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Modelling Multi-Output Stochastic Frontiers Using Copulas
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Abstract

The aim of this work is to introduce a new econometric methodology for multi-

output production frontiers. In the context of a system of frontier equations, we use

a flexible multivariate distribution for the inefficiency error term. This multivariate

distribution is constructed through a copula function which allows for separate mod-

elling of the marginal inefficiency distributions and the dependence. We pay specific

attention to the elicitation of a sensible (improper) prior and provide a simple suffi-

cient condition for posterior propriety. Inference is conducted through a Markov chain

Monte Carlo sampler. We use Bayes factors to compare various copula specifications

in the empirical context of Dutch dairy farm data, with two outputs.

JEL classification: C11, C15, C23, D24

Keywords: Bayes factor; Dairy farms; Efficiency; Existence of posterior; Prior elici-

tation.

1 Introduction

In the economic literature an important place is taken by efficiency measurement, es-

pecially in microeconomics and industrial organization. In order to study this issue, the

stochastic frontier model was introduced in Aigner et al. (1977) and Meeusen and van den

Broeck (1977). Fields of application abound and include banking, agriculture, public ser-

vices and health care. The basic idea of a frontier is a characterization of best-practice

technology in a particular sector: the production frontier describes the potential maximum

∗Corresponding author: Mark Steel, Department of Statistics, University of Warwick, CV4 7AL Coven-
try, UK. E-mail: M.F.Steel@stats.warwick.ac.uk. We acknowledge useful discussions with Michael Pitt and
Jim Q. Smith and we thank Stijn Reinhard and the Dutch Agricultural Economics Research Institute for
providing the farm data.
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production that an economic unit can achieve with a certain set of inputs. The distance be-

tween the hypothetical frontier and the observed production is directly related to efficiency.

This distance (usually called “inefficiency”) is typically modeled as a one-sided random vari-

able, and different distributions have been proposed in the literature (see for example van

den Broeck et al., 1994, Tsionas, 2000 and Griffin and Steel, 2008). In addition, we need

to infer the frontier from the data and this entails another random component which is

usually assumed to be symmetric measurement error. The sum of inefficiency and mea-

surement error terms is often referred to as “composed error”. In contrast to the DEA-type

approaches to efficiency measurement, extensions of the basic stochastic frontier model to

deal with multiple outputs have been particularly challenging. This is why the literature

has often dealt with such cases through cost or profit functions. Kumbhakar (1996) and

Fernández et al. (2000) provide a more detailed discussion of the particular problems that

occur if we want to specify a meaningful statistical model for m > 1 outputs.

The approach of Fernández et al. (2000) is to use a parametric aggregator of the outputs

and to model the aggregate output through a univariate frontier. The multivariate model

is then completed by specifying a Dirichlet distribution on the output shares. Closer to the

approach in this paper, Ferreira and Steel (2007) propose the use of a multivariate skewed

distribution to model the composed error term in a system of m equations.

We aim to specify a multivariate model in such a way that we can make separate in-

ference about the two forms of error. In our model each output has its own frontier and its

own inefficiency and measurement error. The choice of distribution for the inefficiencies is

very critical, as inference on efficiencies is typically of most interest in applications and the

sample is often not very informative on this aspect (since each firm has its own inefficiency).

Thus, flexibility is a key requirement for the multivariate modelling of the inefficiencies. For

this reason, we use a copula function as a flexible tool to deal with complex multivariate

distributions1. This approach to multivariate modelling was introduced by Sklar (1959).

The basic idea of the copula function is to separate the dependence structure from the

specification of the marginal distributions. We then separately choose the marginal densi-

ties (using a general family of distributions that contains most distributions proposed in

the literature) and we select different copula functions to model the dependence between

the inefficiencies of the different outputs. Each copula function is characterized by a param-

eter that represents the dependence (which can be expressed through general association

measures like Kendall τ and Spearman ρ which are invariant with respect to the margins

and can take into account non-linearity in the dependence).

One problem facing this kind of multivariate models is the estimation technique; the

usual frequentist perspective requires maximizing a likelihood with many parameters, which

1There is previous work in stochastic frontier models using copula functions, but with a rather different
focus. In particular, Smith (2008) uses copulas to model the dependence between the two components of
the composed error for a single output.
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can be challenging in practice2. Following the suggestion of Patton (2006), Joe and Xu

(1996) and Newey and McFadden (1994) we can separately estimate the marginal distribu-

tions and the copula. Using this kind of technique, as underlined by Newey and McFadden

(1994), we have to calculate robust standard errors in order to conduct valid inference. In

addition, separating the estimation leads, generally, to a loss of information, see Patton

(2006) and Joe (2005). Another problem related with the frequentist approach is the es-

timation of the inefficiency terms. Although it should be possible to extend the work of

Jondrow et al. (1982) to the multivariate framework, it is difficult to have useful estimates

of the inefficiencies if we have few observations for each unit. Instead, Bayesian methods

avoid the problem of loss of information3 and immediately lead to inference on the unob-

served inefficiencies. Finally, we have the possibility to formally introduce reasonable prior

information, which can be a major advantage in these highly structured models. We pay

particular attention to the prior specification, and propose an improper prior structure

which allows us to remain vague about aspects we usually do not have strong prior notions

about, while implying “reasonable” priors on efficiencies and imposing economic regularity

conditions. We also provide a mild and easily verifiable condition that ensures a proper

posterior. In order to make a meaningful comparison between different copulas (through

Bayes factors) we will use prior matching based on a common measure of association. Model

selection is then straightforward, in principle: we use Bayes factors to find the copula that

best describes the dependence in the data. Inference will be conducted through Markov

chain Monte Carlo (MCMC) methods, which are developed and explained in the paper.

This work is organized as follows: Section 2 introduces the main concepts of copula

functions, while Section 3 presents the multivariate stochastic frontier model proposed

here, with discussion of the prior structure, existence of the posterior and brief details of

the computational methods. An application to a data set of Dutch dairy farms with two

outputs is analysed in Section 4. Finally, Section 5 concludes.

2 Copula Functions

The main result of copula theory is Sklar’s theorem which shows the role that copulas

play in the relationship between multivariate distribution functions and their univariate

margins.

Theorem 1 (Sklar’s theorem). Let H denote a n-dimensional distribution function with

margins F1. . .Fn . Then there exists a copula C such that for all real (x1,. . . , xn)

H(x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)) (1)

2This maximization is not always feasible, e.g. computing the numerical derivatives in the Newton step can
be very difficult due to the cumulative distribution inside the copula.

