References: |
Ait-Sahalia, Y., Mykland, P. and Zhang, L. (2005a). How often to sample a continuous- time process in the presence of market microstructure noise. Rev. Financ. Studies 18, 351{416. Ait-Sahalia, Y., Mykland, P. and Zhang, L. (2005b). A tale of two time scales: Determining integrated volatility with noisy high-frequency data. J. Amer. Stat. Assoc. 100, 1394{ 1411. Benes, V. E. (1981). Exact ¯nite-dimensional ¯lters for certain di®usions with nonlinear drift. Stochastics 5(1-2), 65{92. Bensoussan, A., Lions, J.-L. and Papanicolaou, G. (1978). Asymptotic analysis for periodic structures, volume 5 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam. Beskos, A., Papaspiliopoulos, O. and Roberts, G. O. (2005). A new factorisation of di®usion measure and ¯nite sample path constructions. Submitted. Beskos, A., Papaspiliopoulos, O. and Roberts, G. O. (2006a). Retrospective exact simula- tion of di®usion sample paths with applications. Bernoulli 12, 1077{1098. Beskos, A., Papaspiliopoulos, O., Roberts, G. O. and Fearnhead, P. (2006b). Exact and e±cient likelihood{based inference for discretely observed di®usions (with discussion). Journal of the Royal Statistical Society, Series B . Carpenter, J., Cli®ord, P. and Fearnhead, P. (1999). An improved particle ¯lter for non- linear problems. IEE proceedings-Radar, Sonar and Navigation 146, 2{7. Cioranescu, D. and Donato, P. (1999). An introduction to homogenization, volume 17 of Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press Oxford University Press, New York. Crisan, D. and Lyons, T. J. (1999). A particle approximation of the solution of the kushner- stratonovitch equation. Probability Theory and Related Fields 115, 549{578. Crisan, D., Del Moral, P. and Lyons, T. J. (1999). Interacting particle systems approx- imations of the Kushner-Stratonovich equation. Advances in Applied Probability 31, 819{838. Del Moral, P. and Miclo, L. (2000a). Branching and interacting particle systems approxima- tions of Feynman-Kac formulae with applications to non-linear ¯ltering. In: S¶eminaire de Probabilit¶es, XXXIV , volume 1729 of Lecture Notes in Math., Springer, Berlin, 1{145. Del Moral, P. and Miclo, L. (2000b). A Moran particle system approximation of Feynman- Kac formulae. Stochastic Process. Appl. 86(2), 193{216. Del Moral, P., Jacod, J. and Protter, P. (2001). The Monte-Carlo method for ¯ltering with discrete-time observations. Probab. Theory Related Fields 120(3), 346{368. Doucet, A., Godsill, S. and Andrieu, C. (2000). On sequential Monte Carlo sampling methods for Bayesian ¯ltering. Statistics and Computing 10, 197{208. Doucet, A., de Freitas, N. and Gordon, N. (2001). An introduction to sequential Monte Carlo methods. In: Sequential Monte Carlo methods in practice, Stat. Eng. Inf. Sci., Springer, New York, 3{14. Fearnhead, P., Papaspiliopoulos, O. and Roberts, G. O. (2006). Particle ¯lters for partially observed di®usions. In revision for J. Roy. Statist. Soc. Ser. B. Ferrante, M. and Vidoni, P. (1998). Finite-dimensional ¯lters for nonlinear stochastic dif- ference equations with multiplicative noises. Stochastic Process. Appl. 77(1), 69{81. Fixman, M. (1978). J. Chem. Phys. 69, 1527{1538. Gardiner, C. W. (1985). Handbook of stochastic methods, volume 13 of Springer Series in Synergetics. Springer-Verlag, Berlin, 2nd edition, for physics, chemistry and the natural sciences. Genon-Catalot, V. (2003). A non-linear explicit ¯lter. Statist. Probab. Lett. 61(2), 145{154. Givon, D., Kevrekidis, I. G. and Kupferman, R. (2006). Strong convergence of projective integration schemes for singularly perturbed stochastic di®erential systems. Commun. Math. Sci. 4(4), 707{729. Jourdain, B. and Sbai, M. (2007). Exact retrospective Monte Carlo computation of arithmetic average Asian options. Available from https://hal.archives-ouvertes.fr/hal- 00141141. Kalman, R. and Bucy, R. (1961). New results in linear ¯ltering and prediction theory. Journal of Basic Engineering, Transacation ASME series D 83, 95{108. Liu, J. S. and Chen, R. (1998). Sequential Monte Carlo methods for dynamic systems. J. Amer. Statist. Assoc. 93(443), 1032{1044. Metzner, P., SchÄutte, C. and Vanden-Eijnden, E. (2006). Illustration of transition path theory on a collection of simple examples. The Journal of Chemical Physics 125, 084110. Papavasiliou, A. and Kevrekidis, I. (2007). Variance reduction for the equation-free simu- lation of multiscale stochastic systems. Multiscale Model. Simul. 6(1), 70{89. Pavliotis, G. and Stuart, A. (2007). Parameter estimation for multiscale di®usions. J. Stat. Phys. 127(4), 741{781. Pavliotis, G. and Stuart, A. (2008). Multiscale Methods: Averaging and Homogeniza- tion. Springer, current version availalbe from http://www.maths.warwick.ac.uk/ stu- art/book.pdf. Peluchetti, S. (2007). Aspects of the e±ciency of the exact algorithm for di®usion simula- tion. Ph.D. thesis, Boconni University, Milan. Pitt, M. K. and Shephard, N. (1999). Filtering via simulation: auxiliary particle ¯lters. J. Amer. Statist. Assoc. 94(446), 590{599. Pokern, Y., Pavliotis, G. and Stuart, A. (2008). Parameter estimation for multiscale di®u- sions: An overview. In preparation. Rydberg, T. H. (1997). A note on the existence of unique equivalent martingale measures in a Markovian setting. Finnance and Stochastics 1, 251{257. Shoji, I. and Ozaki, T. (1998). Estimation for nonlinear stochastic di®erential equations by a local linearization method. Stochastic Analysis and Applications 16. Siegmund, D. (1985). Sequential Analysis. Springer-Verlag. Vanden-Eijnden, E. (2003). Numerical techniques for multi-scale dynamical systems with stochastic e®ects. Commun. Math. Sci. 1(2), 385{391. |