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THE GEOMETRY OF INDEPENDENCE TREE MODELS WITH
HIDDEN VARIABLES

PIOTR ZWIERNIK AND JIM Q. SMITH

Abstract. In this paper we investigate the geometry of undirected discrete

graphical models of trees when all the variables in the system are binary, where
leaves represent the observable variables and where the inner nodes are unob-

served. We obtain a full geometric description of these models which is given

by polynomial equations and inequalities. We also give exact formulas for their
parameters in terms of the marginal probability over the observed variables.

Our analysis is based on combinatorial results generalizing the notion of cumu-

lants and introduce a novel use of Möbius functions on partially ordered sets.
The geometric structure we obtain links to the notion of a tree metric consid-

ered in phylogenetic analysis and to some interesting determinantal formulas

involving hyperdeterminants of 2× 2× 2 tables as defined in [19].

1. Introduction

Discrete graphical models have become a very popular tool in the statistical
analysis of multivariate problems (see e.g. [22][34]). When all the variables in the
system are observed they exhibit a useful modularity. In particular it is possible to
estimate all the conditional probabilities that parametrize such models. In addition,
when variables are discrete the model is described by polynomial equations in the
ambient model space, maximum likelihood estimates are simple sample proportions
and a conjugate Bayesian analysis is straightforward.

However, if the values of some of the variables are unobserved then the result-
ing marginal distribution over the observed variables is usually more complicated
both from the geometric and the inferential point of view [16][32]. The consequent
additional inequality constraints tend to destroy the simple forms of maximum
likelihood estimates and no conjugate analysis is possible. The main problem with
the geometric analysis of these models is that in general it is hard to obtain the in-
equality constraints defining a model even for very simple examples (see [11, Section
4.3][15, Section 7]). One reason that these constraints are of practical importance
is that when the sample size is not too large or if the sampling scheme is even
slightly contaminated then the likelihood is often maximized on the boundaries of
the parameter space. The constraints are therefore active and this can strongly
affect input on the ensuing likelihood based inference, whether this is classical or
Bayesian.

The motivation of this paper is to study the semi-algebraic geometry of under-
lying phylogenetic tree models over a collection of binary random variables. Phy-
logenetic analysis is based on Markov processes on trees which have the property

Key words and phrases. conditional independence, graphical models on trees, general Markov
models, hidden data, binary data, central moments, cumulants, Möbius function, semi-algebraic
statistical models, inequality constraints, phylogenetic invariants, tree metrics.
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that all the inner nodes in the tree represent hidden variables. The same family
of models is considered in other contexts - e.g. Bayesian networks on rooted trees.
Under a restriction that all probabilities are strictly positive the undirected graph-
ical models for trees in the case when all the inner nodes are hidden also represent
the same family of distributions. A geometric understanding of these models led
to the method of phylogenetic invariants introduced by Lake [21], and Cavender
and Felsenstein [6]. These invariant algebraic relations, expressed as zeros of a
set of polynomial equations, over the observed probability tables must hold for a
given phylogenetic model to be valid. The study of these algebraic structures has
been recently embraced by computational algebraic geometers [1][13][39] and the
consequent advances in understanding of these invariants now begins to clarify the
statistical analyses of such models [5].

The main technical problem related to phylogenetic invariants is that they do not
give a full geometric description of the statistical model. There are some nontrivial
polynomial inequalities which also have to be satisfied.

Example 1. Let T be the tripod tree below

b

bc

b

b

1

2

3h

1

The inner node represents a binary hidden variable H and the leaves represent bi-
nary observable variables X1, X2, X3. The tree represents the conditional indepen-
dence statements X1 ⊥⊥ X2 ⊥⊥ X3|H. The model has full dimension and consequently
there are no equations defining it. However it is not a saturated model and not all
the probability distributions lie in the model. Lazarsfeld [23, Section 3.1] showed
that they must for example satisfy

Cov(X1, X2)Cov(X1, X3)Cov(X2, X3) ≥ 0.

Hence the phylogenetic invariants do not give a complete specification of even a
simple probability model like this one. Therefore inference based solely on the
invariants is incomplete and derived estimates can be infeasible within the model
class.

This example motivated the closer investigation of the geometry of these models.
Some results can be found in the literature. A solution in the case of a binary naive
Bayes model was given by Auvray et al. [2]. In the binary case there are also some
partial results for general tree structures given by Pearl and Tarsi [26] and Steel
and Faller [36]. The most important applications in biology involve variables that
can take four values. Recently Matsen [24] gave a set of inequalities in this case for
group-based phylogenetic models (additional symmetries are assumed) using the
Fourier transformation of the raw probabilities. Here we use ideas based on Settimi
and Smith [32] who show that these constraints can be more easily expressed as
relations among the central moments as in the example above.

Our analysis of moment structures induced by the models under consideration
led us to an interesting application of the theory of partially ordered sets and its
Möbius functions. Similar methods were used in the theory of graphical models (see
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for example the proof of Theorem 3.9 in [22]) for a poset of all subsets of a finite
set and in the combinatorial theory of cumulants [29] for a poset of all partitions
of a finite set. To our knowledge this paper is the first approach to use more gen-
eral posets in the context of statistical analysis. It allows us to construct a useful
reparametrization for our models. When expressed in this new coordinate system
the underlying geometry of the models becomes transparent. We also obtain the
exact formulas for the parameters of the models in terms of the marginal distribu-
tion of the observed variables extending results proved in [8][32]. Combining these
with some earlier results we provide the exact semi-algebraic description of binary
phylogenetic tree models in the case of the trivalent trees. However, the inequalities
we develop also hold for general tree topologies. The formulas we obtain involve
determinants of the marginal 2×2 probability tables and the 2×2×2 hyperdetermi-
nant of three dimensional marginal probability tables as defined in [19] suggesting
that this might be a general phenomenon for conditional independence models with
hidden variables.

The paper is organized as follows. In Section 2 we briefly introduce conditional
independence models on trees stating the result of Allman and Rhodes [1] on equa-
tions defining the models. In Section 3 we use central moments to describe general
Markov models in a more efficient way. At the end of the section we also state
the main theorem of the paper. In Section 4 we construct another, more intrinsic,
coordinate system for the class of binary tree models. In the new coordinate system
the parametrization of the model has a quasi-monomial form. This gives a better
insight into the underlying geometry. In Section 5 we use the parametrization de-
veloped earlier to find an alternative form of equations given by Allman and Rhodes
[1]. These are slightly simpler from the algebraic point of view and have a more
transparent statistical interpretation. We prove our main theorem in Section 6. It
gives the geometric description of general Markov models in the case of trivalent
trees in terms of equations and inequalities involving moments between observable
variables. The paper is concluded with a short discussion.

2. Independence models on trees

In this section we introduce models defined by global Markov properties on trees
and models for rooted trees. We show the relations between them introducing the
general Markov model on a tree which is the main subject of our study.

2.1. Preliminaries on trees. A graph G is an ordered pair (V,E) consisting of
a non-empty set V of vertices and a set E of edges each of which is an element
of V × V . An edge (u, v) ∈ E is undirected if (v, u) ∈ E as well, otherwise it is
directed. Graphs with only (un)directed edges are called (un)directed. If e = (u, v)
is an edge of a graph G, then u and v are called adjacent or neighbours and e is
said to be incident with u and v. Let v ∈ V , the degree of v is denoted by deg(v),
and is the number of edges incident with v. For a directed edge (u, v) ∈ E we say
that u is a parent of v. The set of all parents of v ∈ V is denoted by pa(v). For
a directed graph G a moral graph of G is an undirected graph obtained by joining
all parents of a node by edges between each pair for all nodes in the graph and
then changing all directed edges for undirected ones. A path in a graph G is a
sequence of distinct vertices v1, v2, . . . , vk such that, for all i = 1, . . . , k, vi and vi+1

are adjacent. If, in addition, v1 and vk are adjacent then the path is called a cycle.
A graph is connected if each pair of vertices in G can be joined by a path.
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A (directed) tree T = (V,E) is a connected (directed) graph with no cycles. A
vertex of T of degree one is called a leaf. A vertex of T that is not a leaf is called
an inner node. An edge of T is inner if both of its ends are inner vertices. Trees
in this paper will always have n leaves. We denote the set of leaves by its labeling
set [n] = {1, . . . , n}. A connected subgraph of T is a subtree of T . For a subset V ′

of V , we let T (V ′) denote the minimal connected subgraph of T that contains the
vertices in V ′ and we say T (V ′) is the subtree of T induced by V ′. A rooted tree
is a directed tree that has one distinguished vertex called the root, denoted by the
letter r, and all the edges are directed away from r. For every vertex v of a rooted
tree T r such that v ∈ V \ r the set pa(v) is a singleton.

2.2. Models defined by global Markov properties. In this paper we always
assume that random variables are binary taking one of the values in {0, 1}. We
consider models with hidden variables, i.e. variables whose values are never directly
observed. The vector Y has as its components all variables in the graphical model,
both those that are observed and those that are hidden. The subvector of Y of
manifest variables, i.e. variables whose values are always observed, is denoted by
X and the subvector of hidden variables by H.

Let T = (V,E) be an undirected tree. For any three disjoint subsets A,B,C of
the set of nodes we say that C separates A and B in T , denoted by A ⊥T B|C, if
each path from a vertex in A to a vertex B passes through a vertex in C. We are
interested in statistical models for Y = (Yv)v∈V defined by global Markov properties
(GMP) on T , i.e. the set of conditional independence statements of the form (see
e.g. [22, Section 3.2.1]):

(1) {YA ⊥⊥ YB |YC : for all A,B,C ⊂ V s.t. A ⊥T B|C} ,

where for any A ⊂ V vector YA is the subvector of Y with elements indexed by A,
i.e. YA = (Yi)i∈A.