3dos Santos Silva and Lopes (2008) show the advantages of estimating all the parameters jointly.

3



CRiSM Paper No. 09-27, www.warwick.ac.uk/go/crism

If all the margins are continuous, then the copula is unique; otherwise C is uniquely deter-

mined on RanF1×RanF2 . . . RanFn, where Ran is the range of the marginals. Conversely,

if C is a copula and F1, . . . Fn are distribution functions, then the function H defined in

(2.2) is a joint distribution function with margins F1, . . . Fn.

Proof: See Sklar (1959), Joe(1997) or Nelsen (2006).

Sklar’s theorem shows that the univariate marginals and the multivariate dependence

can be separated in a such a way that the multivariate structure is represented only by

the copula independently of the choice of the margins. This then leads to multivariate

probability density functions (pdf’s) of the form:

h(x, . . . , xn) = c(F1(x1), . . . , Fn(xn))
n

∏

i=1

fi(xi), (2)

where we denote by c(·) the pdf of the copula4 and fi denotes the pdf of Fi, i = 1, . . . , n.

Recently, copula functions have been used extensively to study the association between

variables in financial econometrics and risk management, see e.g. Cherubini et al. (2004),

McNeil et al. (2005), Patton (2004) and Embrechts et al. (2002).

In the rest of this section, we shall focus primarily on the bivariate case, which is

easier to present and understand and many popular copulas were proposed for this case. In

addition, copulas such as the Gaussian copula which can, in principle, easily be extended

to the general case then require nontrivial methods for inference because of the problems

in dealing with a correlation matrix of higher dimension (Pitt et al., 2006).

2.1 Frechét Bounds and Measures of Association

As explained before, the role played by the copula function is to model the dependence

between the marginal distributions. Note that the usual (Pearson) correlation is a measure

of linear dependence and thus often not the most appropriate measure of association in

this context, as discussed in Mari and Kotz (2001) and Nelsen (2006). Before introducing

a useful measure of association we first present the Frechét family of distributions which

plays an important role in multivariate distribution theory.

In the bivariate case the Frechét family consists of all bidimensional distribution func-

tions with given margins. More precisely, given the distribution functions F (x) and G(y)

defined on ℜ the corresponding Frechét family is the set of all bivariate distribution func-

tions F (x, y) such that:

lim
x→+∞

F (x, y) = F (y) and lim
y→+∞

F (x, y) = F (x).

4The pdf of the copula C(u1, . . . , un) is defined as ∂C(u1,...,un)
∂u1,...∂un

.
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Using Sklar’s theorem this family also defines a family of copula functions. Three particular

distribution functions (and also copulas) that represent a particular case of this family are:

C− = Max(F (x) +G(y) − 1, 0), C⊥ = F (x) ×G(y) and C+ = Min(F (x), G(y)).

The copula functions C− and C+ represent the minimum and the maximum element

of this class. So these two bivariate copulas represent the lower and upper bound inside

which any copula and thus any multivariate distribution lies. If a copula is perfectly equal

to the lower bound this means that the random variables are countermonotonic or perfectly

negatively dependent. In case of the upper bound, the two random variables are said to be

monotonic or perfectly positively dependent. The intermediate case is independence, which

is described by the product copula C⊥. A family of copulas that contains the full range

of dependence structures is called comprehensive, which means that it can reach both the

lower and upper Frechét bounds.

Using copula functions, we can often express the parameter of dependence in terms of

a more general measure of association with useful properties. As Nelsen (2006) states, a

dependence measure should be scale invariant under almost surely strictly increasing trans-

formations of the margins. The most widely used scale-invariant dependence measures are

Kendall’s τ and Spearman’s ρ, which also have the useful property that they only depend

on the copula of the joint distribution. In our analysis, we will use Spearman’s ρ since for

some comprehensive families we have closed form solutions (see Table 1). Spearman’s ρ is

a non-parametric measure of association between random variables and can be written as:

ρθ = 12

∫

[0,1]

∫

[0,1]
[C(u, v; θ) − uv]duv (3)

In the next subsections we shall present some important copulas that will be considered

in this study. We limit ourselves to copulas that are comprehensive and that allow for an

analytical expression of Spearman’s ρ in terms of their single parameter. In particular,

we consider three distributions belonging to three distinct families of copulas. Whenever

the researcher has prior knowledge on the range and the kind of dependence, other non-

comprehensive families of copulas can also be considered.

2.2 Families of copulas

Elliptical Copulas

An elliptical copula is the copula corresponding to an elliptical distribution5 through

the application of Sklar’s theorem. We focus on the most commonly used member of that

class.
5See Fang et al. (1990) for a general discussion about elliptical distributions.
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Gaussian copula: this copula is induced by the multivariate normal distribution, and

its probability density function is:

C(u, v; θ) =Φ(Φ−1(u),Φ−1(v); θ)

=

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞

1

2π(1 − θ2)1/2

{

−(s2 − 2θst+ t2)

2(1 − θ2)

}

ds dt.
(4)

A feature of this multivariate distribution is its symmetry, which means that negative and

positive dependence are treated equally. This copula is comprehensive and θ ∈ (−1, 1).

Archimedean Copulas

These copulas are constructed using a generator ϕ : [0, 1] → ℜ+, which is a continuous,

strictly decreasing convex function. We introduce the pseudo-inverse of ϕ:

ϕ[−1](u) =

{

ϕ−1(u) 0 ≤ u ≤ ϕ(0)

0 ϕ(0) ≤ u ≤ ∞.
(5)

If the generator is strict (i.e. ϕ(0) = ∞), the pseudo-inverse coincide with the usual inverse.

Definition 1. Given a generator function, an Archimedean copula is constructed as follows:

C(u, v) = ϕ[−1](ϕ(u) + ϕ(v)). (6)

Within the Archimedean class we consider for our application only the Frank copula,

since it covers the lower and upper Frechét bounds. Other popular members of this class

are the Clayton and Gumbel copulas.

Frank copula: This copula is characterized by

C(u, v; θ) = −θ−1 log

{

1 +
(e−θu − 1)(e−θv) − 1)

e−θ − 1

}

with θ ∈ (−∞,∞). (7)

This family is both comprehensive and symmetric. In contrast with the Clayton and Gum-

bel copulas most of the probability mass is in the centre of the distribution so it is not

a suitable model for extreme events. Other properties of the dependence induced by this

distribution are described in Genest (1987).

