References: |
Blackwell, D. and MacQueen, J.B. (1973): “Ferguson distributions via P´olya urn schemes,” Annals of Statistics, 1, 353-355. Bowman, A. W. and A. Azzalini (1997): “Applied Smoothing Techniques for Data Analysis,” Oxford: Oxford University Press. Bush, C. A. and S. N. MacEachern (1996): “A Semiparametric Bayesian Model for Randomised Block Designs,” Biometrika, 83, 275-285. Escobar, M. D. and West, M. (1995): “Bayesian density-estimation and inference using mixtures,” Journal of the American Statistical Association, 90, 577-588 . Ferguson, T. S. (1973): “A Bayesian Analysis of Some Nonparametric Problems,” The Annals of Statistics, 1, 209-230. Ferguson, T. S. (1983): “Bayesian Density Estimation by Mixtures of Normal Distribution,” in Recent Advances In Statistics: Papers in Honor of Herman Chernoff on His Sixtieth Birthday, eds: M. H. Rizvi, J. Rustagi and D. Siegmund, Academic Press: New York. Gelfand, A. E. and A. Kottas (2002): “A Computational Approach for Full Nonparametric Bayesian Inference under Dirichlet Proces Mixture Models,” Journal of Computational and Graphical Statistics, 11, 289-305. Ishwaran, H. and James, L. (2001): “Gibbs Sampling Methods for Stick-Breaking Priors,” Journal of the American Statistical Association, 96, 161-73. Ishwaran, H. and James, L. F. (2002): “Approximate Dirichlet Process Computing in Finite Normal Mixtures: Smoothing and Prior Information,” Journal of Computational and Graphical Statistics, 11, 1-26. Jain, S. and R. M. Neal (2005): “Splitting and merging components of a nonconjugate Dirichlet process mixture model,” Technical Report 0507, Department of Statistics, University of Toronto. James, L. F. (2006): “Spatial neutral to the right species sampling mixture models,” prepared for “Festschrift for Kjell Doksum”. Lijoi, A., R. H. Mena, and I. Pr¨unster (2005): “Hierarchical mixture modelling with normalized inverse-Gaussian priors,” Journal of the American Statistical Association, 100, 1278-1291./par Lo, A. Y. (1984): “On a Class of Bayesian Nonparametric Estimates: I. Density Estimates,” The Annals of Statistics, 12, 351-357. MacEachern, S. N. andM¨uller, P. (1998): “Estimating mixture of Dirichlet process models,” Journal of Computational and Graphical Statistics, 7, 223-238. Marin, J.-M., K. Mengersen and C. P. Robert (2006): “Bayesian Modelling and Inference on Mixtures of Distributions,” Handbook of Statistics 25, (eds: D. Dey and C.R. Rao). Mengersen, K. and C. Robert (1996): “Testing for mixtures: A Bayesian entropic approach (with dicussion),” in Bayesian Statistics 5, eds: J. Berger, J. Bernardo, A. Dawid, D. Lindley and A. Smith, Oxford University Press : Oxford. M¨uller, P. and Quintana, F. (2004): “Nonparametric Bayesian Data Analysis,” Statistical Science, 19, 95-110. M¨uller, P. and Rosner, G. (1997): “A Bayesian population model with hierarchical mixture priors applied to blood count data,” Journal of the American Statistical Association, 92, 1279-1292. Neal, R. M. (2000): “Markov chain sampling methods for Dirichlet process mixture models,” Journal of COmputational and Graphical Statistics, 9, 249-265. Nietro-Barajas, L. E., I Pr¨unster and S. G. Walker (2004): “Normalized random measures driven by increasing additive processes,” Annals of Statistics, 32, 2343-2360. Papaspiliopoulos, O. and Roberts, G. (2004): “Retrospective MCMC for Dirichlet process hierarchical models,” technical report, University of Lancaster. Pitman, J. (1996): “Some Developments of the Blackwell-MacQueen Urn Scheme,” in Statistics, Probability and Game Theory: Papers in Honor of David Blackwell, eds: T. S. Ferguson, L. S. Shapley and J. B. MacQueen, Institue of Mathematical Statistics Lecture Notes. Richardson, S. and P. J. Green (1997): “On Bayesian analysis of mixtures with unknown number of components (With discussion,” Journal of the Royal Statistical Society B, 731-792. Robert, C. and M. Titterington (1998): “Reparameterisation strategies for hidden Markov models and Bayesian approaches to maximum likelihood estimation,” Statistics and Computing, 4, 327-355. Roeder, K. (1990): “Density Estation with Confidence Sets Exemplified by Superclusters and Voids in the Galaxies,” Journal of the American Statistical Assocation, 85, 617- 624. Roeder, K. (1994): “A Graphical Technique for Deteremining the Number of Components in a Mixture of Normals,” Journal of the American Statistical Assocation, 89, 487-495. Roeder, K. and L. Wasserman (1997): “Practical Bayesian Density Estimation Using Mixtures of Normals,” Journal of the American Statistical Association, 92, 894-902. Walker, S. G., Damien, P., Laud, P.W. and Smith, A. F. M. (1999): “Bayesian nonparametric inference for random distributions and related functions,” (with discussion) Journal of the Royal Statistical Society B, 61, 485-527. |