Statistical hypotheses often translate into algebraic relations defining a model.
For example if Y1, Y2 are two independent binary random variables then with P =
[pα] denoting the joint probability table we have detP = p00p11 − p01p10 = 0.
Since p00 + p01 + p10 + p11 = 1 we can equivalently write the first equation as
p11− (p10 + p11)(p01 + p11) = 0. However this is just a condition for the covariance
between the two variables to be zero. So a probability distribution satisfies X1 ⊥⊥ X2

if and only if detP = 0 if and only if Cov(X1, X2) = 0.
More generally conditional independence statements imply that a set of poly-

nomial equations in (pα)α∈{0,1}|V | holds where pα := P(Y1 = α1, . . . , Y|V | = α|V |)
define the joint probability mass function of Y . From an algebraic view point (for
basic definitions see [9]) this collection of polynomials forms an ideal which we
denote by Iglobal (see [15][38, Section 8.1]).

If all the variables in the system are observable then the model is denoted by
M̂T . If all the variables related to the inner nodes of T are hidden and we consider
marginal distributions over the leaves then the model is denoted by MT . We call
MT a general Markov model on T .

2.3. Models for rooted trees. A Markov process on a rooted tree T r is a sequence
{Yv : v ∈ V } of random variables such that for each (α1, . . . , α|V |) ∈ {0, 1}|V |

(2) pα(θ) =
∏
v∈V

θ
(v)
αv|αpa(v)

,
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where pa(r) is the empty set, θ = (θ(v)
αv|αpa(v)

) and θ
(v)
αv|αpa(v)

= P(Yv = αv|Ypa(v) =

αpa(v)). Since θ(r)
0 + θ

(r)
1 = 1 and θ

(v)
0|i + θ

(v)
1|i = 1 for all v ∈ V \ {r} and i = 0, 1

then the set of parameters consists of exactly 2|E| + 1 free parameters: we have
two parameters: θ(v)

1|0 , θ(v)
1|1 for each edge (u, v) ∈ E and one parameter θ(r)

1 for the
root. We denote the parameter space by ΘT = [0, 1]2|E|+1.

Standard results in the theory of graphical models tell us that if al probabilities
in the 2× 2 tables over adjacent variables are strictly positive the Markov process
on T is equal to M̂T . Indeed, by [22, Theorem 3.27] the parametrization defined
by (2) is equivalent to its directed global Markov properties on T r. Moreover, since
T r has a uniquely defined root the moral graph of T r (c.f. Section 2.1) is equal
to its undirected version T . Hence, the directed global Markov properties on T r

are implied by the global Markov properties on T and they are equivalent under
the positivity assumption. Note that by Theorem 6 in [15] the underlying ideals of
both models are the same as well.

Let ∆2n−1 = {p ∈ R2n :
∑
β pβ = 1, pβ ≥ 0} with indices β ranging over

{0, 1}n be the probability simplex of all possible distributions on X = (X1, . . . , Xn)
represented by the leaves of T . In this paper, by the positivity assumption, we
restrict ourselves to the interior of ∆2n−1. Equation (2) induces a polynomial map
fT : ΘT → ∆2n−1 obtained by marginalization over all the inner nodes of T

(3) pα[n](θ) =
∑
H

∏
v∈V

θ
(v)
αv|αpa(v)

,

where H are all possible states of the vector of hidden variables, i.e. the sum is
over αV \[n] ∈ {0, 1}|V |−n and for any A ⊆ V , αA = (αi)i∈A. The name “general
Markov model” forMT comes from the theory of phylogenetic tree models (c.f. [31,
Section 8.3]). By definition these are models for the rooted tree T r defined by (3).
Note that with the positivity assumption the general Markov model is equivalent to
MT . Moreover, since ΘT is a semi-algebraic set (defined by polynomial equations
and inequalities) then by the Tarski-Seidenberg theorem [3, Section 2.5.2]MT is a
semi-algebraic set as well.

3. Central moments and tree models

3.1. Moments and conditional independence. In this section we start by in-
troducing a set of coordinates which will be useful to understand the geometry
of MT . Let X = (X1, . . . , Xn) be a random vector. Then we can obtain formu-
las relating the moments of these variables to the probability distribution of X.
For each β = (β1, . . . , βn) ∈ Nn denote Xβ =

∏
iX

βi
i and define λβ = EXβ and

µβ = EUβ , where Ui = Xi − EXi. Below we give formulas for maps giving the
reparametrization from the raw probabilities to central moments.

First we perform the reparametrization from the raw probabilities p = [pα] to
the non-central moments λ = [λα] for α = (α1, . . . , αn) ∈ {0, 1}n. This is a linear
map fpλ : R2n → R2n , where λ = fpλ(p) is defined as follows

(4) λα =
∑

α≤β≤1

pβ for any α ∈ {0, 1}n,

where 1 denotes here the vector of ones and the sum is over all binary vectors
β such that α ≤ β ≤ 1 in the sense that αi ≤ βi ≤ 1 for all i = 1, . . . , n. In
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particular λ0 = 1 for all probability distributions and hence the image fpλ(∆2n−1)
is contained in the hyperplane defined by λ0 = 1.

The linearity of the expectation implies that the central moments can be ex-
pressed in terms of non-central moments. Thus

(5) µα =
∑

0≤β≤α

(−1)|β|λα−β
n∏
i=1

λβiei for α ∈ {0, 1}n,

where |β| =
∑
i βi. Using these equations we can transform variables from the non-

central moments [λα] to another set of variables given by all the means λe1 , . . . , λen ,
where e1, . . . , en are unit vectors in Rn, and central moments [µα] for α ∈ {0, 1}.
The polynomial change of variables fλµ : R2n → Rn × R2n is defined by (5) and
on the first n coordinates it takes the values of λe1 , . . . , λen . Denote Cn = (fλµ ◦
fpλ)(∆2n−1) which is contained in a subspace of Rn × R2n given by

µ0 = 1 and µe1 = · · · = µen = 0.

We can also easily define the inverse maps of fpλ and fλµ. The map fλp = f−1
pλ :

R2n → R2n is given by

(6) pα =
∑

α≤β≤1

(−1)|β−α|λβ for α = (α1, . . . , αn) ∈ {0, 1}n

whilst fµλ = f−1
λµ : Rn × R2n → R2n is given by

(7) λα =
∑

0≤β≤α

µα−β

n∏
i=1

λβiei for α ∈ {0, 1}n.

Moreover, fλµ ◦ fpλ and (fλp ◦ fµλ)−1 are equal as polynomial functions on ∆2n−1.
Since all the maps defined above are regular polynomial maps with regular polyno-
mial inverses they constitute an isomorphism between ∆2n−1 and Cn.

To simplify notation henceforth we will index moments not with {0, 1}n but with
the set of subsets of [n]. Here the set A ⊆ [n] is identified with α ∈ {0, 1}n such
that αi = 1 for all i ∈ A and it is zero elsewhere. In particular for each i ∈ [n]
we write λi for λei . Let [n]≥k denote the set of all subset of [n] with at least k
elements. For any two sets A,B let AB denote A ∪ B. The basic condition on
independence (see e.g. Feller [14], p 136) implies that if XA ⊥⊥ XB then µIJ = µIµJ
for all nonempty I ⊆ A, J ⊆ B. But since the variables are binary we also have a
converse result. If for all nonempty I ⊆ A, J ⊆ B we have that µIJ = µIµJ then
XA ⊥⊥ XB . Indeed, the definition of the independence states that XA ⊥⊥ XB if and
only if Cov(f(XA), g(XB)) = 0 for any L2 functions f and g. Since our variables
are binary all the functions of XA and XB are just polynomials with square-free
monomials. Settimi and Smith [32] concluded that the independence holds if and
only if Cov(Xα

A, X
β
B) = 0 for each non-zero α ∈ {0, 1}|A| and β ∈ {0, 1}|B| or

equivalently Cov(UαA, U
β
B) = 0 for each non-zero α ∈ {0, 1}|A| and β ∈ {0, 1}|B|

which can be written as µIJ = µIµJ for each nonempty I ⊆ A, J ⊆ B.
We can generalize the result above. For a random variable Ha let λa = EHa and

Ua = Ha − λa. For each I ⊆ [n] let UI =
∏
i∈I Ui and ηa,I = E(UIUa)/Var(Ha)

where Var(Ha) = λa(1−λa). We have XA ⊥⊥ XB |Ha if and only if for all nonempty
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I ⊆ A, J ⊆ B

(8)
µIJ = µIµJ + λa(1− λa)ηa,Iηa,J ,
ηa,IJ = µIηa,J + ηa,IµJ + (1− 2λa)ηa,Iηa,J .

Indeed, an equivalent condition for XA ⊥⊥ XB |Ha can be written in terms of condi-
tional covariances. Thus for each I ⊆ A, J ⊆ B we have

(9)
Cov(UI , UJ |Ha = 0) = 0,
Cov(UI , UJ |Ha = 1) = 0.

This set of equations is equivalent to

(10)
λaCov(UI , UJ |Ha = 1) + (1− λa)Cov(UI , UJ |Ha = 0) = 0,
Cov(UI , UJ |Ha = 0)− Cov(UI , UJ |Ha = 1) = 0.

Because any function of Ha is necessarily a linear function it follows that for any
I ⊆ [n]

(11) E(UI |Ha) = µI + ηa,IUa,

and hence

Cov(UI , UJ |Ha) = µIJ − µIµJ + (ηa,IJ − ηa,IµJ − µIηa,J)Ua − ηa,Iηa,JU2
a .

