References: |
[AV05] M. Martins Afonso and D. Vincenzi. Nonlinear elastic polymers in random ow. Journal of Fluid Mechanics, 540:99{108, 2005. [Bat59] G.K. Batchelor. Small-scale variation of convected quantities like temperature in turbulent uid. Journal of Fluid Mechanics, 5(113), 1959. [BCH07] Jeremie Bec, Massimo Cencini, and Rafaela Hillerbrand. Heavy particles in incompressible ows: The large stokes number asymptotics. Physica D: Nonlinear Phenomena, 226:11{22, 2007. [BIG80] Adi Ben-Israel and Thomas N. E. Greville. Generalized inverses: theory and applications. Robert E. Krieger Publishing Co. Inc., Huntington, N.Y., 1980. Corrected reprint of the 1974 original. [Bub09] Pavel Bubak. Asymptotic Strong Feller Property for Markov Processes with Skew-product Structure. PhD thesis, Warwick University, 2009. [Che00] Michael Chertkov. Polymer stretching by turbulence. Physical Review Letters, 84(20):4761{4764, 2000. [CMV05] A. Celani, S. Musacchio, and D. Vincenzi. Polymer transport in random ow. J.STAT.PHYS., 118:531, 2005. [Dal99] Robert C. Dalang. Extending martingale measure stochastic integral with applications to spatially homogeneous spdes. Electronic Journal of Probability, 4(6):1{29, 1999. [DE86] M. Doi and S. F. Edwards. The Theory of Polymer Physics. Oxford University Press, 1986. [DZ92] Guiseppe DaPrato and Jerzy Zabczyk. Stochastic Equations in Infinite Dimen- sions. Cambridge University Press, 1992. [GCS05] S. Gerashchenko, C. Chevallard, and V. Steinberg. Single-polymer dynamics: Coil-stretch transition in random ow. Europhysics Letters, 71(2):221{225, 2005. [Har56] T. E. Harris. The existence of stationary measures for certain Markov processes. In Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954{1955, vol. II, pages 113{124, Berkeley and Los Angeles, 1956. University of California Press. [Has80] R. Z. Has0minskii. Stochastic stability of differential equations, volume 7 of Monographs and Textbooks on Mechanics of Solids and Fluids: Mechanics and Analysis. Sijtho & Noordho, Alphen aan den Rijn, 1980. Translated from the Russian by D. Louvish. [HM08] Martin Hairer and Jonathan C. Mattingly. Yet another look at Harris' ergodic theorem for Markov chains. arXiv/0810.2777, 2008. [Hor85] Lars Hormander. The analysis of linear partial differential operators. III, volume 274 of Grundlehren der Mathematischen Wissenschaften [Fundamental Princi- ples of Mathematical Sciences]. Springer-Verlag, Berlin, 1985. Pseudodifferential operators. [HP07] Martin Hairer and Etienne Pardoux. Homogenization of periodic linear degenerate pdes. math/0702304, 2007. [Kra68] Robert H. Kraichnan. Small-scale structure of a s scalar vector field convected by turbulence. The Physics of Fluids, 11(5):945{953, 1968. [LMV02] M. De Lucia, A. Mazzino, and A. Vulpiani. Dumb-bell model for polymer transport in laminar ows. EPL (Europhysics Letters), 60(2):181{187, 2002. [McK06] Scott A. McKinley. Fluctuating Hydrodynamics of Flexible Polymers in Dilute Solution. PhD thesis, The Ohio State University, 2006. [MK99] Andrew J. Majda and Peter R. Kramer. Simplified models for turbulent transport diffusion: Theory, numerical modelling, and physical phenomena. Physics Reports, 314:273{574, 1999. [MS02] Jonathan C. Mattingly and Andrew M. Stuart. Geometric ergodicity of some hypo-elliptic diffusions for particle motions. inhomogeneous random systems (cergy-pontoise, 2001). Markov Process. Related Fields, 8(2):199{214, 2002. [MSH02] Jonathan C. Mattingly, Andrew M. Stuart, and D.J. Higham. Ergodicity for sdes and approximations: locally lipschitz vector fields and degenerate noise. Stochastic Processes and their Applications, 101:185{232, 2002. [MT93a] S. P. Meyn and R. L. Tweedie. Markov chains and stochastic stability. Communications and Control Engineering Series. Springer-Verlag London Ltd., London, 1993. [MT93b] Sean P. Meyn and R. L. Tweedie. Stability of Markovian processes. III. Foster-Lyapunov criteria for continuous-time processes. Adv. in Appl. Probab., 25(3):518{548, 1993. [MWD+05] B. Mehlig, M. Wilkinson, K. Duncan, T.Weber, and M. Ljunggren. Aggregation of inertial particles in random ows. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics), 72(5):051104, 2005. [Num84] Esa Nummelin. General irreducible Markov chains and nonnegative operators, volume 83 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1984. [O96] Hans Christian Ottinger. Stochastic Processes in Polymeric Fluids: Tools and Examples for Developing Simulation Algorithms. Springer-Verlag Berlin Hedelberg, 1996. [OR89] H.C. Ottinger and Y. Rabin. Diffusion equation versus coupled langevin equations approach to hydrodynamics of dilute polymer solutions. J. Rheol., 33:725{ 743, 1989. [SS02a] H. Sigurgeirsson and Andrew M. Stuart. Inertial particles in a random field. Stochastics and Dynamics, 2(2):295{311, 2002. [SS02b] H. Sigurgeirsson and Andrew M. Stuart. A model for preferential concentration. Physics of Fluids, 14(12):4352{4361, 2002. [Str08] Daniel W. Stroock. Partial differential equations for probabilists, volume 112 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2008. [Wal86] J.B. Walsh. An introduction to stochastic partial differential equations. Ecole d'ete de Probabilites de Saint Flour XIV, Lecture Notes in Mathematics, 1180, 1986. |