References: |
[1] M. Abramowitz and I. A. Stegun. Handbook of mathematical functions with formulas, graphs, and mathematical tables, volume 55 of National Bureau of Standards Applied Mathematics Series. For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964. [2] G. E. Andrews, R. Askey, and R. Roy. Special functions, volume 71 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1999. [3] R. Arratia, A. D. Barbour, and S. Tavare. Logarithmic combinatorial structures: a probabilistic approach. EMS Monographs in Mathematics. European Mathematical Society (EMS), Zurich, 2003. [4] S. Bochner. Positive zonal functions on spheres. Proc. Nat. Acad. Sci. U. S. A., 40:1141{1147, 1954. [5] P. Diaconis, K. Khare, and L. Salo-Coste. Gibbs sampling, exponential families and orthogonal polynomials. Statist. Sci., 23(2):151{178, 2008. With comments and a rejoinder by the authors. [6] K. Doksum. Tailfree and neutral random probabilities and their posterior distributions. Ann. Probability, 2:183{201, 1974. [7] C. F. Dunkl and Y. Xu. Orthogonal polynomials of several variables, volume 81 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 2001. [8] A. Erdelyi. On some expansions in Laguerre polynomials. J. London Math. Soc., s1-13(2):154{156, 1938. [9] H. Exton. Multiple hypergeometric functions and applications. Ellis Horwood Ltd., Chichester, 1976. Foreword by L. J. Slater, Mathematics & its Applications. [10] T. S. Ferguson. A Bayesian analysis of some nonparametric problems. Ann. Statist., 1:209{230, 1973. [11] G. Gasper. Banach algebras for Jacobi series and positivity of a kernel. Ann. of Math. (2), 95:261{280, 1972. [12] R. Griffiths and D. Spano. Diffusion Processes and Coalescent Trees. Chapter 15 of Probability and Mathematical Genetics: Papers in Honour of Sir John Kingman. London Mathematical Society Lecture Notes Series. Cambridge University Press, 2009/10,. to appear. [13] R. Griffiths and D. Spano. n-kernel orthogonal polynomials on the dirichlet, dirichletmultinomial, poisson-dirichlet and ewens' sampling distributions, and positive-definite sequences. http://arxiv.org/abs/1003.5131v1, 2010. [14] R. C. Griffiths. On the distribution of allele frequencies in a diffusion model. Theoret. Population Biol., 15(1):140{158, 1979. [15] M. E. H. Ismail. Classical and quantum orthogonal polynomials in one variable, volume 98 of Encyclo- pedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 2005. With two chapters by Walter Van Assche, With a foreword by Richard A. Askey. [16] S. Karlin and J. McGregor. Linear growth models with many types and multidimensional Hahn polynomials. In Theory and application of special functions (Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975), pages 261{288. Math. Res. Center, Univ. Wisconsin, Publ. No. 35. Academic Press, New York, 1975. [17] S. Karlin and J. L. McGregor. The Hahn polynomials, formulas and an application. Scripta Math., 26:33{46, 1961. [18] K. Khare and H. Zhou. Rates of convergence of some multivariate Markov chains with polynomial eigenfunctions. Ann. Appl. Probab., 19(2):737{777, 2009. [19] J. F. C. Kingman. The population structure associated with the Ewens sampling formula. Theoret. Population Biology, 11(2):274{283, 1977. [20] J. F. C. Kingman, S. J. Taylor, A. G. Hawkes, A. M. Walker, D. R. Cox, A. F. M. Smith, B. M. Hill, P. J. Burville, and T. Leonard. Random discrete distributions. J. Roy. Statist. Soc. Ser. B, 37:1{22, 1975. With a discussion by S. J. Taylor, A. G. Hawkes, A. M. Walker, D. R. Cox, A. F. M. Smith, B. M. Hill, P. J. Burville, T. Leonard and a reply by the author. [21] T. Koornwinder. Two-variable analogues of the classical orthogonal polynomials. In Theory and appli- cation of special functions (Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975), pages 435{495. Math. Res. Center, Univ. Wisconsin, Publ. No. 35. Academic Press, New York, 1975. [22] T. H. Koornwinder and A. L. Schwartz. Product formulas and associated hypergroups for orthogonal polynomials on the simplex and on a parabolic biangle. Constr. Approx., 13(4):537{567, 1997. [23] G. Lauricella. Sulle funzioni ipergeometriche a piu` variabili. Rend. Circ. Mat. Palermo, 7:111{158, 1893. [24] J. Pitman. Exchangeable and partially exchangeable random partitions. Probab. Theory Related Fields, 102(2):145{158, 1995. [25] J. Pitman. Random discrete distributions invariant under size-biased permutation. Adv. in Appl. Probab., 28(2):525{539, 1996. [26] J. Pitman. Combinatorial stochastic processes, volume 1875 of Lecture Notes in Mathematics. Springer- Verlag, Berlin, 2006. Lectures from the 32nd Summer School on Probability Theory held in Saint-Flour, July 7{24, 2002, With a foreword by Jean Picard. [27] T. Sauer. Jacobi polynomials in Bernstein form. J. Comput. Appl. Math., 199(1):149{158, 2007. [28] S. Waldron. On the Bernstein-Bezier form of Jacobi polynomials on a simplex. J. Approx. Theory, 140(1):86{99, 2006. [29] S. Walker and P. Muliere. Beta-Stacy processes and a generalization of the Polya-urn scheme. Ann. Statist., 25(4):1762{1780, 1997. [30] G. A. Watterson. The stationary distribution of the infinitely-many neutral alleles diffusion model. J. Appl. Probability, 13(4):639{651, 1976. |