Using this formula it is now straightforward to check that (10) is equivalent to (8).

3.2. Reparametrization for general Markov models. Let fpµ denote the re-
striction of fλµ ◦ fpλ to ∆2n−1. We showed earlier that fλµ : ∆2n−1 → Cn is an
isomorphism. Hence we can investigate the geometry of MT in the new coordi-
nate system. A similar approach is presented for example in [17][32]. We denote
Mµ

T = fpµ(MT ) ⊆ Cn.
The next step is to reparametrize the parameter space of a tree model. Let

T = (V,E) be a rooted tree with n leaves and root r. Note that for a tree 1+2|E| =
|V | + |E| so the number of free parameters in (2) and (3) is |V | + |E|. We define
a polynomial map fθω : R|V |+|E| → R|V |+|E| from the original set of parameters of
ΘT given by the root distribution and the conditional probabilities for each of the
edges to a set of parameters given as follows: for every directed edge (u, v) ∈ E

ηuv = θ
(v)
1|1 − θ

(v)
1|0 ∈ [−1, 1] and(12)

µ̄v = 1− 2λv ∈ [−1, 1] for each inner node v ∈ V,
where λv = EYv is a polynomial in the original parameters θ of degree depending
on the distance of v from the root r. Indeed, let r, v1, . . . , vk, v be a directed path
in T . Then

λv =
∑

α∈{0,1}k+1

θ
(v)
1|αkθ

(vk)
αk|αk−1

· · · θ(r)
αr .

The inverse map fωθ : R|V |+|E| → R|V |+|E| has an even simpler form. For each
edge (u, v) ∈ E we have

θ
(v)
1|0 =

1 + µ̄v
2
− ηuv

1 + µ̄u
2

,

θ
(v)
1|1 =

1 + µ̄v
2

+ ηuv
1− µ̄u

2

and θ
(r)
1 = 1+µ̄r

2 . Writing ΩT = fθω(ΘT ) it follows that fθω is an isomorphism
between ΘT and ΩT .
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It is simple to check that ηuv = E(UuUv)/VarYu where Var(Yu) = 1
4 (1− µ̄2

u). It
follows that ηuv defined above coincides with the definition of ηu,v just preceding
equation (8), where in one notation we omit the coma. By definition ηu,v is a linear
regression coefficient of Yv against Yu, i.e. E(Yv−EYv|Yu) = ηuv(Yu−EYu). When
(u, v) ∈ E then ηu,v is a parameter ofMT (c.f. (12)) and hence we simply write ηuv.
Unless otherwise indicated ηu,v will denote E(UuUv)/VarYu for any two variables
Yu, Yv. In general for any T with n leaves we obtain the following sequence of
polynomial maps

(13) ΩT
fωθ−→ ΘT

fT−→ ∆2n−1
fpµ−→ Cn,

where fωθ and fpµ are regular polynomial maps.
The geometric description of the new parameter space ΩT is quite complicated.

For any choice of values for (µ̄v)v∈V , where µ̄v ∈ [−1, 1], the constraints on the
remaining parameters can be deduced from the following set of inequalities

−min {(1 + µ̄u)(1 + µ̄v), (1− µ̄u)(1− µ̄v)} ≤ (1− µ̄2
u)ηu,v ≤(14)

≤ min {(1 + µ̄u)(1− µ̄v), (1− µ̄u)(1 + µ̄v)}
where ηuv = ηu,v if (u, v) ∈ E.

To show (14) we check for which values of ηu,v we can reconstruct a probability
distribution [pij ] of (Yu, Yv) with given margins p1+ = λu = 1

2 (1− µ̄u), p+1 = λv =
1
2 (1− µ̄v). A sufficient condition for a table with margins summing to one to form
a probability distribution is that p01, p10, p11 ≥ 0 and p01 + p10 + p11 ≤ 1. We
have p01 = p+1 − p11 ≥ 0 if and only if p11 ≤ λv equivalently µuv = p11 − λuλv ≤
λv(1− λu). In a similar way we show that p10 ≥ 0 if and only if µuv ≤ (1− λv)λu.
The condition p11 ≥ 0 is equivalent to µuv ≥ −λvλu and the last condition is
equivalent to µuv ≥ −(1− λv)(1− λu). To obtain (14) write µuv = (1 − µ̄2

u)ηu,v
and replace λu, λv with µ̄u, µ̄v using (12).

In the remaining part of this subsection we present the semi-algebraic description
of the tripod tree model.

Definition 2. Let P be a 2×2×2 table then the hyperdeterminant of P as defined
by Gelfand, Kapranov, Zelevinsky [19, Chapter 14] is given by

DetP = (p2
000p

2
111 + p2

001p
2
110 + p2

010p
2
101 + p2

011p
2
100)

− 2(p000p001p110p111 − p000p010p101p111 + p000p011p100p111

+ p001p010p101p110 + p001p011p110p100 + p010p011p101p100)
+ 4(p000p011p101p110 + p001p010p100p111).

If
∑
pijk = 1 then we can simplify this formula using the change of coordinates

to central moments

(15) DetP = µ2
123 + 4µ12µ13µ23.

Lemma 3 (A semi-algebraic description of the tripod model). Let MT be the
general Markov model on a tripod tree T rooted in any node of T . Let P be a
2 × 2 × 2 probability table for three binary random variables (X1, X2, X3). Then
P ∈MT if and only if

(16) µ12µ13µ23 ≥ 0,

(17) µ2
12µ

2
13 + µ2

12µ
2
23 + µ2

13µ
2
23 ≤ DetP ≤ min

i,j
µ2
ij



CRiSM Paper No. 05-03, www.warwick.ac.uk/go/crism

THE GEOMETRY OF INDEPENDENCE TREE MODELS WITH HIDDEN VARIABLES 9

and

(18) DetP ≤ ((1± µ̄i)µjk ∓ µ123)2 for all i = 1, 2, 3,

where for any i = 1, 2, 3 by j, k we denote elements of {1, 2, 3} \ i with a convention
that j < k.

Proof. The model is defined by X1 ⊥⊥ (X2, X3)|H and X2 ⊥⊥ X3|H. Then, since
λh(1− λh) = 1

4 (1− µ̄2
h), (8) gives that

(19)
µij = 1

4 (1− µ̄2
h)ηh,iηh,j for all i 6= j ∈ {1, 2, 3} and

µ123 = 1
4 (1− µ̄2

h)µ̄hηh,1ηh,2ηh,3,

where µ̄h ∈ [−1, 1] and (1 − µ̄2
h)ηh,i for all i = 1, 2, 3 satisfy the inequality (14).

We now show that this implies the constraints on the moments given in the lemma.
Using (19) we obtain

(20) µ12µ13µ23 =
(

1
4

(1− µ̄2
h)
)3

(ηh,1ηh,2ηh,3)2

which in particular implies the inequality in (16) and it does not depend on a
rooting of T . Moreover,

(21) DetP = µ2
123 + 4µ12µ13µ23 =

1
16

(1− µ̄2
h)2(ηh,1ηh,2ηh,3)2.

and by the second equation in (19)

(22) µ̄2
h DetP = µ2

123, (1− µ̄2
h) DetP = 4µ12µ13µ23

and again this does not depend on the rooting of T . E s (19) and (21) imply that

(23) η2
h,i µ

2
jk = DetP for all i = 1, 2, 3.

Similarly one can show that

(24) µ2
12µ

2
13 + µ2

12µ
2
23 + µ2

13µ
2
23 =

1
16

(1− µ̄2
h)2(η2

h,1 + η2
h,2 + η2

h,3)DetP.

Since necessarily η2
h,i, µ̄

2
h ∈ [0, 1] then s (22), (23) and (24) imply that

µ2
12µ

2
13 + µ2

12µ
2
23 + µ2

13µ
2
23 ≤ DetP ≤ min

i,j
µ2
ij ,

which is exactly (17).
Note that in the case when DetP = 0 the inequalities in (18) are trivially

satisfied. Hence all the constraints in the lemma for points such that DetP = 0
hold. Now we can assume DetP > 0. In this case µ̄2

h 6= 1, ηh,i 6= 0 for all
i = 1, 2, 3. Let σi = sgn(ηh,i), σh = sgn(µ̄h), σij = sgn(µij) and σ123 = sgn(µ123).
By (19) we have σij = σiσj for all i, j = 1, 2, 3 and σ123 = σhσ1σ2σ3 and hence
σh = σ1σ2σ3σ123. Thus taking the square root of (22) we obtain µ̄h

√
DetP =

σ1σ2σ3µ123. We can now discover which constraints on the observed moments are
induced by the further constraints on the parameter space given by (14). For each
i = 1, 2, 3, if ηh,i > 0 (σi = 1) then from (23) ηh,i|µjk| =

√
DetP . It follows that

|µjk|
√

DetPµ̄h = σjk|µjk|µ123 = µjkµ123. By (14) taken for each i = 1, 2, 3 after
multiplying both sides by |µjk|

√
DetP we obtain

(25) (1− µ̄2
h)ηh,i|µjk|

√
DetP = 4µ12µ13µ23 ≤ (1± µ̄i)(

√
µ2
jkDetP ∓ µjkµ123)

for all i = 1, 2, 3.
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If ηh,i < 0 then −ηh,i|µjk| =
√

DetP and |µjk|
√

DetPµ̄h = −σjk|µjk|µ123 =
µjkµ123. Again by (14)

−(1− µ̄2
h)ηh,i|µjk|

√
DetP = 4µ12µ13µ23 ≤ (1± µ̄i)(

√
µ2
jkDetP ∓ µjkµ123)

and hence we obtain exactly the same inequalities.
To show that, given (16) and (17), these inequalities are equivalent to (18). Note

that (16) implies that
√
µ2
jkDetP ± µjkµ123 > 0. We can multiply both sides of

(25) by this expression to obtain

4µ12µ13µ23(
√
µ2
jkDetP ± µjkµ123) ≤ (1± µ̄i)(µ2

jk 4µ12µ13µ23)

or

(26)
√
µ2
jkDetP ≤ (1± µ̄i)µ2

jk ∓ µjkµ123.

