The Library
A short history of algebraic statistics
Tools
Riccomagno, Eva (2008) A short history of algebraic statistics. Working Paper. Coventry: University of Warwick. Centre for Research in Statistical Methodology. (Working papers).

PDF
WRAP_Riccomagno_0821w.pdf  Published Version  Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader Download (472Kb) 
Official URL: http://www2.warwick.ac.uk/fac/sci/statistics/crism...
Abstract
In algebraic statistics, computational techniques from algebraic geometry become tools to address statistical problems. This, in turn, may prompt research in algebraic geometry. The basic ideas at the core of algebraic statistics will be presented. In particular we shall consider application to contingency tables and to design of experiments.
Item Type:  Working or Discussion Paper (Working Paper) 

Subjects:  Q Science > QA Mathematics 
Divisions:  Faculty of Science > Statistics 
Library of Congress Subject Headings (LCSH):  Geometry, Algebraic, Mathematical statistics, Contingency tables, Experimental design 
Series Name:  Working papers 
Publisher:  University of Warwick. Centre for Research in Statistical Methodology 
Place of Publication:  Coventry 
Date:  2008 
Volume:  Vol.2008 
Number:  No.21 
Number of Pages:  20 
Status:  Not Peer Reviewed 
Access rights to Published version:  Open Access 
References:  1. Statistica Sinica: special issue on Algebraic Statistics and Computational Biology, 17:4 (2007). 2. Journal of Symbolic Computation: special issue on Computational Algebraic Statistics, 41:2 (2006). 3. J. Abbott and A. Bigatti and M. Kreutzer and L. Robbiano, Computing ideals of points, Journal of Symbolic Computation, 30:4, 341–356 (2000). 4. E.S. Allman and J.A. Rhodes, Identifying evolutionary trees and substitution parameters for the general Markov model with invariable sites, Mathematical Biosciences, 211:1, 1833 (2008). 5. S. Aoki and A. Takemura, Markov bases for design of experiments with threelevel factors, In Geometric and Algebraic Methods in Statistics (eds. P. Gibilisco, E. Riccomagno, M.P. Rogantin and H.P. Wynn), Cambridge University Press, Cambridge (forthcoming). 6. S. Aoki, A. Takemura and R. Yoshida, Indispensable monomials of toric ideals and Markov bases, Journal of Symbolic Computation, 43, 490–507 (2008). 7. R.A. Bailey, The decomposition of treatment degrees of freedom in quantitative factorial experiments, J. R. Statist. Soc., B 44:1, 63–70 (1982). 8. R.A. Bailey, P.J. Cameron and R. Connelly, Sudoku, Gerechte Designs, Resolutions, Affine Space, Spreads, Reguli, and Hamming Codesread, Ameri can Math. Monthly (May 2008). 9. T. Becker and V. Weispfenning, The Chinese remainder problem, multivariate interpolation, and Gr¨obner bases, in ISSAC 91: Proceedings of the 1991 international symposium on symbolic and algebraic computation, 64–69 (1991). 10. N. Beerenwinkel, N. Eriksson and B. Sturmfels, Conjunctive Bayesian networks, Bernoulli 13:4, 893909 (2007). 11. Y. Berstein, J. Lee, H. MaruriAguilar, S. Onn, E. Riccomagno, R. Weismantel, H.P. Wynn, Nonlinear Matroid Optimization and Experimental Design, SIAM Journal on Discrete Mathematics 22:3, 901919 (2008). 12. Y. Berstein, H. MaruriAguilar, S. Onn, E. Riccomagno, H.P. Wynn, Minimal average degree aberration and the state polytope for experimental design, MUCM report no. 07/07. 13. J. Besag and P. Clifford, Generalized Monte Carlo significance tests, Biometrika, 76, 633– 642 (1989). 14. Y.M. Bishop, S.E. Fienberg and P.W. Holland, Discrete multivariate analysis: theory and practice, x+557. MIT Press, Cambridge, MA (1977). 15. J. Bochnak, M. Coste and M.F. Roy, Real algebraic geometry, x+430. SpringerVerlag, Berlin (1998). 16. CoCoATeam, CoCoA : a system for doing Computations in Commutative Algebra, Available at http://cocoa.dima.unige.it 17. M. Caboara and E. Riccomagno, An algebraic computational approach to the identifiability of Fourier models, Journal of Symbolic Computation, 26:2, 245–260 (1998). 