References: |
[Arn98] L. ARNOLD. Random dynamical systems. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 1998. [BC07] F. BAUDOIN and L. COUTIN. Operators associated with a stochastic differential equation driven by fractional Brownian motions. Stochastic Process. Appl. 117, no. 5, (2007), 550–574. [BH07] F. BAUDOIN and M. HAIRER. A version of H¨ormander’s theorem for the fractional Brownian motion. Probab. Theory Related Fields 139, no. 3-4, (2007), 373–395. [Bis81] J.-M. BISMUT. Martingales, the Malliavin calculus and hypoellipticity under general H¨ormander’s conditions. Z. Wahrsch. Verw. Gebiete 56, no. 4, (1981), 469–505. [Bog98] V. I. BOGACHEV. Gaussian measures, vol. 62 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1998. [CQ02] L. COUTIN and Z. QIAN. Stochastic analysis, rough path analysis and fractional Brownian motions. Probab. Theory Related Fields 122, no. 1, (2002), 108–140. [DPEZ95] G. DA PRATO, K. D. ELWORTHY, and J. ZABCZYK. Strong Feller property for stochastic semilinear equations. Stochastic Anal. Appl. 13, no. 1, (1995), 35–45. [DPZ96] G. DA PRATO and J. ZABCZYK. Ergodicity for infinite-dimensional systems, vol. 229 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1996. [EL94] K. D. ELWORTHY and X.-M. LI. Formulae for the derivatives of heat semigroups. J. Funct. Anal. 125, no. 1, (1994), 252–286. [Fri10] P. K. FRIZ. Multidimensional stochastic processes as rough paths. Theory and Applications., vol. 120 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2010. [Hai05] M. HAIRER. Ergodicity of stochastic differential equations driven by fractional Brownian motion. Ann. Probab. 33, no. 2, (2005), 703–758. [Hai09] M. HAIRER. Ergodic properties of a class of non-Markovian processes. In Trends in Stochastic Analysis, vol. 353 of LMS Lecture Note Series. Cambridge University Press, 2009. [HM06] M. HAIRER and J. C. MATTINGLY. Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing. Ann. of Math. (2) 164, no. 3, (2006), 993–1032. [HM09] M. HAIRER and J. C. MATTINGLY. A theory of hypoellipticity and unique ergodicity for semilinear stochastic PDEs, 2009. Preprint. [HN07] Y. HU and D. NUALART. Differential equations driven by H¨older continuous functions of order greater than 1/2. In Stochastic analysis and applications, vol. 2 of Abel Symp., 399–413. Springer, Berlin, 2007. [HO07] M. HAIRER and A. OHASHI. Ergodic theory for SDEs with extrinsic memory. Ann. Probab. 35, no. 5, (2007), 1950–1977. [H¨or67] L. H¨O RMANDER. Hypoelliptic second order differential equations. Acta Math. 119, (1967), 147–171. [KS84] S. KUSUOKA and D. STROOCK. Applications of the Malliavin calculus. I. In Stochastic analysis (Katata/Kyoto, 1982), vol. 32 of North-Holland Math. Library, 271–306. North-Holland, Amsterdam, 1984. [KS85] S. KUSUOKA and D. STROOCK. Applications of the Malliavin calculus. II. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 32, no. 1, (1985), 1–76. [KS87] S. KUSUOKA and D. STROOCK. Applications of the Malliavin calculus. III. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34, no. 2, (1987), 391–442. [LQ02] T. LYONS and Z. QIAN. System control and rough paths. Oxford Mathematical Monographs. Oxford University Press, Oxford, 2002. Oxford Science Publications. [Mal78] P. MALLIAVIN. Stochastic calculus of variations and hypoelliptic operators. Symp. on Stoch. Diff. Equations, Kyoto 1976 147–171. [Mal97] P. MALLIAVIN. Stochastic analysis, vol. 313 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer- Verlag, Berlin, 1997. [Mis08] Y. S. MISHURA. Stochastic calculus for fractional Brownian motion and related processes, vol. 1929 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2008. [MN08] L. MAZLIAK and I. NOURDIN. Optimal control for rough differential equations. Stoch. Dyn. 8, no. 1, (2008), 23–33. [MT93] S. P. MEYN and R. L. TWEEDIE. Markov chains and stochastic stability. Communications and Control Engineering Series. Springer-Verlag London Ltd., London, 1993. [MVN68] B. B. MANDELBROT and J. W. VAN NESS. Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10, (1968), 422–437. [Nor86] J. NORRIS. Simplified Malliavin calculus. In S´eminaire de Probabilit´es, XX, 1984/85, vol. 1204 of Lecture Notes in Math., 101–130. Springer, Berlin, 1986. [NS06] I. NOURDIN and T. SIMON. On the absolute continuity of one-dimensional SDEs driven by a fractional Brownian motion. Statist. Probab. Lett. 76, no. 9, (2006), 907–912. [NS09] D. NUALART and B. SAUSSEREAU. Malliavin calculus for stochastic differential equations driven by a fractional Brownian motion. Stochastic Process. Appl. 119, no. 2, (2009), 391–409. [Nua06] D. NUALART. The Malliavin calculus and related topics. Probability and its Applications (New York). Springer-Verlag, Berlin, second ed., 2006. [SKM93] S. G. SAMKO, A. A. KILBAS, and O. I. MARICHEV. Fractional integrals and derivatives. Gordon and Breach Science Publishers, Yverdon, 1993. Theory and applications, Edited and with a foreword by S. M. Nikol0skii, Translated from the 1987 Russian original, Revised by the authors. [ST94] G. SAMORODNITSKY and M. S. TAQQU. Stable non-Gaussian random processes. Stochastic Modeling. Chapman & Hall, New York, 1994. Stochastic models with infinite variance. [You36] L. C. YOUNG. An inequality of the H¨older type, connected with Stieltjes integration. Acta Math. 67, no. 1, (1936), 251–282. |