Since DetP > 0 this is equivalent to

(27)
0 ≤ (1± µ̄i)µ2

jk ∓ µjkµ123,

DetP ≤ ((1± µ̄i)µjk ∓ µ123)2

The second inequality is exactly (18). The remaining task is to show that (18)
already implies the first inequality in (27). To see this rewrite (18) as

(28)
(1− µ̄i)µ2

jk ≥ −2µ123µjk

(1 + µ̄i)µ2
jk ≥ 2µ123µjk.

noting that the left-hand sides are nonnegative. For each of the two inequalities
if the right-hand side is negative then the inequality is trivially satisfied. If the
right-hand side is nonnegative then in the first case 2µ123µjk ≥ µ123µjk and in
the second case −2µ123µjk ≥ −µ123µjk. Hence the following set of inequalities is
implied by (28)

(1− µ̄i)µ2
jk ≥ −µ123µjk, (1 + µ̄i)µ2

jk ≥ µ123µjk.

This is exactly the first inequality in (27). This shows that if P ∈ MT then (16)–
(18) must hold.

Now assume that P satisfies the inequalities in (16)–(18). We will show that a
choice of parameters in (19) exists which satisfies constraints defining ΩT . From
(16) we know that DetP ≥ 0 so consider separately the two situations: first when
DetP = 0 and second when DetP > 0. In the first case necessarily µ123 = 0
and the inequality in (17) implies that at least two covariances are zero. If all the
covariances are zero then setting all edge parameters to zero and µ̄2

h = 1 gives a valid
choice of parameters satisfying (19). When one covariance, say µ12 6= 0, is non-zero
then if a parametrization exists it has to satisfy µ̄2

h 6= 1, ηh,1, ηh,2 6= 0 and ηh,3 = 0.
Such a choice of parameters will exist if we can ensure that µ12 = (1− µ̄2

h)ηh,1ηh,2.
This follows from Corollary 2 in [20] which states that if only µ12 6= 0 then there
always exists a choice of parameters for model X1 ⊥⊥ X2|H, where H is hidden.

Assume now that DetP > 0 which by (17) implies that µij 6= 0 for each i < j =
1, 2, 3. Define µ̄h := µ123√

DetP
and ηh,i := DetP

µjk
for i = 1, 2, 3. One can easily check

that µij = (1 − µ̄2
h)ηh,iηh,j for i, j = 1, 2, 3 and (1 − µ̄2

h)µ̄hηh,1ηh,2ηh,3 = µ123. It
remains to show that parameters defined in this way satisfy the constraints defining
ΩT . First note that by the inequalities we have 0 ≤ 4µ12µ13µ23 ≤ DetP and hence
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µ̄2
h ∈ [0, 1] as required. Moreover since σi = σjk then the inequalities in (25),

holding by the above arguments, demand that (1− µ̄2
h)ηh,i satisfies the constraints

in (14) for each i = 1, 2, 3.
�

Remark 4. In a phylogenetic analysis it is often assumed that ηe > 0 for all e ∈ E
and µ̄2

v 6= 1 for all v ∈ V (c.f. assumptions (M1)-(M3) in Section 8.2 and Section
8.4 in [31]). The proof above is then much more straightforward since it restricts
us to the case DetP > 0 and µij > 0 for all i < j = 1, 2, 3. For a general tree this
assumption also greatly simplifies computations.

3.3. A relation to tree metrics. Now let T be a general tree with n leaves.
Before stating the main theorem of the paper we show how to obtain an elegant set
of necessary constraints on MT . Assume that µ̄2

v 6= 1 for all v ∈ V (c.f. Remark
4). The correlation between Xu and Xv is defined as ρuv = µuv√

(1−µ̄2
u)(1−µ̄2

v)
which

gives

ρ2
uv = η2

u,v

1− µ̄2
u

1− µ̄2
v

.

Let k, l ∈ V be any two nodes representing variables Yk, Yl and let PT (k, l) be the
unique path joining them in T with the set of edges denoted by Ekl. Then using
the first equation in (8) implies that ρij = ρihρhj for any h separating i and j.
Using this argument repeatedly for the node adjacent to k, then for the next node
in the path and so on, it can be seen that

(29) ρkl =
∏
e∈Ekl

ρe

for each probability distribution in M̂T such that all the correlations are well de-
fined.

The above equation allows us to demonstrate an interesting reformulation of our
problem in term of tree metrics (c.f. [31, Section 7]) which we explain below (see
also Cavender [7]).

Let d : V × V → R be a map defined as

d(k, l) =
{
− log(ρ2

kl), for all k, l ∈ V such that ρkl 6= 0,
+∞, otherwise

then d(k, l) ≥ 0 because ρ2
kl ≤ 1 and d(k, k) = 0 for all k ∈ V since ρkk = 1.

If R ∈Mµ
T then by (29) we can define map d(T ;R) : V × V → R

(30) d(T ;R)(k, l) =
{ ∑

(u,v)∈PT (k,l) d(u, v), if k 6= l,

0, otherwise.

This map, restricted to the product of the set of leaves [n]× [n] ⊂ V × V , is called
a tree metric. In our case we have a point in the model space defining all the
second order correlations and d(T ;R)(i, j) for i, j ∈ [n]. The question is: What are
the conditions for the “distances” between leaves so that there exists a tree T and
edge lengths d(u, v) for all (u, v) ∈ E such that (30) is satisfied? Or equivalently:
What are the conditions on the absolute values of the second order correlations in
order that ρ2

ij =
∏
e∈Eij ρ

2
e (for some edge correlations) is satisfied? We have the

following theorem.
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Theorem 5 (Tree-Metric Theorem, Buneman [4]). A function δ : [n]× [n]→ R is
a tree metric on [n] if and only if for every four (not necessarily distinct) elements
i, j, k, l ∈ [n],

δ(i, j) + δ(k, l) ≤ max {δ(i, k) + δ(j, l), δ(i, l) + δ(j, k)} .

Note that since the elements i, j, k, l ∈ [n] need not be distinct, every map
satisfying the four-point condition defines a metric on [n]. Moreover, from the
general theory we know that a tree metric defines the tree uniquely.

The four-point condition in terms of correlations translates to

(31) (ρijρkl)2 ≥ min
{

(ρikρjl)2, (ρilρjk)2
}
.

As a corollary we can state the following well known result (c.f. [31, Section 8.4]).

Corollary 6. If P ∈ MT for some T then we can reconstruct T from the second
order correlations between the leaves.

Now we need an additional constraint on the second order correlations which en-
sures that there exists a choice of signs for the correlations of all the edges consistent
with the signs of the correlations between the leaves.

Lemma 7. Let T be a tree such that each inner node has degree at least three. If
the set of correlations ρij for all pairs of leaves in the tree satisfies ρijρikρjk ≥ 0 for
all triples {i, j, k} ⊂ [n] then there exists a choice of signs for the edge correlations
consistent with the signs of the correlations between the leaves.

Given that ρijρikρjk ≥ 0 for all distinct triples i, j, k ∈ [n] (31) can be rearranged
as

min
{
ρikρjl
ρijρkl

,
ρilρjk
ρijρkl

}
≤ 1.

Using the fact that ρikρjl
ρijρkl

= µikµjl
µijµkl

and ρilρjk
ρijρkl

= µilµjk
µijµkl

these imply the set of
inequalities

(32) 0 ≤ min
{
µikµjl
µijµkl

,
µilµjk
µijµkl

}
≤ 1.

for all (not necessarily distinct) i, j, k, l ∈ [n]. It is important to note however
from Lemma 3 that the inequalities given above cannot be sufficient even for the
tripod tree model because any particular choice of means for the nodes of the tree
constrains the space of possible edge parameters. The means of the leaf variables
will be estimated and, except in the unlikely event of all being 1/2, will actively
constrain the tree metric space in the way described above. It follows that to be
an effective tool, the tree metric space needs to be further truncated to respect the
inequalities implied by Lemma 3 in the tripod case. Furthermore in the general case
the observable higher order moments of a tree model further constrain this space
and should not be ignored. The next section derives these constraints explicitly.

3.4. The main theorem. SinceMT is a semi-algebraic set, to describe it we need
to provide the complete list of defining polynomial equations and inequalities. In
this subsection we present the known results concerning the equality descriptions
of the model. We state then the main theorem of the paper which gives the full
semi-algebraic description.

Any conditional independence model has a defining set of equations (c.f. Section
2.2). Allman and Rhodes [1] identified equations defining the general Markov model
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for binary data when the defining tree is trivalent which means that all its inner
nodes have valency three. To obtain this identification they studied the phylogenetic
ideal, i.e. the set of all polynomials vanishing on fT (C2|E|+1) ⊂ C2n . Note that we
do not restrict the parameters in (3) to lie in ΘT but allow them to be any complex
numbers. Extending the domain of defining equations to the complex field is a
common approach in algebraic geometry and in this context this is done to make
the analysis easier. To introduce the set of defining equations provided by Allman
and Rhodes we need the following definition.