18. E. Carlini and F. Rapallo, Algebraic modelling of category distinguishability, In Geometric and Algebraic Methods in Statistics (eds. P. Gibilisco, E. Riccomagno, M.P. Rogantin and H.P. Wynn), Cambridge University Press, Cambridge (forthcoming). 19. M. Casanellas and J. FernndezSnchez, Performance of a new invariants method on homogeneous and nonhomogeneous quartet trees, Molecular Biology and Evolution, 24:1, 288–293 (2007). 20. F. Catanese, S. Ho¸sten, A. Khetan and B. Sturmfels, The maximum likelihood degree, Amer. J. Math. 128:3, 671–697 (2006). 21. Y. Chen, I.H. Dinwoodie and S. Sullivant, Sequential importance sampling for multiway tables, The Annals of Statistics, 34:1, 523545 (2006). 22. D. Cox, J. Little and D. O’Shea, Ideal, Varieties, and Algorithms, xvi+551. Springer Verlag, New York (2008), Third Edition. 23. P. Diaconis and N. Eriksson, Markov bases for noncommutative Fourier analysis of ranked data, J. Symbolic Comput. 41:2, 182–195 (2006). 24. P. Diaconis and B. Sturmfels, Algebraic algorithms for sampling from conditional distributions, Annals of Statistics, 26:1, 363–397 (1998). 25. E. Dimitrova, A. Jarrah, R. Laubenbacher, and B. Stigler, A Gr¨obner fan method for biochemical network modeling, ISSAC Proceedings, 122126 (2007). 26. I.H. Dinwoodie, The DiaconisSturmfels algorithm and rules of succession, Bernoulli 4:3, 401–410 (1998). 27. A. Dobra, Markov Bases for decomposable graphical models, Bernoulli, 9, 1093–1108 (2003). 28. M. Drton, Algebraic techniques for Gaussian models, In Prague Stochastics (M. Huskova, M. Janzura Eds.), 81–90 (2006). 29. M. Drton, Likelihood ratio tests and singularities, Annals of Statistics (to appear). 30. M. Drton and S. Sullivant, Algebraic statistical models, Statistica Sinica, 17:4, 1273–1297 (2007). 31. N. Eriksson, S.E. Fienberg, A. Rinaldo and S. Sullivant, Polyhedral conditions for the nonexistence of the MLE for hierarchical loglinear models. J. Symbolic Comput. 41:2, 222–233 (2006). 32. S.E. Fienberg, P. Hersh, A. Rinaldo and Y. Zhou, Maximum likelihood estimation in latent class models For contingency table data, In Geometric and Algebraic Methods in Statistics (eds. P. Gibilisco, E. Riccomagno, M.P. Rogantin and H.P. Wynn), Cambridge University Press, Cambridge (forthcoming). 33. S.E. Fienberg and A. Slavkovic, Preserving the confidentiality of categorical statistical data bases when releasing information for association rules. Data Min. Knowl. Discov. 11:2, 155–180 (2005). 34. R. Fontana, G. Pistone and M.P. Rogantin, Classification of twolevel factorial fractions, Journal of Statistical Planning and Inference, 87:1, 149–172 (2000). 35. R. Fontana and M.P. Rogantin, Indicator function and sudoku designs, In Geometric and Algebraic Methods in Statistics (eds. P. Gibilisco, E. Riccomagno, M.P. Rogantin and H.P. Wynn), Cambridge University Press, Cambridge (forthcoming). 36. L.D. Garcia, M. Stillman and B. Sturmfels, Algebraic geometry of Bayesian networks, J. Symbolic Comput. 39:34, 331–355 (2005). 37. D. Geiger, C. Meek and B. Sturmfels, On the toric algebra of graphical models, The Annals of Statistics 34:3, 1463–1492 (2006). 38. P. Gibilisco, E. Riccomagno, M.P. Rogantin and H.P. Wynn (eds.), Geometric and algebraic methods in statistics. Cambridge University Press, Cambridge (forthcoming). 39. H. Hara, A. Takemura and R. Yoshida, A Markov basis for conditional test of common diagonal effect in quasiindependence model for twoway contingency tables, arXiv:0802.2603. 40. C. Kang and J. Tian, Polynomial constraints in causal Bayesian networks, In Proceedings of the Conference on Uncertainty in Artificial Intelligence (UAI), 2007. 41. A. Krampe and S. Kuhnt, Bowker’s test for symmetry and modifications within the algebraic framework, Computational Statistics and Data Analysis, 51:9, 4124–4142 (2007). 