Plackett copula

This family of bivariate distribution was introduced by Plackett (1965), and is com-

prehensive and symmetric but, as underlined in Genest (1987) is not suitable to model
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Copula ρθ = g(θ) Range of ρθ

Gauss
6
π

arcsin
(

θ

2

)

(−1, 1)
Frank 1 − 12

θ
(D1(θ) −D2(θ)) (−1, 1)\0

Plackett
θ+1
θ−1 − 2θ

(θ−1)2 log(θ) (−1, 1)

Table 1: Spearman’s ρ for the copulas considered in the paper. Dk(x) indicates the Debye function
kx−k

∫ x

0
tk/(et − 1)dt for x ≥ 0 and nonnegative integer k.

extreme events. It is described by

C(u, v; θ) =
[1 + (θ − 1)(u+ v)] −

√

[1 + (θ − 1)(u+ v)]2 − 4uvθ(θ − 1)

2(θ − 1)
for θ > 0 , θ 6= 1

(8)

and

C(u, v; θ) = uv for θ = 1. (9)

Expressions for Spearman’s ρ as a function of the single copula parameter θ are given

in Table 1, while Figure 1 illustrates how the different copulas model the same amount of

dependence (when measured in terms of ρθ) with the same standard normal marginals.

−2 −1 0 1 2

−1.5
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−0.5

0

0.5

1

1.5

Gaussian

−2 −1 0 1 2

−1.5
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−0.5
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0.5

1

1.5

Frank

−2 −1 0 1 2

−1.5

−1

−0.5
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0.5

1

1.5

Plackett

Figure 1: Contour plots induced by the three copulas with Spearman’s ρ of -0.7 and N(0, 1)
margins.

3 Multivariate Stochastic Frontier Models

Extending stochastic frontier models to deal with multiple output situations has proven

to be quite challenging, and most of the stochastic frontier literature deals with single

outputs. Earlier approaches have dealt with the problem through estimating cost and

profit functions, as in Kumbhakar (1996) and Koop et al. (1997). Later, Fernández et al.

(2000) propose to use a parametric transformation function (which is like a CES function)

to transform the multivariate problem to a univariate one. This aggregates all the outputs

and we model the aggregate output through a univariate frontier. The multivariate model
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is then completed by specifying a Dirichlet distribution on the output shares. This was

extended to non-separable cases in Fernández et al. (2005). Recently, Ferreira and Steel

(2007) propose the use of a multivariate skewed distribution to model the composed error

term in a system of m equations (where m is the number of outputs).

The approach in this paper is closest to the one of Ferreira and Steel (2007), in that we

adopt a multivariate error distribution. However, we specify a multivariate distribution for

the inefficiency error terms using the copula function, which allows us to conduct inference

on efficiencies and measurement error separately. While the approach of Ferreira and Steel

(2007) is more focused on modelling the skewness of the composed error term, the use

of copulas allows us to consider the dependence between the inefficiencies of the different

outputs. Thus, the main advantage of our approach here is that it leads to explicit inference

on efficiencies for each of the outputs.

3.1 The Copula Stochastic Frontier Sampling Model

In this section we introduce the sampling model. Like that of Ferreira and Steel (2007)

the model can be specified for the general case of m outputs. We consider N observations

(corresponding to different firms or units i = 1, . . . ,N) where firm i has been observed at

times t = 1, . . . , Ti. The case where Ti are all equal is that of a balanced panel. We define

T = (T1 + · · · + TN )/N . We shall assume that we have the same regressors (inputs) for

each output, but this assumption can easily be generalized. The system for m outputs can

then be written as:

y1 = Xβ1 + ε1 −Dz1

. . . (10)

ym = Xβm + εm −Dzm,

where yj for j = 1, . . . ,m is an TN ×1 vector grouping all observations of the logarithm of

output j. X denotes the usual TN×k matrix of covariates (e.g. an intercept and logaritms

of k − 1 inputs for the Cobb-Douglas frontier) while βj is the vector of the parameters for

output j (e.g. in the case of a Cobb-Douglas frontier, the k − 1 last elements are input

elasticities). εj is the usual symmetric error that is assumed to be Normal throughout our

analysis. The way inefficiencies affect output is structured through the matrix D, which is

of dimension TN ×M with M 6 TN . The vector Dzj takes positive values and represents

the inefficiency component of the composed error. This is an indicator of how far the firms

are from the frontier. Different structures can be used to model Dzj depending e.g. on

whether we want to assume the inefficiencies to be time invariant or not. Here we want to

exploit the panel data structure and assume the inefficiencies are firm-specific and remain

8
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constant over the time. This means that M will be equal to N , and we choose

D =













ιT1

ιT2

. . .

ιTN













,

where we denote by ιq a q × 1 vector of ones. This choice of D selects the appropri-

ate inefficiency element from an N -dimensional vector of firm-specific inefficiencies zj =

(z1j , . . . , zNj)
′ and simplifies to D = IN ⊗ ιT in the case of a balanced panel. Other

possibilities for D are discussed in Fernández et al. (1997) and can straightforwardly be

implemented. The system can then be written for each observation of output j as:

yitj = x′itβj + εitj − zij (11)

Due to the logarithmic transformation of outputs in (11), the efficiency of firm i for output

j is given by rij = exp{−zij}. Ferreira and Steel (2007) do not use the panel structure

and specify a multivariate skew distribution directly on the composed errors. Here we

assign different distributions to measurement and inefficiency errors and assume that the

symmetric measurement errors are correlated and distributed like a matricvariate normal

distribution with zero mean. In addition, the TN elements of each ǫi are independent and

the m elements of ǫ1, . . . , ǫm corresponding to the same firm have m×m covariance matrix

Σ. Following Koop et al. (1995, 1997) we do not integrate out the inefficiencies but include

them in the MCMC algorithm (as inference on the efficiencies is an important goal). Thus,

given the inefficiencies, the likelihood can be written as:

|Σ|−TN/2 exp

(

−
1

2
trΣ−1 (Y −XB +DZ)′ (Y −XB +DZ)

)

, (12)

where

Y = (y1, . . . , ym) B = (β1 . . . , βm) and Z = (z1, . . . , zm),

so that Y is an TN ×m matrix, Z is of dimension N ×m, and B is a k ×m matrix.