Definition 8. Let X = (X1, . . . , Xn) be a vector of binary random variables and
let P = (pγ)γ∈{0,1}n be a 2 × . . . × 2 table of the joint distribution of X. Let
(A)(B) form a partition of [n]. Then the flattening of P induced by the partition
is a matrix

P(A)(B) = [pαβ ], α ∈ {0, 1}|A|, β = {0, 1}|B|,
where pαβ = P(XA = α,XB = β). Let T = (V,E) be a tree. In particular, for
each e ∈ E, removing edge e from E induces a partition of the set of leaves into
two subsets corresponding to the two connected components of the resulting forest.
The obtained flattening is called an edge flattening and we denote it by Pe.

Note that whenever we implicitly use some order on coordinates indexed by
{0, 1}-sequences we always mean the order induced by the lexicographic order on
{0, 1}-sequences such that 0 · · · 00 > 0 · · · 01 > . . . > 1 · · · 11.

If P is the joint distribution of X = (X1, . . . , Xn) then each of its flattenings is
just a matrix representation of the joint distribution P and contains essentially the
same probabilistic information. However, these different representations contain
important geometric information about the model.

Theorem 9 (Allman, Rhodes [1]). Let T be a trivalent tree andMT be the general
Markov model on T for binary variables. Then the ideal defining the general Markov
model is generated by all 3×3-minors of all the edge flattenings of T plus the trivial
invariant

∑
α pα = 1.

This therefore identifies the set of equations defining the general Markov model
for trivalent trees. Note that the result is true for the tripod tree model since in
this case each edge flattening of the joint probability table is a 2× 4 table so there
are no 3× 3 minors and hence there are no equations vanishing on the model.

The following result is well known (see e.g. [26]).

Lemma 10. Let T be a tree. Let r be a vertex of degree two and let e1 = (u, r),
e2 = (r, v) be the edges incident with r. Then P ∈MT if and only if P ∈MT/e1 =
MT/e2 , where T/e denotes a tree obtained from T by contracting edge e (c.f. Section
2.1).

In what follows we often restrict ourselves to trivalent trees or by Lemma 10
equivalently to trees such that each inner node has degree at most three. This
restriction is natural since for every T the modelMT can be realized as a submodel
of MT∗ for some trivalent tree T ∗ with certain restrictions on the parameters in
ΩT∗ (c.f. Remark 14).

In Section 6 we prove the following theorem which gives the exact geometric
description of MT in the case when T is a trivalent tree. However Proposition 18
shows that a similar result can be constructed for any tree topology if only we knew
equations defining the image of fT : ΘT → ∆2n−1.
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Theorem 11. Let T = (V,E) be a trivalent tree with n leaves such that all the
inner nodes have degree at most three. Let MT be a general Markov model on T .
Suppose P is a joint probability distribution of n binary variables. Then P ∈ MT

if and only if the following four conditions hold:
(C1): all 3× 3-minors of all the edge flattenings of P vanish,
(C2): for all distinct triples i, j, k ∈ [n] µijµikµjk ≥ 0 and

(µ2
ijµ

2
ik + µ2

ijµ
2
jk + µ2

ikµ
2
jk) ≤ DetP ijk ≤ min{µ2

ij , µ
2
ik, µ

2
jk},

(C3): for all distinct triples i, j, k ∈ [n]

DetP ijk ≤ minσ
{(

(1± µ̄σ(i))µσ(j)σ(k) ∓ µijk
)2}

.

for all three permutations σ of {i, j, k} such that σ(j) > σ(k).
(C4): for any four distinct leaves i, j, k, l such that there exists e ∈ E inducing

a split (A)(B) such that i, j ∈ A and k, l ∈ B (c.f. Figure 1) we have

(2µikµjl)2 ≤ (
√
µ2
jlDetP ijk + µjlµijk)(

√
DetP ikl − µikl)

(2µikµjl)2 ≤ (
√
µ2
jlDetP ijk − µjlµijk)(

√
DetP ikl + µikl).

The proof of the theorem is given in Section 6.

4. Tree cumulants

In previous sections we defined a reparametrization map fpµ : ∆2n−1 → Cn of
the model space. In this section we perform a further reparametrization of the
system of central moments for another system of coordinates which is intrinsically
linked to the given tree. The model in this coordinate system admits a quasi-
monomial parametrization in the new parameters. Our approach in this section is
more combinatorial and is based on the theory of Möbius functions (see [35]). This
links to the concept of cumulants which are essentially model-free (see e.g. [25,
Section 2] [27]). Our idea here is to develop some “tree cumulants” to obtain as
simple parametric form of the model as possible.

4.1. The poset of tree partitions. Let T = (V,E) be a tree with n leaves. A split
induced by e ∈ E is a partition of [n] into two non-empty sets induced by removing
e from E and restricting [n] to the connected components of the resulting graph.
Let (A)(B) be a split induced by e ∈ E and for W ⊂ V let T (W ) = (V (W ), E(W ))
denote the minimal subtree of T induced by W (c.f. Section 2.1). Then any split
of A induced by e′ ∈ E(A) or a split of B induced by e′ ∈ E(B) induces a partition
of [n] into three sets. We can iterate the procedure. By a multisplit we mean any
partition (A1) · · · (Ak) of the set of leaves induced by removing a subset of the set
of edges of T . Each Ai is called a block of the partition.

By ΠT we denote the partially ordered set (poset) of all multisplits of the set of
leaves induced by inner edges of T . We can define the poset on the level of edges
of T . Let E0 ⊂ E denote the set of inner edges of T . We define the following
equivalence class on E0. For Ex ⊆ E0, Ey ⊆ E0 we say Ex ∼ Ey if and only if
removing Ex induces the same partition of [n] as removing Ey. By Ex we denote
the maximal with respect to inclusion element of the equivalence class of Ex. Let
x, y ∈ ΠT be defined by removing edges in Ex ⊆ E and edges in Ey ⊆ E respectively.
We write x ≤ y if and only if Ex ⊆ Ey and we say that y is a subsplit of x.
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A segment [x, y], for x and y in ΠT , is the set of all elements z such that
x ≤ z ≤ y. The poset ΠT forms a lattice. To show this we define x ∨ y ∈ ΠT

(x∧y ∈ ΠT ) as an element in ΠT obtained induced by removing Ex∪Ey (Ex∩Ey).
Note that this definition does not depend on the choice of the representatives of
the equivalence class of Ex and Ey. We have x ∨ y ≥ x, x ∨ y ≥ y (x ∧ y ≤ x,
x ∧ y ≤ y) and if there exists another z ∈ ΠT with this property then z ≥ x ∨ y
(z ≤ x ∧ y). The element x ∨ y (x ∧ y) is called a join (a meet) of x and y. It
has a unique maximal element induced by removing E0 and the minimal one with
no edges removed which is equal to a single block [n]. The maximal element of a
lattice is denoted by 1 and the minimal one is denoted by 0.

To illustrate these definitions let T be the quartet tree below.

b

bc

b

b

b

bc

1

2

3

4

a b

This has only one inner edge and hence the partially ordered set ΠT has exactly
two elements 0 = (1234) and 1 = (12)(34). Now consider two different trivalent
trees with six leaves

1 2

a
b

c

3 4

d
5

6

1 2

a

b

c

4

3

d

5

6

Their respective posets ΠL
T (for the tree on the left) and ΠR

T (for the tree on the
right) are given below

b

b b b

b

(123456)

(12)(3456) (34)(1256) (1234)(56)

(12)(34)(56)
b

b b b

b

(123456)

(12)(3456) (123)(456)

(12)(3)(4)(56)

b b

b

(12)(3)(456)

(1234)(56)

(12)(34)(56) (123)(4)(56)

1

So for example (12)(34)(56) is a multisplit in ΠL
T and it is a subsplit of any other

multisplit y ∈ ΠL
T . Since for x = (12)(34)(56) there are no subsplits of x apart from

x itself then x is a maximal element in ΠL
T . However, it is not maximal in ΠR

T .
For any poset Π a Möbius function mΠ : Π×Π→ R is defined in such a way that

mΠ(x, x) = 1 for every x ∈ Π and mΠ(x, y) = −
∑
x≤z<ymΠ(x, z) for x < y in Π

(c.f. [35, Section 3.7]). Let W ⊂ V and we denote mΠT (W ) := mW and mΠT := m.
We write 0W and 1W to denote the minimal and the maximal element of ΠT (W )

respectively. For any multisplit x ∈ ΠT the interval [x, 1] has a natural structure of



CRiSM Paper No. 05-03, www.warwick.ac.uk/go/crism

16 PIOTR ZWIERNIK AND JIM Q. SMITH

a product of posets for blocks of x, namely
∏
B∈x ΠT (B) where the product is over

all blocks B of x. By Proposition 3.8.2 in [35] the Möbius function on the product
of posets

∏
B∈x ΠT (B) can be written as a product of Möbius functions for each of

the posets ΠT (B). Thus

(33) m(x, y) =
∏
B∈x

mB(0B , yB) for yB ∈ ΠT (B),

where yB means the restriction of y ∈ ΠT to the block containing only elements
from B ⊂ [n] (it is well definied since x ≤ y) and xB = 0B for each B.

4.2. An induced reparametrization. In this section unless otherwise stated we
restrict ourselves to trees such that all the inner nodes have degree at most three.
We use the combinatorial machinery developed in the previous subsection to define
new coordinates (κI)I∈[n]≥2 using change of coordinates fµκ : Rn×R2n → Rn×R2n

defined by the Möbius function on ΠT (I) for I ∈ [n]≥2 in the following way.
Let T be a tree with n leaves then tree cumulants for T are obtained according

to

(34) κI =
∑

π∈ΠT (I)

mI(0I , π)
∏
B∈π

µB for all I ∈ [n]≥2,

where by definition µi = 0 for all i ∈ [n]. By definition fµκ is an identity on the
first n variables corresponding to the means.

