkel, L. (2006). A Semi- Algebraic Description of Discrete Naive Bayes Models with Two Hidden Classes. In Proc. Ninth International Symposium on Artificial Intelligence and Mathematics. Fort Lauderdale, Florida. http://www.montefiore.ulg.ac.be/services/stochastic/pubs/2006/AGW06. [4] Beerenwinkel, N., Eriksson, N., and Sturmfels, B. (2007). Conjunctive Bayesian networks. Bernoulli 13, 4, 893{909. http://dx.doi.org/10.3150/07-BEJ6133. MR2364218 (2009c:62013) [5] Bochnak, J., Coste, M., and Roy, M.-F. (1998). Real Algebraic Geom- etry. Springer. [6] Buneman, P. (1974). A note on the metric properties of trees. J. Combi- natorial Theory Ser. B 17, 48{50. MR0363963 (51 #218) [7] Casanellas, M. and Fernandez-Sanchez, J. (2007). Performance of a New Invariants Method on Homogeneous and Nonhomogeneous Quartet Trees. Molecular Biology and Evolution 24, 1, 288. [8] Cavender, J. A. (1997). Letter to the editor. Molec- ular Phylogenetics and Evolution 8, 3, 443 { 444. http://www.sciencedirect.com/science/article/B6WNH-45M2XR5- F/2/c85b9732497dd90381144c1f99832d9c. [9] Cavender, J. A. and Felsenstein, J. (1987). Invariants of phylogenies in a simple case with discrete states. Journal of Classification 4, 1, 57{71. [10] Chang, J. T. (1996). Full reconstruction of Markov models on evolutionary trees: Identifiability and consistency. Mathematical Biosciences 137, 1, 51{73. [11] Chernoff, H. (1954). On the distribution of the likelihood ratio. The Annals of Mathematical Statistics 25, 3, 573{578. [12] Chor, B., Hendy, M., Holland, B., and Penny, D. (2000). Multiple Maxima of Likelihood in Phylogenetic Trees: An Analytic Approach. Molec- ular Biology and Evolution 17, 10, 1529{1541. [13] Davis-Stober, C. (2009). Analysis of multinomial models under inequality constraints: Applications to measurement theory. Journal of Mathematical Psychology 53, 1, 1{13. [14] Drton, M. and Richardson, T. (2008). Binary models for marginal independence. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 70, 2, 287{309. [15] Drton, M. and Sullivant, S. (2007). Algebraic Statistical Models. Sta- tistica Sinica 17, 1273{1297. [16] Eriksson, N. (2007). Using invariants for phylogenetic tree construction. The IMA Volumes in Mathematics and its Applications, Vol. 149. Springer, 89{108. [17] Eriksson, N., Ranestad, K., Sturmfels, B., and Sullivant, S. (2005). Phylogenetic algebraic geometry. In Projective varieties with un- expected properties. Walter de Gruyter GmbH & Co. KG, Berlin, 237{255. MR2202256 (2006k:14119) [18] Garcia, L. D., Stillman, M., and Sturmfels, B. (2005). Algebraic geometry of Bayesian networks. J. Symbolic Comput 39, 3-4, 331{355. [19] Gelfand, I. M., Kapranov, M. M., and Zelevinsky, A. V. (1994). Discriminants, Resultants, and Multidimensional Determinants. Birkhauser. [20] Gilula, Z. (1979). Singular value decomposition of probability matrices: Probabilistic aspects of latent dichotomous variables. Biometrika 66, 2, 339{ 344. [21] Lake, J. A. (1987). A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony. Molecular Biology and Evolution 4, 2, 167. [22] Lauritzen, S. L. (1996). Graphical models. Oxford Statistical Science Series, Vol. 17. The Clarendon Press Oxford University Press, New York. Oxford Science Publications. MR1419991 (98g:62001) [23] Lazarsfeld, P. and Henry, N. (1968). Latent structure analysis. Houghton, Miffin, New York. [24] Matsen, F. (2009). Fourier transform inequalities for phylogenetic trees. Computational Biology and Bioinformatics, IEEE/ACM Transactions on 6, 1 (Jan.-March), 89{95. [25] McCullagh, P. (1987). Tensor methods in statistics. Monographs on Statistics and Applied Probability. Chapman & Hall, London. MR907286 (88k:62004) [26] Pearl, J. (1986). Fusion, propagation, and structuring in belief networks* 1. Artificial intelligence 29, 3, 241{288. [27] Pearl, J. and Tarsi, M. (1986). Structuring causal trees. J. Complex- ity 2, 1, 60{77. Complexity of approximately solved problems (Morningside Heights, N.Y., 1985). MR925434 (89g:68056) [28] Rusakov, D. and Geiger, D. (2005). Asymptotic model selection for naive Bayesian networks. J. Mach. Learn. Res. 6, 1{35 (electronic). MR2249813 [29] Semple, C. and Steel, M. (2003). Phylogenetics. Oxford Lecture Series in Mathematics and its Applications, Vol. 24. Oxford University Press, Oxford. MR2060009 (2005g:92024) [30] Settimi, R. and Smith, J. Q. (1998). On the Geometry of Bayesian Graphical Models with Hidden Variables. In UAI, G. F. Cooper and S. Moral, Eds. Morgan Kaufmann, 472{479. [31] Settimi, R. and Smith, J. Q. (2000). Geometry, moments and conditional independence trees with hidden variables. Ann. Statist. 28, 4, 1179{ 1205. MR1811324 (2002b:62068) [32] Smith, J. and Daneshkhah, A. (2010). On the robustness of Bayesian networks to learning from non-conjugate sampling. International Journal of Approximate Reasoning 51, 5, 558{572. [33] Smith, J. and Rigat, F. (2008). Isoseparation and Robustness in Finitre Parameter Bayesian Inference. CRiSM Res Rep, 07{22. [34] Spirtes, P., Richardson, T., and Meek, C. Heuristic greedy search algorithms for latent variable models. In Proceedings of AI & STAT'97. Citeseer, 481{488. [35] Stanley, R. P. (2002). Enumerative combinatorics. Volume I. Number 49 in Cambridge Studies in Advanced Mathematics. Cambridge University Press. [36] Steel, M. and Faller, B. (2009). Markovian log-supermodularity, and its applications in phylogenetics. Applied Mathematics Letters. [37] Sturmfels, B. and Sullivant, S. (2005). Toric Ideals of Phylogenetic Invariants. Journal of Computational Biology 12, 2, 204{228. [38] Zwiernik, P. An asymptotic approximation of the marginal likelihood for general markov models. arXiv:1012.0753. submitted. [39] Zwiernik, P. (2010). L-cumulants, L-cumulant embeddings and algebraic statistics. arXiv:1011.1722. submitted. [40] Zwiernik, P. and Smith, J. Q. (2010). Tree-cumulants and the geometry of binary tree models. arXiv:1004.4360. to appear in Bernoulli. |