Finally, we generate a multivariate distribution for the inefficiency term through the

copula function. Using the copula framework we can select the marginal inefficiency distri-

butions independently of the dependence function. Thus, the zij ’s for each firm i are linked

through a copula function and assigned the distribution:

H (zi1, . . . , zim; θ) = C (F1 (zi1) , . . . Fm (zim) ; θ) (13)

where Fj is the cumulative distribution function of zij . Different choices for the copula and

9
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marginal inefficiency distributions can be made to allow for a flexible analysis. Between

firms, the sampling model assumes independence of the inefficiencies.

3.2 The prior

For the prior distribution we adopt the following product structure:

p(B,Σ, Z, θ) = p(B)p(Σ)h(Z)p(θ), (14)

the components of which are discussed in detail in the following subsections.

3.2.1 Prior for the inefficiencies

Marginal prior

Specifying the prior for the inefficiencies is particularly important, since they often

represent our main object of study, and we tend to have but little sample information on

each individual efficiency. Since we are working in the multivariate framework we need a

multivariate prior. Using the copula function we can separately specify the margins and

the copula. For the marginal inefficiency distribution the literature provides us a plethora

of examples, as illustrated in van den Broeck et al. (1994), Greene (2008), Tsionas (2000),

Tsionas (2007) and Griffin and Steel (2008); common choices are the truncated normal and

the members of the family of Gamma distributions. Recently, Griffin and Steel (2008) have

introduced the generalized gamma class which contains most of the previous choices and

is generated by assuming a gamma distribution for powers of the inefficiency zij , i.e.

z
cj

ij ∼ Ga(φj , λj),

where Ga(a, b) denotes a gamma distribution with shape parameter a and precision b. The

pdf of our marginal inefficiency distribution is, for outputs j = 1, . . . ,m:

fj(zij |λj , φj , cj) =
cjλ

φj

j

Γ(φj)
z

cjφj−1
ij exp{−z

cj

ij λj}. (15)

When cj = 1 this simplifies to the Gamma distribution, while for φj = 1 we obtain

the Weibull and the half-normal corresponds to cj = 2, φj = 1/2. By choosing such a

flexible distribution we avoid the selection problem for the margins of our multivariate

distribution. Of course, particular attention must be paid to the choice of the priors on the

parameters (cj , φj , λj) in order to have meaningful posterior inference. We follow Griffin

and Steel (2008), who extend the elicitation procedure of van den Broeck et al. (1994) to

the generalized gamma. In particular, we select a prior median efficiency r∗j and use:

• λj|cj , φj ∼ Ga(φj , (− ln r∗j )
c)

10
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• ψj = φj cj ∼ Ig(d1, d1 + 1), where Ig(a, b) denotes the inverted gamma distribution

with mode b/(a+ 1) (Bernardo and Smith, 2000)

• cj ∼ Ig(d2, d2 + 1).

We choose r∗j = 0.8 and, following the suggestions of Griffin and Steel (2008), we select

d1 = d2 = 3. The same prior is used for each of the outputs.

Prior for the copula

We need to complete the multivariate distribution by choosing a copula and a prior for

the copula parameter. From (2) the marginal prior density is given by:

h(zi1, . . . , zim) =

∫

Θ
c(F1(zi1), . . . , Fm(zim); θ)p(θ)dθ

×
m
∏

j=1

∫

Λj×Φj×Cj

fj(zij |λj , φj , cj)p(λj , φj , cj)dλjdφjdcj ,
(16)

for i = 1, . . . ,N independently. The resulting distribution for Z will be proper as we adopt

proper priors on all the parameters in (16).

If we focus on m = 2, all the copulas considered here allow expressing their parameter θ

as a one-to-one transformation of a general dependence measure, namely Spearman’s ρ (see

Table 1). This makes it possible to derive equivalent priors for different copula functions.

Since one of our main objectives is to compare different copulas using Bayes factors, the

choice of the prior for θ is very important. To tackle this issue, we use the idea of matching

priors, by assigning the same implicit prior to a specific quantity of interest common to

all copulas. In our case, this common quantity is Spearman’s ρθ. The same approach was

adopted by Huard et al. (2006), but using Kendall’s τ , while the idea of prior matching was

used in Ferreira and Steel (2007) for comparing different skewed distributions. We assume

as a prior distribution for ρθ a symmetric beta with parameter a > 0:

p(ρθ|a) = 21−2a[B(a, a)]−1[(1 + ρθ)(1 − ρθ)]
a−1, (17)

which is defined in the interval (-1,1). This prior has the property to treat negative and

positive dependence symmetrically. However, we can only do prior matching if the same

range of ρθ is covered by the different functions. This is the case here, as illustrated by

Table 1.

3.2.2 Improper prior for (B,Σ)

It can be very difficult to have real prior information about the location and the scale

of a regression model, so the possibility to use a “non-informative” prior is important. In

addition, we may want to use an analysis with such a prior as a benchmark. Of course,

11
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Figure 2: The implied prior for the dependence parameter, θ, derived for the three comprehensive
copulas for a in (17) equal to 1 (continous line), 3 (dashed line) and 5 (dotted line).

with improper priors we need to check that the posterior is well-defined. A common non-

informative prior that is often used as a “benchmark” prior in regression models is

p(B)p(Σ) ∝ |Σ|−
m+1

2 Iβ(B), (18)

where Iβ represents regularity restrictions on the parameters of βj (except the intercept)

that are often imposed in frontier modelling. These restrictions reflect the fact that we do

not allow any input to have a negative contribution to production. In the Cobb-Douglas case

these constraints simply truncate the prior to the positive orthant. This prior is invariant

with respect to location and scale transformations of the data and is a suitable prior to use

in the absence of strong information. Next, we provide a Theorem that provides sufficient

conditions under which the prior (18), combined with a proper prior for the inefficiencies,

leads to a meaningful analysis.

3.3 Propriety of the posterior

Clearly, the specification (18) makes the joint prior improper. Here we provide sufficient

conditions under which the resulting posterior is proper. As mentioned above, we assume

M = N in our application, but the results on the existence of the posterior are for general

M 6 TN . Throughout, r(A) denotes the rank of the matrix A and we will assume that

r(X) = k, i.e. the design matrix of the coefficients has full column rank. The following

theorem summarizes our main findings on posterior existence:

Theorem 2. Consider the Bayesian model defined by (12)-(18).

• If r(X : D) < TN −m+ 1, then the posterior is proper for any proper h(Z).