The Jacobian of fµκ is equal to one. To see this, order the variables in such
a way that κI precedes κJ as long as I ⊂ J and do the same for µI , µJ . Then
it can be checked that the Jacobian matrix of (35) is lower triangular with all its
diagonal terms taking the value one. The map fµκ is a regular polynomial map
with a regular polynomial inverse. The exact form of the inverse map is given by
the following lemma.

Lemma 12. Let T = (V,E) be a tree with n leaves. Then

(35) µI =
∑

x∈ΠT (I)

∏
B∈x

κB for all I ∈ [n]≥2.

Proof. Define two functions on ΠT (I)

α(y) =
∏
B∈y

µB , β(y) =
∏
B∈y

κB .

For each y ∈ ΠT (I) by (34) we obtain that β(y) is equal to

∏
B∈y

κB =
∏
B∈y

 ∑
xB∈ΠT (B)

mB(0B , xB)
∏
C∈xB

µC

 =
∑
x≥y

∏
B∈x

mB(0B , xB)
∏
C∈x

µC ,

where x is an element of ΠT (I) obtained by concatenating xB for B ∈ y. By the
product formula in (33) we have

∏
B∈xmB(0B , xB) = m(y, x) which gives that

β(y) =
∑
x≥ymI(y, x)α(x) for all y ∈ ΠT (I). The proof now follows from the dual

Möbius inversion (see Proposition 3.7.2 in [35]). �

By definition KT = fµκ(Cn), where KT denotes the space of tree cumulants, and
Mκ

T = fµκ(Mµ
T ) ⊆ KT and for any I ∈ [n]≤3 we have κI = µI , where [n]≤3 denotes

all the subsets of [n] with at most three elements. Equation (34) justifies the name
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for the tree cumulants. Indeed, one of the alternative definitions of cumulants is as
follows. Let P(I) denote the set of all partitions of I. Then

(36) Cum((Xi)i∈I) =
∑

π∈P(I)

(−1)|π|−1(|π| − 1)!
∏
B∈π

E(XB)

where the product is over all blocks of π and |π| denotes the number of blocks in π.
This is essentially the same as (34) but with a different defining poset (see [37][29]).

The following proposition motivates the whole section and demonstrates why
our new coordinate system is particularly useful.

Proposition 13. Let T = (V,E) be a rooted tree with n leaves. Then Mκ
T is

parametrized by a map defined coordinatewise as follows:

(37) κI =
1
4

(
1− µ̄2

r(I)

) ∏
v∈int(V (I))

µ̄deg(v)−2
v

∏
(u,v)∈E(I)

ηuv for each I ∈ [n]≥2,

where the degree is taken in T (I) = (V (I), E(I)); int(V (I)) denotes the set of inner
nodes of T (I) and r(I) denotes the root of T (I).

Let ψT : R|V |+|E| → Rn × R2n be a map defined as follows. On the first n
coordinates it is given by λi = 1−µ̄i

2 for i = 1, . . . , n. Then we have κ∅ = 1 and
κi = 0 for i = 1, . . . , n and on the remaining coordinates the map is defined by
(37). We have Mκ

T = ψT (ΩT ) ⊆ KT .

Proof of Proposition 13. It suffices to prove the lemma for I = [n]. The general
result obviously follows by restriction to the subtree T (I) since each inner node of
T (I) has degree at most three.

First we show that for any k, l ∈ V one has

(38) µkl =
1
4

(1− µ̄2
k)ηk,l =

1
4

(1− µ̄2
r)
∏
e∈Ekl

ηe,

where r denotes the root of PT (k, l). To show (38) first note that from (8) by taking
I = k, J = l we have

µkl =
1
4

(1− µ̄2
r)ηr,kηr,l

so it suffices to show that (1− µ̄2
r)ηr,k = (1− µ̄2

r)
∏
e∈Erk ηe and (1− µ̄2

r)ηr,l =
(1− µ̄2

r)
∏
e∈Erl ηe. By symmetry it suffices to show the first. Let h1 denote the

child of r in PT (r, k). Then (r, h1) ∈ Erk and again by (8) we have
1
4

(1− µ̄2
r)ηr,k = µrk =

1
4

(1− µ̄2
h1

)ηh1,rηh1,k.

Now we perform the same manipulations for ηh1,k denoting the child of h1 in
PT (r, k) by h2. We have 1

4 (1− µ̄2
h1

)ηh1,h2 = µh1h2 = 1
4 (1− µ̄2

h2
)ηh2,h1ηh2,k. Using a

recursive argument we can write (1− µ̄2
r)ηr,k = ηh1,rηh2,h1 · · · ηhm,hm−1ηhm,k(1− µ̄2

hm
),

where hm is the parent of k in PT (r, k). Note that we can write ηhmk instead
of ηhm,k because (hm, k) is an edge of PT (k, l) (c.f. Section 3.2). Moreover,
(1− µ̄2

hi
)ηhi,hi−1 = (1− µ̄2

hi−1
)ηhi−1hi for each i = 2, . . . ,m. Then this can be

rewritten as

(1− µ̄2
r)ηr,k = (1− µ̄2

r)ηrh1ηh1h2 · · · ηhm−1hmηhmk.

To obtain (38) we perform the same manipulations on (1− µ̄2
r)ηr,l.
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Since by definition κij = µij for all i, j ∈ [n], applying (38) to µij , the proposition
is clearly true for n = 2. In addition (19) implies that for every triple i, j, k ∈ [n]

µijk =
1
4

(1− µ̄2
h)µ̄hηh,iηh,jηh,k

where h is the inner node separating i, j, k in T . If h is the root of T (ijk) then
we are done. If not then the root r is on one of the three paths PT (h, i), PT (h, j),
PT (h, k) and h is a root for the remaining two paths. Hence using an exactly
analogous argument to the one used to derive (38) we obtain the identity

µijk =
1
4

(1− µ̄2
h)µ̄hηh,iηh,jηh,k =

1
4

(1− µ̄2
r)µ̄h

∏
e∈Eijk

ηe,

where Eijk denotes the set of edges of T (ijk). We have therefore shown that the
lemma is true also for n = 3.

Now let us assume the proposition is true for all k ≤ n − 1 and let T be a tree
with n leaves. We can always find two leaves separated from all the other leaves by
an inner node. We shall call such a pair an extended cherry (This differs slightly
from the definition of a cherry (c.f. [31], p. 8) since the inner node does not have
to be adjacent to the leaves.). Denote the leaves by 1, 2 and the inner node by a.
Denote A = {3, . . . , n} and let T (aA) be the minimal subtree of T induced by a
and A. Note that the global Markov properties give that for each C ⊆ A we have
(X1, X2) ⊥⊥ XC |Ha so using (8) we have

(39) µ12C = µ12µC +
1
4

(1− µ̄2
a)ηa,12ηa,C = µ12µC + ηa,12 µaC .

Let e ∈ E0 be the inner edge incident with a separating 1 and 2 from all other
leaves. We define a closure relation in ΠT induced by e in the following way. If
x ∈ ΠT is induced by removing Ex ⊂ E then x is induced by removing Ex ∪ e.
It is easily checked that this satisfies the following three conditions: (1) x̄ ≥ x (2)
¯̄x = x̄ and (3) x ≥ y implies x̄ ≥ ȳ. Hence it defines a closure relation as defined
by Rota [28]. An element x ∈ Π is closed if x = x. In our case 0 is never closed
and 1 always is and hence 0 > 0 and 1 = 1.

Let w = (12)(1A) ∈ ΠT . Since {1, 2} form an extended cherry and all the inner
nodes of T have degree at most three then a necessarily has degree three in T and it
is a leaf of T (aA). A trimming map with respect to {1, 2} is a map [0, w]→ ΠT (aA)

such that x 7→ x̃ is defined by changing the block (ijC) in x ∈ [0, w] for (aC). Note
that the trimming map constitutes an isomorphism of posets between [0, w] and
ΠT (aA).

For each x ∈ ΠT let x and x̃ denote the image of x under the closure relation
and the trimming map induced by the extended cherry {1, 2}. Let w = (12)(1A)
then by (34)

κ[n] =
∑

x∈[0,w]

m(0, x)
∏
B∈x

µB +
∑

x/∈[0,w]

m(0, x)
∏
B∈x

µB

and applying (39) to each µ12C for each x ∈ [0, w] we obtain∏
B∈x

µB =
∏
B∈x

µB + ηa,12

∏
B∈exµB



CRiSM Paper No. 05-03, www.warwick.ac.uk/go/crism

THE GEOMETRY OF INDEPENDENCE TREE MODELS WITH HIDDEN VARIABLES 19

and hence

κ[n] =
∑

x∈[0,w]

m(0, x)
∏
B∈x

µB + ηa,12

∑
x∈[0,w]

m(0, x)
∏
B∈exµB

+
∑

x/∈[0,w]

m(0, x)
∏
B∈x

µB .(40)

Let w′ = (12)(0A) ∈ ΠT . Then [w′, w] is a subset of the closed elements in [0, w].
The first summand in (40) can be rewritten as

∑
y∈[w′,w]

 ∑
{x: x̄=y}

m(0, x)

 ∏
B∈y

µB

 .
By [28, Proposition 4] if x ∨ y = x ∨ y, which is clearly satisfied in our case since
(Ex ∪ Ey) ∪ e = (Ex ∪ e) ∪ (Ey ∪ e), for all y ∈ [w′, w] the summands above are
zero and hence the whole sum is zero. The third summand in (40) is zero as well
because if x /∈ [0, w] then x contains (1) or (2) as one of the blocks and µ1 = µ2 = 0
by definition of central moments.