42. A. Krampe and S. Kuhnt, Model selection for contingency tables with algebraic statistics, In Geometric and Algebraic Methods in Statistics (eds. P. Gibilisco, E. Riccomagno, M.P. Rogantin and H.P. Wynn), Cambridge University Press, Cambridge (forthcoming). 43. M. Kreuzer and L. Robbiano, Computational commutative algebra, 1, x+321. Springer Verlag, Berlin (2000). 44. M. Kreuzer and L. Robbiano, Computational commutative algebra, 2, x+586. Springer Verlag, Berlin (2008). 45. Z. Lin, L. Xu and Q. Wu, Applications of Gr¨obner bases to signal and image processing: a survey, Linear Algebra and its Applications, 391, 169–202 (2004). 46. P. Malkin, Computing Markov bases, Gr¨obner bases, and extreme rays, x+223. Ph.D. thesis, Universit´e Catholique de Louvain (2007). 47. H. MaruriAguilar, Algebraic statistics in experimental design, Department of Statistics, University of Warwick (2007). 48. H. MaruriAguilar, R. Notari and E. Riccomagno, On the description and identifiability analysis of mixture designs, Statistica Sinica 17:4, 1417–1440 (2007). 49. H. MaruriAguilar and E. Riccomagno, A model selection algorithm for mixture experiments including process variables, In Proceedings of Moda8 (J LopezFidalgo, J Rodrguez Daz, B Torsney eds.), 107114 (2007). 50. H. MaruriAguilar and H.P. Wynn, Generalised design: interpolation and statistical modelling over varieties, In Geometric and Algebraic Methods in Statistics (eds. P. Gibilisco, E. Riccomagno, M.P. Rogantin and H.P. Wynn), Cambridge University Press, Cambridge (forthcoming). 51. T. Mora and L. Robbiano, The Gr¨obner fan of an ideal, Journal of Symbolic Computation, 6, 183–208 (1988). 52. S. Onn and B. Sturmfels, Cutting corners, Advances in Applied Mathematics, 23:1, 29–48 (1999). 53. L. Pachter and B. Sturmfels (eds.), Algebraic statistics for computational biology, 420. Cambridge University Press, Cambridge (2005). 54. J. Pearl, Causality. Models, reasoning, and inference, xvi+384. Cambridge University Press, Cambridge (2000). 55. G. Pistone, E. Riccomagno and H. P. Wynn, Algebraic Statistics, xvii+160. Chapman & Hall/CRC, Boca Raton (2001). 56. G. Pistone and M.P. Rogantin, Indicator function and complex coding for mixed fractional factorial designs, Journal of Statistical Planning and Inference, 138:3:1, 787–802 (2008). 57. G. Pistone and H.P. Wynn, Generalised confounding with Gr¨obner bases, Biometrika, 83:3, 653–666 (1996). 58. F. Rapallo, Algebraic Markov bases and MCMC for twoway contingency tables, Scandinavian Journal of Statistics, 30, 385–397 (2003). 59. F. Rapallo, Algebraic exact inference for rater agreement models, Stat. Methods Appl. 14:1, 45–66 (2005). 60. F. Rapallo, Markov bases and structural zeros, J. Symbolic Comput. 41:2, 164–172 (2006). 61. E. Riccomagno and J.Q. Smith, Identifying a cause in models which are not simple Bayesian networks, In Proc. IPMU, 1345–1322 (2004). 62. E. Riccomagno and J.Q. Smith, The geometry of causal probability trees that are algebraically constrained, In Search for Optimality in Design and Statistics: Algebraic and Dynamical System Methods (L Pronzato and A A Zigljavsky eds.), 95129 (2008). 63. E. Riccomagno and J.Q. Smith, The causal manipulation of chain event graphs, http://arxiv.org/abs/0709.3380. 64. E. Riccomagno and J.Q. Smith, Algebraic causality: Bayes nets and beyond. CRiSM Paper No. 073 (2007). 65. H. Scheff´e, Experiments with mixtures, J. Roy. Statist. Soc. Ser. B, 20, 344–360 (1958). 66. H. Scheff´e, The simplexcentroid design for experiments with mixtures, J. Roy. Statist. Soc. Ser. B, 25, 235–263 (1963). 67. G. Shafer, The art of causal conjecture, 552. MIT Press, Cambridge (1996). 68. B. Sturmfels, Solving systems of polynomial equations, CBMS Reg. Conf. Ser. Math., Washington DC (2002). 69. S. Sullivant, Algebraic geometry of Gaussian Bayesian networks, Advances in Applied Mathematics (to appear). 70. K.Q. Ye, Indicator function and its application in two level factorial designs, The Annals of Statistics, 31:3, 984–994 (2003). 
URI:  http://wrap.warwick.ac.uk/id/eprint/35494 
Actions (login required)
View Item 