The Library
Different traces give different gravitational mass distributions
Tools
Chakrabarty, Dalia (2009) Different traces give different gravitational mass distributions. Working Paper. Coventry: University of Warwick. Centre for Research in Statistical Methodology. (Working papers).

PDF
WRAP_Chakrabarty_0947w.pdf  Published Version  Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader Download (536Kb) 
Official URL: http://www2.warwick.ac.uk/fac/sci/statistics/crism...
Abstract
Context. Charting the extent and amount of dark matter (DM) in the Universe is highly appealing but is equally hard since it is only through the interpretation of its effect that we can track the DM distribution, i.e. the problem is fundamentally inverse. Given the implementational problems, it is nontrivial to quantify the effects of DM on the motion of individual test particles in an elliptical galaxy, with the aim of identifying its total gravitational (i.e. luminous+dark) mass distribution; expectedly, this has caused controversy. Aims. Leaving such technical details aside, in this article we report on the danger of the very notion that test particle velocities can reliably imply total mass distribution in galaxies. Methods. We expose the fallibility of this mass determination route, by undertaking a nonparametric Bayesian analysis (using the algorithm CHASSIS) of the observed lineofsight velocities of individual test particles belonging two distinct particle (or mass tracer) populations: planetary nebulae (PNe) and globular clusters (GCs) that span the outskirts of the galaxy NGC 3379. Results. The PNe and GC data are shown to be drawn from independent phase space density distributions and total gravitational mass density distributions that are derived from implementation of the two kinematic data sets are found to be significantly different, leading to significant (at 1¾ level) differences in the corresponding solutions for the gravitational potential. CHASSIS currently assumes isotropy in phase space, so this assumption is tested with a robust Bayesian hypothesis test; the GC velocities are found to be more supportive of the assumption of isotropy than are the PNe data. We find that this recovered difference in the state of isotropy between the phase space distributions that the data are drawn from, cannot be used to reconcile the differences in the recovered gravitational mass density distributions. Conclusions. This recovered dichotomy in the potential structure of the galaxy is indicative of the multistability of the dynamical system at hand, i.e. the galaxy. In light of this, we advance the risk involved in the interpretation of gravitational mass distributions obtained from individual tracer samples, as equivalent to the mass distribution of the whole galaxy.
Item Type:  Working or Discussion Paper (Working Paper) 

Subjects:  Q Science > QA Mathematics Q Science > QB Astronomy 
Divisions:  Faculty of Science > Statistics 
Library of Congress Subject Headings (LCSH):  Dark matter (Astronomy)  Mathematical models, Dark matter (Astronomy)  Statistics 
Series Name:  Working papers 
Publisher:  University of Warwick. Centre for Research in Statistical Methodology 
Place of Publication:  Coventry 
Date:  2009 
Volume:  Vol.2009 
Number:  No.47 
Number of Pages:  18 
Status:  Not Peer Reviewed 
Access rights to Published version:  Open Access 
Funder:  Royal Society (Great Britain), Warwick Centre of Analytical Sciences 