12
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• If r(X : D) = TN then the posterior does not exist, irrespective of the choice of the

prior for Z.

Proof. See Appendix A.

This emphasizes the role of the structural assumptions in the model, in particular regard-

ing the inefficiencies. For example, if we ignore the panel structure of the data or if we

only possess cross-sectional observations, then D = ITN and r(X : D) = TN . This im-

plies that the location will be over-parameterized and no prior distribution on Z can lead

to a posterior in combination with (18). Even changing the prior on B will not remedy

this situation. In particular, we then have that p(Y ) = ∞ for any sample Y in a set of

positive Lebesgue measure in ℜTN , precluding posterior inference (Fernández et al., 1997).

Whenever r(X : D) = TN the location has the same dimension as the observations, im-

plying perfect fit for each equation of the system (the design matrix is the same for all the

equations). In this case, as underlined in Fernández et al. (1997) there are two possible

solutions:

1. Introduce deterministic links in the zij (for example clustering the firms according to

some common characteristics) in order to reduce the degree of overparameterisation

of the location.

2. Change the prior for Σ, penalizing big values of the precision matrix.

The latter possibility can be implemented as follows:

Proposition 1. If in the Bayesian model (12)-(18) with r(X : D) = TN , we replace the

prior (18) by:

p(B,Σ) ∝ |Σ|−
n0+m+1

2 exp

(

−
1

2
tr(Σ−1Q)

)

Iβ(B) (19)

with Q positive definite and any n0 ∈ ℜ, then the posterior will exist for any proper h(Z),

provided TN > k +m− n0 − 1.

Proof. See Appendix A.

If we choose n0 > m − 1 the prior in Proposition 1 implies an inverted Wishart prior for

Σ, whereas for n0 ≤ m− 1 the prior is not proper in Σ but the posterior does exist under

the condition of Proposition 1.

3.4 Computational details

In the two previous sections we presented the likelihood and the priors adopted for

the model. Since the resulting posterior distribution is not analytically tractable, we shall

employ an MCMC sampler to generate drawings from it. Appendix B gives more details

of the sampling algorithm.

13
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Hierarchical random effects models can lead to problems of identifiability. In our case,

the intercepts of the frontiers and the inefficiencies have an additive effect: uij = βj1 −

zij. It is much easier to conduct inference on the difference of these components than to

distinguish the separate components, especially when a flexible distribution is adopted for

the inefficiencies. For these reasons, Gelfand et al. (1995) and Papaspiliopoulos et al. (2007)

introduced the concepts of centring and partial centring, respectively. Gelfand et al. (1995)

refer to the parameterisation βj1, z1j , . . . zNj as non-centred and βj1, u1j , . . . uNj as centred.

We use a hybrid sampler that randomly mixes updates from the centred and non-centred

parameterisations (partial centring). Griffin and Steel (2008) find that this can greatly

improve the convergence properties of the algorithm in this context.

In our analysis we retain flexible families for the marginal efficiencies, but we vary the

type of copula. We compare models with different copulas through Bayes factors, calculated

through the p4 measure of Newton and Raftery (1994).

In order to assess the computational feasibility of our methodology we have conducted

inference with various simulated data sets. This illustrated the satisfactory performance of

the MCMC algorithm and the reasonable properties of the prior adopted. We also found

that partial centring always improves the estimation of the intercept (although that is not

always the case for the other parameters, especially the scale parameters of the generalized

gamma distribution). In our experiments the optimal combination (in terms of estimation

results and effective sample size) was to draw 80% of the time from the non-centred and

20% of the time from the centred parameterization.

4 An Application to Dutch Dairy Farms

We analyse data from highly specialized dairy farms. This data set is described in

detail by Reinhard et al. (1999), and has also been analysed in Fernández et al. (2002),

Fernández et al. (2005) and Ferreira and Steel (2007). The panel is unbalanced and contains

TN = 1545 observations on N = 613 dairy farms in the Netherlands during the period

1991-1994. Since we have, on average, more than two observations per farm we can use

prior (18) by Theorem 2. We have two outputs (m = 2) and three inputs plus the intercept

term (k = 4):

• Outputs: milk (millions of kg) and non-milk (millions of 1991 guilders).

• Inputs: family labor (thousands of hours), capital (million of 1991 guilders) and

variable input (thousands of 1991 guilders).

We analyse three different models, which correspond to the three comprehensive copulas

listed in Table 1.

Popular choices for a production frontier are the Cobb-Douglas specification which

is linear in the logarithms of the inputs and the translog which also includes squares

14
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Param. Frank Gaussian Plackett

2.5% 50% 97.5% 2.5% 50% 97.5% 2.5% 50% 97.5%

β11 0.423 0.468 0.527 0.444 0.490 0.557 0.426 0.470 0.531
β12 0.016 0.066 0.114 0.011 0.057 0.109 0.012 0.060 0.111
β13 0.527 0.601 0.662 0.519 0.594 0.657 0.525 0.602 0.665
β14 0.227 0.268 0.305 0.225 0.263 0.297 0.225 0.266 0.305

RTS 0.772 0.935 1.081 0.755 0.914 1.063 0.762 0.928 1.081

β21 0.573 0.623 0.677 0.576 0.626 0.682 0.573 0.623 0.677
β22 0.044 0.181 0.336 0.046 0.181 0.335 0.044 0.179 0.334
β23 0.000 0.002 0.014 0.000 0.002 0.013 0.000 0.002 0.013
β24 0.985 1.054 1.120 0.978 1.044 1.109 0.978 1.047 1.112

RTS 1.029 1.237 1.470 1.024 1.227 1.457 1.022 1.228 1.459

φ1 1.799 1.881 1.920 1.732 1.832 1.878 1.792 1.873 1.919
φ2 1.605 1.716 1.859 1.600 1.704 1.832 1.612 1.712 1.857
c1 1.048 1.263 1.536 1.001 1.235 1.453 1.040 1.254 1.521
c2 1.159 1.400 1.722 1.153 1.398 1.701 1.159 1.397 1.724
ρθ -0.432 -0.342 -0.286 -0.364 -0.261 -0.161 -0.449 -0.363 -0.265
ρ -0.179 -0.101 -0.021 -0.183 -0.103 -0.023 -0.179 -0.107 -0.025

Table 2: Posterior median and percentiles of selected parameters for the comprehensive copula
functions: j = 1 corresponds to milk output and j = 2 refers to non-milk. RTS stands for returns
to scale.