Since the trimming map constitutes an isomorphism between [0, w] and ΠT (aA).
By Proposition 4 in [28] the Möbius function of [0, w] is equal to the restriction of
the Möbius function on ΠT to the interval [0, w]. Since this is equal to the Möbius
function on ΠT (aA) we have

ηa,12

 ∑
x∈[0,w]

m(0, x)
∏
B∈exµB

 = ηa,12

 ∑
x∈ΠT (aA)

maA(0aA, x)
∏
B∈x

µB

 = ηa,12 κaA.

Using (11) it can be checked that µ12a = (1 − µ̄2
a)µ̄aηa1ηa2 or equivalently that

ηa,12 = µ̄aηa1ηa2, where ηa1 =
∏
e∈E(a1) and ηa2 =

∏
e∈E(a2). Also since |aA| =

n− 1 by using the induction assumption

κaA =
(

1− µ̄2
r(aA)

) ∏
(u,v)∈E(aA)

ηuv
∏

v∈int(V (aA))

µ̄deg(v)−2
v ,

where the degree is taken in T (aA). But E = E(aA) ∪ E(1a) ∪ E(2a) and

int(V ) = int(V (aA)) ∪ {a} ∪ int(V (1a)) ∪ int(V (2a))

and r(aA) = r. The degrees of a in T is three and the degree of all the inner nodes
of T (1a) and T (2a) are two. Hence one can check that µ̄aηa1ηa2κaA satisfies (37).
This finishes the proof. �

Remark 14. The parameterization in (37) remains valid for general trees. If T is a
tree with inner nodes of the degree higher than three then denote by T ∗ any tree
such that all the inner nodes have degree at most three and such that T can be
obtained from T ∗ by contracting some edges. ThenMT ⊂MT∗ given as the image
of ΩT ⊂ ΩT∗ under ψT∗ . The constraints on ΩT are such that if we identify two
inner nodes a, b (contracting (a, b)) then we set ηa,b = 1 and µ̄a = µ̄b.

Corollary 15. Let T = (V,E) be a tree and let MT be the general Markov model
on T . Then dim(MT ) = |E|+ |V | by which we mean that there exists a dense open
subset of MT diffeomorphic with a d-dimensional manifold.

Proof. The parametrization in (37) is injective. Its image is diffeomorphic to MT .
Since dimMκ

T = dim ΩT = |V |+|E| so the dimension ofMT must be |V |+|E|. �
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5. Phylogenetic invariants

Our new coordinates allow us to prove several useful results related to the struc-
ture of phylogenetic ideals defining MT in the case when T is trivalent. In an
analogous way to the edge flattenings of tables representing probability distribu-
tions we can define edge flattenings of (κI)I⊆[n], where by definition κ∅ = 1 and
κi = 0 for all i ∈ [n]. Let e be an edge of T inducing a split (A)(B) ∈ ΠT such
that |A| = r, |B| = n − r. Then N̂e is a 2r × 2n−r matrix such that for any two
subsets I ⊆ A, J ⊆ B the element of N̂e corresponding to the I-th row and the
J-th column is κIJ . Denote by Ne its submatrix given by removing the column
and the row corresponding to empty subsets of A and B. Here the labeling for the
rows and columns is induced by the ordering of the rows and columns for Pe (c.f.
Definition 8), i.e. all the subsets of A and B are coded as {0, 1}-vectors and we
introduce the lexicographic order on the vectors with the vector of ones being the
last one.

The following result allows us to rephrase equations from Theorem 9 in terms of
the new coordinates.

Proposition 16. Let T = (V,E) be a tree and let P be a probability distribution
of a vector X = (X1, . . . , Xn) of binary variables represented by the leaves of T . If
e ∈ E is an edge of T inducing a split then rank(Pe) = 2 if and only if rank(Ne) = 1.

Proof. By using elementary operations that do not change the determinant we will
show that we can obtain, from the flattening matrix Pe = [pαβ ] induced by a split
(A1)(A2), a block diagonal matrix De = [dIJ ] with one as the first scalar block
(d∅∅ = 1, d∅J = 0, dI∅ = 1 for all I ⊆ A, J ⊆ B) and a matrix Ne as the second
block. It will then follows that rank (Pe) = 2 if and only if rank (Ne) = 1.

First note that the flattening matrix Pe can be transformed to the flattening of
the non-central moments just by adding rows and columns according to (4) and then
to the flattening of the central moments Me = [µIJ ] such that I ⊆ A1, J ⊆ A2.
It therefore suffices to show that we can obtain De from Me using elementary
operations.

Let I ⊆ A1, J ⊆ A2. Then for each x ∈ ΠT (IJ) there is at most one block
containing elements from both I and J . For otherwise removing e would increase
the number of blocks in x by more than one which is not possible. Denote this
block by (I ′J ′) where I ′ ⊆ I, J ′ ⊆ J . Note that by construction we have either
both I ′, J ′ are empty sets if x ≥ (A1)(A2) or both I ′, J ′ 6= ∅ otherwise. We can
rewrite (35) splitting the blocks

(41) µIJ =
∑

x∈ΠT (IJ)

dI′J′ ∏
I⊇B∈x

κB
∏

J⊇B∈x

κB

 =
∑
I′⊆I

∑
J′⊆J

uII′dI′J′vJ′J

for some uII′ , vJ′J and T is a trivalent tree covering T . Setting uII′ = 0 for
I * I ′, vJ′J = 0 for J * J ′ we can write these coefficients in terms of a lower
triangular matrix U and an upper triangular matrix V . Since uII = 1 for all
I ⊆ A1 and vJJ = 1 for all J ⊆ A2 we have detU = detV = 1. Matrix U records
the row operations on De and V records the column operations on De. In this
way we have shown that using elementary operations one may obtain Me from De.
Because all the operations used in the transformation above are invertible we can
go equivalently from Me to De which finishes the proof. �
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The proposition shows that the vanishing of all 3 × 3 minors of all the edge
flattenings of P and the trivial invariant

∑
pα = 1 are together equivalent to the

vanishing all 2× 2 minors of all edge flattenings of κ = (κI)I∈[n]≥2 . An immediate
corollary follows.

Corollary 17. Let T = (V,E) be a trivalent tree. Then the general Markov model
MT is defined by the following set of equations. For each split (A)(B) induced by an
edge consider any four nonempty sets I1, I2 ⊂ A, J1, J2 ⊂ B. The set of equations
of the form κI1J1κI2J2 = κI1J2κI2J1 generate the phylogenetic ideal defining MT .

In [12] Eriksson noted that some of invariants usually prove to be better in
discriminating between different tree topologies than the others. His simulations
showed that the invariants related to the four-point condition were especially pow-
erful. The binary case we consider in this paper can give some partial understanding
of why this might be so. Here, the invariants related to the four-point condition
are only those involving second order covariances (c.f. Section 3). Moreover, the
estimates of the higher-order moments (or cumulants) are sensitive to outliers and
their variance generally grows with the order of the moment. Let µ̂ be a sample
estimator of the central moments µ and let f be one of the equations in Theorem
17. Then using the delta method we have

Var(f(µ̂)) ' ∇f(µ)tVar(µ̂)∇f(µ).

Consequently, the higher order of the central moments involved the higher vari-
ability of the invariant (see [25, Section 4.5]). This shows that invariants involving
lower-order moments should be of a greater value in practice. The results of this pa-
per further suggest that third-order moments are also helpful because they give us
all the inequalities implicit in a phylogenetic model as well as some other invariants.

6. Proof of the main theorem

Note that the map fµκ : Cn → KT defined by (34) gives an isomorphism between
Mµ

T and Mκ
T and consequently also MT by fpµ : ∆2n−1 → Cn. The following

proposition gives the inequalities defining Mκ
T . The result is formulated in terms

of the complex numbers, i.e. we consider the domain of ψT without any constraints
as C|V |+|E|. This allows us to make a link to the algebraic theory of phylogenetic
invariants.

Proposition 18. Let T = (V,E) be a tree with n leaves. Let MT be a general
Markov model on T . If κ ∈ KT is such that κ ∈ ψT (C|V |+|E|) then κ ∈ Mκ

T =
ψT (ΩT ) if and only if conditions (C2)-(C4) in Theorem 11 are satisfied.

Constraints in Theorem 11 are formulated in terms of the second and the third
order central moments. However, since µI = κI for all I ∈ [n]≤3 they can be
trivially translated to the constraints on κ. We prefer to keep the formulation in
terms of moments but extended to the complex domain.