References:  Banerjee, P., 2003, Nonlinear Optics Theory, Numerical Modeling and Applications, Marcel Dekker Inc., New York, Basel. Basu, D., 1975, Sankhya A, 37, 1. Bergond, G., Zepf, S. E., Romanowsky, A. J., Sharples, R. M., & Rhode, K. L., 2006, A&A, 448, 155. Birnbaum, A., 1962, Jl. of the American Statistical Association, 57, 269. Chakrabarty, D., 2009, accepted for publication in Astronomy & Astrophysics. Chakrabarty, D., 2009, Proceedings of the 18th IMACS World Congress MODSIM 2009, Cairns, arXiv:0905.2524. Chakrabarty, D., Raychowdhury, S., 2008, AJ, 135, 2350. Chakrabarty, D., and Sideris, I. V., 2008, A&A, 488, 161 Chakrabarty, D., 2007, A&A, 467, 145. Chakrabarty, D., 2006, ApJ, 131, 2561. Chakrabarty, D., and Portegies Zwart, S., 2004, ApJ, 128, 1046. Chakrabarty, D., and Saha, P., 2001, ApJ, 122, 232. Chizhevsky, V. N., Corbalan R., & Pisarchik, A. N., 1997, Physical Review E, 56, 1580. Cˆot´e, P., McLaughlin, D. E., Cohen, J. G., & Blakeslee, J. P., 2003, ApJ, 591, 850. Cˆot´e, P., McLaughlin, D. E., Hanes, D. A., Bridges, T. J., Geisler, D., Merritt, D., Hesser, J. E., Harris, G. L. H., Lee, M. G., 2001, ApJ, 559, 828. de Lorenzi, F., et al., 2009, MNRAS, 395, 76. Dekel, A., Stoehr, F., Mamon, G. A., Cox, T. J., Novak, G. S., & Primack, J. R., 2005, Nature, 437, 707. Douglas, N. G., et a., 2007, ApJ, 664, 257. Douglas, N. G., et. al, 2002, PASP, 114, 1234. Dubinski, J., and Chakrabarty, D., 2009, ApJ, 703, 2068. Gelman, A., Carlin, J., Stern, H., & Rubin, D., 1995, Bayesian Data Analysis, Chapman and Hall. Gelman, A., Roberts, G., O. & Gilks, W., R., 1996, Bayesian Statistics 5, ed. J. Bernardo et al., Oxford University Press, 599. Hastings, W. K., 1970, Biometrika, 57, 97. Hubbard, R. & Lindsay, M. R., 2008, Theory and Psychology, 18, 69. Kempthorne, O. & Folks, L., 1971, Probability, Statistics and Data Analysis, Ames, I0: Univ. of Iowa Press. Koopmans, L. V. E., 2006, EAS Publications Series, 20, 161. Łokas, E. L., & Mamon, G. A., 2003, MNRAS, 343, 401. Madruga, R. M., Luis E. G. & Wechsler, S., 2001, Test, 10, 291. Mendes, V., Dynamical systems: from crystal to chaos, 2000, eds. J. M. Gambaudo, P. Hubert, P. Tisseur, S. Vaienti, World Scientific, 105. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A., & Teller, H., 1953, Jl. of Chemical Physics, 21, 1087. Ott, E., 1993, Chaos in Dynamical Systems, Cambridge University Press, Cambridge, UK. Pellegrini, S., and Ciotti, L. 2006, MNRAS, 370, 1797. Pereira, C. A. de B., Stern, J. M. and Wechsler, S., 2008, Bayesian Analysis, 3, 79. Pereira, C. A. and Stern, J. M., 1999, Entropy, 1, 99. Quillen, A. C., 2003, AJ, 125, 785. Roberts, G., Gelman, A. and Gilks, W., 1997, The Annals of Applied Probability, 7, 110. Roberts, G. and Sahu, S., 1997, Journal of the Royal Statistical Society. Series B, 59, 291. Roberts, G. and Rosenthal, J., 2001, Statistical Science, 16, 351. Romanowsky, A. J. et al., 2003, Science, 301, 1696. Sambhus, N., Gerhard, O., & M´endez, R. H., 2006, AJ, 131, 837. Sambhus, N., Gerhard, O., & M´endez, R. H., 2005, Planetary Nebulae as Astronomical Tools, 804, 317. Sawyer Hogg, H., 1947, Journal of the Royal Astronomical Society of Canada, 41, 265. Tanner, M. A., 1996, Tools for statistical inference, SpringerVerlag, New York. Thompson, J. M., and Stewart, H. B., 2001, Nonlinear dynamics and chaos, Wiley. Tierney, L., 1994, The Annals of Statistics, 22, 1701. Weijmans, A. M., et al., 2009, MNRAS, 398, 561. 
URI:  http://wrap.warwick.ac.uk/id/eprint/35233 
Actions (login required)
View Item 