and cross products of the log inputs. Here we adopt the Cobb-Douglas formulation for

comparability with earlier work and for simplicity. Inference was conducted using MCMC

chains of 210,000 iterations. We retained every 30th sample after a burn-in period of 30,000

draws6. For the prior on ρθ in (17) we choose a = 5, which implies more distribution mass

towards the centre of the prior, corresponding to the independence assumption. Table 2

presents posterior inference on the frontier parameters, which is directly comparable with

that in Ferreira and Steel (2007), as the latter paper also assumes a different Cobb-Douglas

frontier for each output. This suggests that using different multivariate error distributions

and not considering the panel data structure affects the input elasticities: for example,

the returns to scale for milk are roughly constant, as opposed to significantly increasing

in Ferreira and Steel (2007). In particular, input elasticities for variable inputs are rather

different in both analyses (they are much lower for milk and higher for non-milk outputs

than in Ferreira and Steel, 2007).

The posterior results on ρθ clearly indicate a negative dependence for the inefficiencies

corresponding to the two outputs. In addition, the symmetric errors also present negative

dependence, as indicated by the inference on ρ, which is the correlation of Σ. This is in

line with the results in Ferreira and Steel (2007) who find a negative correlation between

the total composed error terms. Here we can separately identify the dependence in its

components: measurement errors and inefficiencies.

6Evidence obtained from running longer and multiple chains as well as from the formal diagnostics of Geweke
(1992) and Raftery and Lewis (1992) indicates that results have converged.
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The results in Table 2 indicate that the marginal inefficiency distributions are quite

similar for the three copula specifications, and are similar in shape for both outputs: gamma,

Weibull and half-normal special cases are clearly inappropriate and from (φj , cj) the shapes

are rather similar for both outputs. Like Fernández et al. (2005) we find that for the non-

milk output the efficiency is lower than for milk. Figure 3 shows the marginal predictive

densities of the efficiencies for both outputs, using the Frank copula.
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Figure 3: Marginal predictive densities of the two efficiencies using the Frank copula.

Table 3 shows estimates, using p4 of Newton and Raftery (1994) (with their δ = 0.01),

of the Bayes factors. Among the different copulas considered these data provide strongest

support for the Frank copula. The Plackett copula, which has similarities to the Frank, is

the second favourite. Thus, we will only use the Frank copula in the remaining results.

Log Bayes factors

Copula Frank Gauss Plackett
Frank - 19 8
Gauss - -11

Table 3: The log of the Bayes factor in favour of the model in the row against the model in the
column. The marginal log-likelihood is calculated using p4 of Newton and Raftery (1994) with
δ = 0.01.

Figure 4 illustrates the posterior efficiency densities of the worst, first quartile, medium,

third quartile and best farm7 for the two outputs. This clearly illustrates the uncertainty in

the estimation and underlines that in order to rank the farms by efficiencies, we need to take

into account the whole posterior distribution rather than a specific posterior moment (like

the mean). Tables 4 and 6 present the posterior probability that one farm is more efficient

than another, and show that separation between farms is not always very strong, especially

in the upper tail of non-milk efficiencies. However, for milk the posterior distributions of

the efficiencies of the quartile farms are quite well separated.
7This selection is based on the posterior mean efficiency.
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Figure 4: Posterior efficiency distribution for the worst, Q1, the median, Q3 and the best farm for
the milk output (first row of plots from left to right) and non-milk (second row).

Worst Q1 Median Q3 Best

Worst 0 0.000 0.000 0.000 0.000
Q1 1.000 0 0.015 0.000 0.000
Median 1.000 0.985 0 0.052 0.000
Q3 1.000 1.000 0.948 0 0.000
Best 1.000 1.000 1.000 1.000 0

Table 4: Entry i, j is the probability that farm i is more efficient than farm j, for the milk output.

Worst Q1 Median Q3 Best

Worst 0 0.001 0.000 0.000 0.000
Q1 0.999 0 0.102 0.002 0.000
Median 1.000 0.898 0 0.113 0.012
Q3 1.000 0.998 0.887 0 0.109
Best 1.000 1.000 0.988 0.891 0

Table 5: Entry i, j is the probability that farm i is more efficient than farm j, for the non-milk
output.

Finally, Figure 5 shows the contour plots of the multivariate predictive efficiency distri-

butions for both the case of independence and dependence modelled by the Frank copula.

We also calculate the posterior predictive probabilities that the efficiencies of an unobserved

farm for both outputs are in a certain range. We partition the efficiency range into the four

quadrants, shown in Figure 5. Here we choose to partition at an efficiency of 0.7. Since the

dependence is negative we found, as expected, that the probabilities in regions P1 and P3
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are less than in the case of independence. In particular, that in P1 (corresponding to high

efficiency in both outputs and, thus, practically quite relevant) is substantially reduced by

introducing dependence.
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Figure 5: Contours of the predictive efficiency distribution in the case of independence (left panel)
and the Frank copula (right panel).

P1 P2 P3 P4

Independence 0.1274 0.3005 0.4021 0.1700
Frank 0.0790 0.3488 0.3542 0.2181

Table 6: Predictive probability for efficiencies of an unobserved farm to lie in a particular quadrant
of Figure 5.

5 Concluding Remarks

In this paper we have proposed a new multivariate stochastic frontier model for multi-

output firms. The main innovation is the fact that we introduce a copula function to model

in a flexible way the multivariate distribution of the efficiencies. Our model allows for

inference on individual firm efficiencies with a general class of marginal efficiency distri-

butions and a choice of copulas to accommodate the dependence between the efficiencies

of different outputs. The use of Bayesian methods naturally allows for inference on firm

efficiencies and formally deals with regularity conditions and both parameter and model

uncertainty. We pay particular attention to the elicitation of a reasonable prior, which is

a critical component of stochastic frontier models, and we examine existence of the poste-

rior under a convenient improper benchmark prior. The MCMC algorithm, using partial

centring, is found to work well in practically relevant situations. Our framework represents

a starting point from where to build more complex models. An extension to allow for dif-
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ferent explanatory variables in the frontiers for different outputs is straightforward. Using

our framework for problems with more than two outputs (m > 2) requires the specification

of copulas in more than two dimensions, which are not so readily available. A currently

promising direction to explore is the use of the pair-copula decomposition of Aas et al.