Proof. Note that by Lemma 10 we can assume that each of the inner nodes of T has
degree greater than two. Let κ ∈ ψT (C|V |+|E|) satisfy (C2)-(C4). We will show that
(ψT )−1(κ)∩ΩT 6= ∅ and consequently that κ ∈Mκ

T . Our analysis does not depend
on a rooting of T . Indeed, without loss fix two different rootings r and r′. Let T
be a tree rooted in r and by T ′ denote its copy rooted in r′. ThenMT =MT ′ and
the parameters (ηe), (µ̄v) and (η′e), (µ̄′v) are related as follows. We have µ̄v = µ̄′v
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for all v ∈ V . Moreover, if (u, v) ∈ E ∩ E′ then ηuv = η′uv and if (u, v) ∈ E \ E′
then (1− µ̄2

u)ηuv = (1− µ̄2
v)η
′
vu. From the form of inequalities in (14) it suffices to

check constraints on (µ̄h) and ηu,v whenever (u, v) ∈ E or (v, u) ∈ E.
The idea of the proof is to identify the preimage of κ and show that there is a

point in the preimage which lies in ΩT . First we identify µ̄h for each inner node
h ∈ V . Fix h and let i, j, k ∈ [n] be any three leaves separated in T by h. Then as
in the proof of Lemma 3 (c.f. (22)) we have

(42) µ̄2
hDetP ijk = µ2

ijk, (1− µ̄2
h)DetP ijk = 4µijµikµjk,

where DetP ijk = µ2
ijk + 4µijµikµjk denotes the hyperdeterminant of the 2× 2× 2

table representing the marginal distribution of (Xi, Xj , Xk) as given by Definition
2. In particular because κ ∈ KT it follows that all µij and µijk for i, j, k ∈ [n] are
real. Moreover, because κ satisfies condition (C2) then DetP ijk ≥ 0. If there exists
a triple i, j, k ∈ [n] separated by h such that DetP ijk > 0 then we can divide by
DetP ijk in (42) obtaining a formula for µ̄2

h ∈ [0, 1] and so identify it up to a sign
after taking the square root. Otherwise the value of this parameter is not identified
but zero is always one of the possible values.

If h is adjacent to one of the leaves i then as in (23) we have

(43) η2
h,i µ

2
jk = DetP ijk,

where j, k ∈ [n] are two other leaves such that i, j, k are separated by h. If we
can find j, k such that DetP ijk > 0 then in particular µ2

jk > 0 and (43) gives a
formula for ηh,i up to the choice of sign. By an identical argument to the one in
proof of Lemma 3 this parameter takes a value within constraints defining ΩT if
the inequalities in condition (C3) hold for the given triple i, j, k ∈ [n]. If for all j, k
the hyperdeterminant is zero then ηh,i can be set to zero as in the proof of Lemma
3. Indeed, if there exists j, k such that µjk 6= 0 then necessarily ηh,i = 0. Otherwise
this parameter is not identified and zero is one of the possible values. Note that
ηh,i = 0 is always allowed in ΩT for all values of µ̄i, µ̄h (c.f. (14)).

To compute the inner edges parameters ηa,b for each inner edge (a, b) ∈ E note
that we get at least four subsets of the set of leaves such that for any four leaves
each from a different subset we have a quartet subtree (see Figure 1). Denote the

bc
bc

bc

bc

bc

bc

bc

bc

bcbc

bc

bc

j

i k

l

a b

Figure 1. On the left we pick two adjacent inner nodes and four
leaves (one from each of the shaded areas). On the right we have
the marginal subtree for those four variables.

four chosen leaves as i, j, k, l. Again by the definiton of ψT we obtain

(44) µikµjl(1− µ̄2
b) = µijµkl(1− µ̄2

a)η2
a,b

and µikµjl = µilµjk. Take {i, j, k} and {i, k, l} as triples separated by a and b.
Then we have the following possible situations. If for all choices of i, j, k, l we have
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DetP ijk = 0 and DetP ikl = 0 then µijµikµjk = 0 and µikµilµjl = 0. In this
case we can set ηa,b = 0 which is a valid parameter for all choices of µ̄a and µ̄a.
Indeed, in this case by condition (C2) for both triples at most one covariance is
non-zero. If all the six covariances are zero then the value of the parameter is not
identified and it can be set to zero. If one of the covariances is non-zero then since
µikµjl = µilµjk in ψT (C|V |+|E|) this can be only either µij or µkl and in this case
ηab is not identified either and we can set ηa,b = 0. If both µij 6= 0 and µkl 6= 0
then ηab is necessarily zero.

Now consider one of the two cases: either for each i, j, k, l DetP ijk = 0 and
there exists i, j, k, l such that DetP ikl > 0 or for each i, j, k, l DetP ikl = 0 and
there exists i, j, k, l such that DetP ijk > 0. By symmetry without loss assume the
first holds. In this case we consider the marginal model for T (ikl). By Lemma 3,
ηi,b = ηi,aηa,b can be identified and is a valid parameter for the marginal model
for T (ikl) when conditions (C3) for i, k, l are satisfied. Moreover, by Corollary 2
in [20] if ηi,b takes value in the feasible region defined by (14) and it is non-zero
then we can always find values of ηi,a, ηa,b and µ̄a such that (1 − µ̄2

a)ηa,b satisfies
the inequalities in (14).

Finally, assume that there exists i, j, k, l such that DetP ijk > 0 and DetP ikl > 0.
Using (42) write

(1− µ̄2
a)DetP ijk = 4µijµikµjk, (1− µ̄2

b)DetP ikl = 4µikµilµkl.

Multiply both sides of (44) by DetP ijk DetP ikl and then use the above formula
together with the fact that µikµjl = µilµjk to obtain

(45) µ2
ijDetP iklη2

a,b = µ2
ilDetP ijk.

The above formulas identify values of the parameters µ̄a, µ̄b and ηa,b up to the
choice of signs. Now we show that they give values within constraints defining ΩT
as long as the constraints in Theorem 11 are satisfied. Assume ηa,b > 0, i.e.

ηa,b =
∣∣∣∣µilµij

∣∣∣∣
√

DetP ijk

DetP ikl

then

(46) ηa,b(1− µ̄2
a) =

∣∣∣∣µilµij
∣∣∣∣
√

DetP ijk

DetP ikl
4µijµikµjk

DetP ijk
=

4µ2
ik|µjl|√

DetP ijkDetP ikl
,

where the second equation follows from the equation µikµjl = µilµjk and the fact
that sgn(µijµil) = sgn(µjl). Since ηa,b > 0 (14) implies that the following constraint
must be satisfied by (46)

(47)
4µ2

ik|µjl|√
DetP ijkDetP ikl

≤ min{(1± µ̄a)(1∓ µ̄b)}.

Adopting the notation from the proof of Lemma 3 we have that σa = σijkσi,aσj,aσa,bσb,k
and σb = σiklσi,aσa,bσb,kσb,l, where by construction σa,b = 1. So we can write

µ̄a = σi,aσj,aσb,k
µijk√

DetP ijk
, µ̄b = σi,aσb,kσb,l

µikl√
DetP ikl

.

Multiply both sides of (47) by |µjl|
√

DetP ijkDetP ikl. Since

|µjl| = σjlµjl = σa,jσb,lµjl
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we obtain

(2µikµjl)2 ≤ min
{

(
√
µ2
jlDetP ijk ∓ µjlµijk)(

√
DetP ikl ± µikl)

}
which holds by (C4). Consequently, the preimage of κ under ψT has a non-trivial
intersection with ΩT .

The converse implication is straightforward. This follows by checking that for
each parameter the induced constraints are the same for all sign choices for the
parameters. �

Proof of Theorem 11. To use Proposition 18 we show that up to the inequality
constraints in (C2)-(C4) the image of ψT is described by all the 3 × 3 minors of
all the edge flattenings of the joint probability table P of leaves of T . Denote by
J the ideal in C[pα : α ∈ {0, 1}n] generated by all 3 × 3-minors of all the edge
flattenings supplemented with the trivial invariant

∑
pα = 1 (c.f. [1]). Let I be an

ideal defined as follows. For all inner edges of T consider a split of the set of leaves
(A)(B) and for all nonempty subsets I1, I2 ⊆ A, J1, J2 ⊆ B take

κI1J1κI2J2 − κI1J2κI2J1 = 0,

where the κ’s are the tree cumulants which are polynomials in the raw probabilities.
By Proposition 16 the ideal is isomorphic to J . Moreover, the zeros of I define the
smallest algebraic variety containing ψT (C|V |+|E|).

Let U1 ⊂ C|V |+|E| be an open subset such that ηe 6= 0 for all e ∈ E and µ̄2
v 6= 1

for all v ∈ V . Then in particular for any triple i, j, k ∈ [n] DetP ijk 6= 0 (see (21))
and from the proof of Lemma 18 the map ψT restricted to U1 is a proper and quasi-
finite map (the preimage is always a finite set) and hence it is closed. Consequently
if P is such that DetP ijk 6= 0 for all i, j, k ∈ [n] and it satisfies all the equalities
then it is in the image of the parametrization of ψT restricted to U1.

If P for all i, j, k ∈ [n] DetP ijk ≥ 0 but for some of the triples the inequality is
not strict then P is a limit of points (Pn) for which the inequalities are all strict.
Moreover if P satisfies the equalities then we can assume that all Pn satisfy the
equalities as well. From the paragraph above each of the Pn lies in the image of
the parametrization. However, since ψT is a continuous map it also follows that P
lies in the image. Again by Lemma 18 it lies in Mκ

T if and only if P satisfies the
inequalities. �

7. Discussion

The new coordinate system proposed in this paper provides a better insight into
the geometry of phylogenetic tree models with binary observations. The elegant
form of the parametrization is useful and has already enabled us to find generaliza-
tions of the formulas for Bayesian information criteria in [30]. We will report these
results in a later paper. We also believe that it can be used to derive asymptotic
distributions of certain likelihood ratio statistics.

The derived coordinate system is based on a novel use of Möbius function in
statistics, mimicking the combinatorial definition of cumulants. A similar idea is
exploited in the theory of free probabilities (see e.g. [33]). We believe that our
approach can be extended to more general families of graphical models.

Since M̂T forms a quadratic exponential family (see [22]) its geometry is rela-
tively simple [16] [18] and in some sense similar to tree models for Gaussian variables
(see [10]). This partly explains why some of our results mirror the results obtained
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in [40]. It may be an interesting problem to understand in a better way the rela-
tionship between those two model classes.
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