References: |
[1] E. S. Allman and J. A. Rhodes, Phylogenetic ideals and varieties for the general Markov model, Adv. in Appl. Math., 40 (2008), pp. 127{148. [2] V. Auvray, P. Geurts, and L. Wehenkel, A Semi-Algebraic Description of Discrete Naive Bayes Models with Two Hidden Classes, in Proc. Ninth International Symposium on Artificial Intelligence and Mathematics, Fort Lauderdale, Florida, Jan 2006. [3] S. Basu, R. Pollack, and M. Roy, Algorithms in Real Algebraic Geometry, Springer, 2003. [4] P. Buneman, A note on the metric properties of trees, J. Combinatorial Theory Ser. B, 17 (1974), pp. 48{50. [5] M. Casanellas and J. Fernandez-Sanchez, Performance of a New Invariants Method on Homogeneous and Nonhomogeneous Quartet Trees, Molecular Biology and Evolution, 24 (2007), p. 288. [6] J. Cavender and J. Felsenstein, Invariants of phylogenies in a simple case with discrete states, Journal of Classification, 4 (1987), pp. 57{71. [7] J. A. Cavender, Letter to the editor, Molecular Phylogenetics and Evolution, 8 (1997), pp. 443 { 444. [8] J. Chang, Full reconstruction of Markov models on evolutionary trees: Identifiability and consistency, Mathematical Biosciences, 137 (1996), pp. 51{73. [9] D. A. Cox, J. B. Little, and D. O'Shea, Ideals, Varieties, and Algorithms, Springer-Verlag, NY, 3rd ed., 2007. [10] D. R. Cox and N. Wermuth, A note on the quadratic exponential binary distribution, Biometrika, 81 (1994), pp. 403{408. [11] M. Drton and S. Sullivant, Algebraic Statistical Models, Statistica Sinica, 17 (2007), pp. 1273{1297. [12] N. Eriksson, Using invariants for phylogenetic tree construction, vol. 149 of The IMA Volumes in Mathematics and its Applications, Springer, 2007, pp. 89{108. [13] N. Eriksson, K. Ranestad, B. Sturmfels, and S. Sullivant, Phylogenetic algebraic geometry, in Projective varieties with unexpected properties, Walter de Gruyter GmbH & Co. KG, Berlin, 2005, pp. 237{255. [14] W. Feller, An Introduction to Probability Theory and Applications, vol. 2, John Wiley & Sons, New York, second ed., 1971. [15] L. Garcia, M. Stillman, and B. Sturmfels, Algebraic geometry of Bayesian networks, J. Symbolic Comput, 39 (2005), pp. 331{355. [16] D. Geiger, D. Heckerman, H. King, and C. Meek, Stratified exponential families: graphical models and model selection, Ann. Statist., 29 (2001), pp. 505{529. [17] D. Geiger and C. Meek, Graphical models and exponential families, in Proceedings of Fourteenth Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann, Madison, WI, August 1998, pp. 156{165. [18] D. Geiger, C. Meek, and B. Sturmfels, On the toric algebra of graphical models, Annals of Statistics, 34 (2006), pp. 1463{1492. [19] I. Gelfand, M. Kapranov, and A. Zelevinsky, Discriminants, Resultants, and Multidimensional Determinants, Birkhauser, 1994. [20] Z. Gilula, Singular value decomposition of probability matrices: Probabilistic aspects of latent dichotomous variables, Biometrika, 66 (1979), pp. 339{344. [21] J. Lake, A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony, 1987. [22] S. L. Lauritzen, Graphical models, vol. 17 of Oxford Statistical Science Series, The Clarendon Press Oxford University Press, New York, 1996. Oxford Science Publications. [23] P. Lazarsfeld and N. Henry, Latent structure analysis, Houghton, Miffin, New York, 1968. [24] F. Matsen, Fourier transform inequalities for phylogenetic trees, Computational Biology and Bioinformatics, IEEE/ACM Transactions on, 6 (2009), pp. 89{95. [25] P. McCullagh, Tensor methods in statistics, Monographs on Statistics and Applied Probability, Chapman & Hall, London, 1987. [26] J. Pearl and M. Tarsi, Structuring causal trees, J. Complexity, 2 (1986), pp. 60{77. Complexity of approximately solved problems (Morningside Heights, N.Y., 1985). [27] G. Pistone and H. P. Wynn, Cumulant varieties, Journal of Symbolic Computation, 41 (2006), pp. 210{221. [28] G. Rota, On the foundations of combinatorial theory I. Theory of Mobius Functions, Probability Theory and Related Fields, 2 (1964), pp. 340{368. [29] G.-C. Rota and J. Shen, On the combinatorics of cumulants, J. Combin. Theory Ser. A, 91 (2000), pp. 283{304. In memory of Gian-Carlo Rota. [30] D. Rusakov and D. Geiger, Asymptotic model selection for naive Bayesian networks, J. Mach. Learn. Res., 6 (2005), pp. 1{35 (electronic). [31] C. Semple and M. Steel, Phylogenetics, vol. 24 of Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford, 2003. [32] R. Settimi and J. Q. Smith, Geometry, moments and conditional independence trees with hidden variables, Ann. Statist., 28 (2000), pp. 1179{1205. [33] R. Speicher, Free probability theory and non-crossing partitions, Sem. Lothar. Combin., 39 (1997), pp. Art. B39c, 38 pp. (electronic). [34] D. J. Spiegelhalter, A. P. Dawid, S. L. Lauritzen, and R. G. Cowell, Bayesian analysis in expert systems, Statist. Sci., 8 (1993), pp. 219{283. With comments and a rejoinder by the authors. [35] R. P. Stanley, Enumerative combinatorics. Volume I, no. 49 in Cambridge Studies in Advanced Mathematics, Cambridge University Press, 2002. [36] M. Steel and B. Faller, Markovian log-supermodularity, and its applications in phylogenetics, Applied Mathematics Letters, (2009). [37] B. Streitberg, Lancaster interactions revisited, Ann. Statist., 18 (1990), pp. 1878{1885. [38] B. Sturmfels, Solving systems of polynomial equations, vol. 97 of CBMS Regional Conference Series in Mathematics, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 2002. [39] B. Sturmfels and S. Sullivant, Toric Ideals of Phylogenetic Invariants, Journal of Computational Biology, 12 (2005), pp. 204{228. [40] S. Sullivant, Algebraic geometry of Gaussian Bayesian networks, Advances in Applied Mathematics, 40 (2008), pp. 482{513. |