(2009), which can construct complex multivariate distributions in higher dimensions.8 Fur-

ther natural extensions could be to add explanatory variables to model the inefficiencies or

to introduce a more “structural” model, like the decomposition model proposed by Griffin

and Steel (2008), that can take into account multimodality in the marginal distribution

of the inefficiencies. Finally, it would be interesting to investigate extensions to deal with

situations where some of the outputs are “bads” (such as pollution), as was examined in

Fernández et al. (2002) in the context of the same data set.

Appendix

A Proofs

A.1 Proof of Theorem 2

The proof of Theorem 2 is a multivariate adaptation of the proof of Theorem 1 in

Fernández et al. (1997). First of all, we integrate out Σ from the posterior distribution:

p(Σ, B,Z|Y,X,Z) ∝ |Σ|−
(TN+m+1)

2 exp

[

−
1

2
tr(Σ−1(Y −XB +DZ)′(Y −XB +DZ))

]

p(B)h(Z),

where h(Z) =
∏N

i=1 h(zi1, . . . , zim). Using the properties of the inverted Wishart distri-

bution (see e.g. Bauwens et al. 1999, p. 305), we know that provided TN > m − 1 the

existence of the posterior distribution is equivalent to the following integral being finite:

∫

B×Z

| (Y −XB +DZ)′ (Y −XB +DZ) |−TN/2p(B)h(Z)dBdZ (20)

for all Y ∈ ℜTN×m except possibly on a set of Lebesgue measure zero.

Part (i): r(X : D) < TN −m+ 1

We can write

(Y −XB +DZ)′(Y −XD +DZ) = (B − B̂(Z, Y ))′X ′X(B − B̂(Z, Y )) + C(Z, Y ),

8Other approaches can be taken, such as in Zimmer and Trivedi (2006), where a trivariate Frank copula is
derived, but the latter does not allow for negative dependence.
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where B̂(Z, Y ) = (X ′X)−1X ′(Y +DZ) and

C(Z, Y ) = (Y +DZ)′MX(Y +DZ) = {Z + Ẑ(Y )}′DMXD{Z + Ẑ(Y )} + Y ′MLY

with MX = ITN − X(X ′X)−1X ′, Ẑ(Y ) = (D′MXD)+D′MXY , L = (X : −D) and

ML = ITN − L(L′L)+L′ where G+ denotes the Moore-Penrose inverse matrix of G. Now

we need to show that |C(Z, Y )| > |Y ′MLY | > 0.

From Theorem 18.1.6 in Harville (1997)9 we have that |C(Z, Y )| > |Y ′MLY |. To prove

that |Y ′MLY | > 0, first note that ML is an idempotent symmetric matrix so it has eigen-

values equal to 1 or 0 and from its symmetry it admits the decompositionML = PΛP ′,

where P is the matrix of eigenvectors. Λ is the diagonal matrix of the eigenvalues. Since the

matrix is idempotent the trace is equal to the rank. From Cor. 10.2.3 in Harville (1997):

tr(ML) = r(ML) = tr(ITN ) − r(L) = TN − r(L).

Defining W = Y ′P we immediately have Y ′MLY = WΛW ′. Since the matrix Λ is diagonal

with TN−r(L) eigenvalues equal to one and the rest zeros, it selects a sub-matrix of WW ′

corresponding to TN−r(L) observations. If we denote byWi them×1 vector corresponding

to observation i and (without loss of generality) we reorder the observations so that the

first TN − r(L) correspond to the unit eigenvalues, we can write

Y ′MLY =

TN−r(L)
∑

i=1

WiW
′
i ,

which is the sum of rank one matrices of dimension m×m. Clearly, if and only if we have

at least m components in that sum, Y ′MLY will be positive definite with probability one

and |Y ′MLY | > 0. Thus, if TN − r(L) ≥ m the integrand in (20) has an upper bound

proportional to p(B)h(Z), which is integrable if p(B) and h(Z) are integrable or proper.

If p(B) is not proper but bounded, (20) has an upper bound proportional to:

∫

Z

h(Z)

|C(Z, Y )|(TN−k)/2

∫

B

|C(Z, Y )|−k/2 ×

∣

∣

∣
Im +C(Z, Y )−1{B − B̂(Z, Y )}′X ′X{B − B̂(Z, Y )}

∣

∣

∣

−TN/2
dBdZ

(21)

For the inner integral, we use the fact that the integrand is proportional to a matric-

variate Student-t distribution on B provided TN > k +m − 1 (see Bauwens et al. 1999,

p. 307), whereas for the outside integral we use the bound |C(Z, Y )| > |Y ′MLY | > 0. So

the posterior exists for any proper h(Z).

In our proof we have used the generalized inverse for the matrices L′L and D′MXD

9This theorem states: for any n×n symmetric positive definite matrix A and any n×n symmetric nonnegative
definite matrix B we have: |A + B| > |A| with equality holding if and only if B = 0.
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because in some cases, depending on the choice of D, the matrix (X : D) can have deficient

column rank10, despite the fact that X has rank k.

Part (ii) r(X : D) = TN

We show that a set of values for Y of positive Lebesgue measure in ℜTN×m lead to an

infinite integral in (20). Since r(X : D) = TN we can express Y as Y = XB0 −DZ0 for

some B0 such that Iβ(B0) = 1 and some Z0 ∈ ℜM×m. Thus,

(Y −XB +DZ)′(Y −XB +DZ) = (∆ − ∆0)
′L′L(∆ − ∆0),

where ∆′ = (B′, Z ′), ∆′
0 = (B′

0, Z
′
0) and L = (X : −D). By the Schur decomposition

theorem L′L = Q′ΛQ, where Q is a (k + M) × (k + M) orthogonal matrix and Λ =

diag(λ1, . . . , λk+M ) is a diagonal matrix with the eigenvalues of L′L as diagonal elements.

Since L′L is a positive definite matrix of rank TN , it has TN non zero eigenvalues, which

will all be positive; without loss of generality, we choose λTN+1 = . . . = λk+M = 0.

Assume that B0 and Z0 are such that there exists a neighbourhood of ∆0, say D, in which

p(∆) > K > 0 for some constant K. Note that this defines a set of positive Lebesgue

measure for Y in ℜTN×m. Then, a lower bound for (20) is proportional to:

∫

D

∣

∣(∆ − ∆0)
′Q′ΛQ(∆ − ∆0)

∣

∣

−TN/2
d∆ =

∫

G

∣

∣Γ′ΛΓ
∣

∣

−TN/2
dΓ

>

(

max
i=1,...,TN

λi

)−TN/2 ∫

G

∣

∣

∣

∣

∣

TN
∑

i=1

γiγ
′
i

∣

∣

∣

∣

∣

−TN/2

dΓ (22)

for Γ = (γ1, . . . , γk+M )′ = Q(∆ − ∆0) and G = {Γ : ∆ ∈ D}. We have to remember that

the matrix Λ selects only the first TN components for each equation. Now the matrix
∑TN

i=1 γiγ
′
i can be written as Γ̃′Γ̃ where Γ̃′ is a m× TN matrix with m ≤ TN . Now we can

write Γ̃′ as TH1 where T is a m×m lower triangular matrix while H1 is a semiorthogonal

matrix of dimension m×TN . Thus, R = TT ′ = Γ̃′Γ̃. Now, using Theorem 1.4.10 in Gupta

and Nagar (2000) our lower bound is proportional to

∫

Γ̃∈G̃
|Γ̃′Γ̃|−

TN
2 dΓ̃ =

∫

R∈R

∫

Γ̃′Γ̃=R
|Γ̃′Γ̃|−

TN
2 dΓ̃dR

=
π

TN×m
2

Γp

(

1
2TN

)

∫

R∈R

|R|
TN−m−1

2 |R|−
TN
2 dR

=
π

TN×m
2

Γp

(

1
2TN

)

∫

R∈R

|R|−
m+1

2 dR (23)

where G̃ = {Γ̃ : ∆ ∈ D}, R = {Γ̃′Γ̃ : Γ̃ ∈ G̃} and Γp(·) is the multivariate gamma function

10In our case, with constant efficiencies over time, the rank of (X : D) is k + N − 1.
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as defined in Gupta and Nagar (2000, p. 18). The nonintegrability of the integral (23)

can be proven as follow: since R = TT ′ we have |R| =
∏m

i=1 t
2
ii and the Jacobian of the

transformation is:

J(R→ T ) = 2m
m
∏

i=1

tm−i+1
ii .

Thus, (23) is proportional to

∫

T

m
∏

i=1

(tii)
−idtii

m
∏

j≤i

dtij, (24)

where the region of integration for tii is not bounded away from zero, so that the integral

is clearly infinite.

A.2 Proof of Proposition 1

If p(B) is proper the result follows immediately after integrating out Σ from the joint

posterior (with now (19) replacing (18)) using an inverted Wishart distribution which

requires TN + n0 > m − 1. For bounded p(B) integrating the joint posterior using an

inverted Wishart for Σ and a matricvariate Student-t distribution for B is possible provided

TN + n0 > k +m− 1. This leaves us with a predictive p(Y ) that is proportional to

∫

Z

h(Z)|C(Z, Y ) +Q|−(TN+n0−k)/2dZ (25)

where Q is a positive definite matrix. In this case p(Y ) is finite, if we assume a proper prior

for Z, because |C(Z, Y ) +Q| is bounded away from zero, from Theorem 18.1.6 in Harville

(1997).

B Markov chain Monte Carlo Algorithm

In this section we provide some details related to the sampling methods adopted. We

sample from the following full conditional distributions, where we have assumed thatm = 2.

B.1 Conditional posterior distribution of Z

The conditional posterior distribution of z1 and z2 presents the following form:

p(zi1, zi2|rest) ∝ c (F1 (zi1) , F2 (zi2) ; θ)

× zc1φ1−1
i1 exp(−zc1

i1λ1) × zc2φ2−1
i2 exp(−zc2

i2λ2)

× exp

(

−
1

2
tr(Σ−1(Yi −XiB + Zi)

′(Yi −XiB + Zi)),

)

(26)
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where Yi and Xi group the Ti observations relating to firm i and Zi = (zi1 : zi2)× ιTi
. The

previous equation clearly does not have an explicit analytic form. Due to the copula, it is

very difficult to check if the equation (26) is log-concave so the use of adaptive rejection

sampling is precluded. The strategy we adopted is to draw separately the two efficiency

terms with random walk Metropolis-Hastings with lognormal candidate generators.

B.2 Conditional posterior distribution of B

The conditional distribution for the frontier coefficients is easily obtained by combining

the likelihood in (12) with the prior in (18). We can then simulate using standard Gibbs

sampling from a truncated multivariate normal distribution (Bauwens et al., 1999)

p(B|rest) ∝ fk×m
MN (B|B̂,Σ ⊗ (X ′X)−1)Iβ(B),

where

B̂ = (X ′X)−1X ′(Y +DZ).

In order to draw from this truncated multivariate normal we use the algorithm proposed

in Geweke (1991). We adopt a sampler that randomly updates from the centred and the

uncentred parameterisations. Thus, with a given probability (we have used 0.2), the inter-

cept is drawn from the centred parameterisation. Following Griffin and Steel (2008) we use

a Metropolis-Hastings random walk to sample from βj1 given the rest, for βj1 > maxi{uij}

p(βj1|rest) ∝
N
∏

i=1

(βj1 − uij)
cjφj−1 exp (−(βj1 − uij)

cjλj)

× c (F1 (β11 − ui1) , F2 (β21 − ui2) ; θ) ,

(27)

where Fj is obviously a function of cj , φj and λj for j = 1, 2.

B.3 Conditional distribution of Σ

The full conditional distribution for Σ from combining (12) and (18) is an inverted

Wishart Bauwens et al. (1999)

p(Σ|rest) ∝ fm
IW

(

Σ|(Y −XB +DZ)′(Y −XB +DZ), TN
)

. (28)

B.4 Conditional distribution of θ

The conditional posterior distribution for the copula parameter is

p(θ|rest) ∝
N
∏

i=1

c (F1 (zi1) , F2 (zi2) ; θ) p(g(θ))

∣

∣

∣

∣

∂g(θ)

∂θ

∣

∣

∣

∣

(29)
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where g(θ) describes the relationship between Spearman’s ρθ and the specific copula pa-

rameter (see Table 1), and p(g(θ)) is the prior in (17). In this case we use a Metropolis

random walk step. For all copulas considered, we found that the latter performs well in our

bivariate case, but for larger dimensions (m > 2) more efficient sampling methods should

probably be considered as discussed in Pitt et al. (2006) and Chib and Greenberg (1998).

For the case of the Gaussian copula with large m, a Laplace-type proposal that dominates

the target density was found to work well.
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