DIFFERENTIAL EQUATIONS AND GROUP THEORY FROM
RIEMANN TO POINCARE

submitted by

JEREMY JOHN GRAY

for the degree of DOCTOR OF PHILOSOPHY
of the UNIVERSITY OF WARWICK

to the FACULTY OF MATHEMATICS

JUNE 1981.

VOL I
Summary.

The origins of the theory of modular and automorphic functions are found in the work of Legendre, Gauss, Jacobi, and Kummer on elliptic functions and the hypergeometric equation. Riemann's work on this differential equation gave a decisive impulse to the global theory of the solutions to such equations, and was extended by Fuchs who raised the problem: when are all solutions to a linear differential equation algebraic? This problem was tackled in various ways by Schwarz, Fuchs himself, Gordan, Jordan, and Klein, with results that displayed the new methods of group theory to advantage. At the same time, or a little earlier, the theory of modular transformations proclaimed by Galois was explored by several mathematicians, notably Hermite, and Klein was able to unite that work with his geometrical methods and the crucial observations of Dedekind. This work marks the origin of the Galois theory of function fields and the systematic study of modular functions. The theory of linear differential equations was then further extended by Poincare, who brought to it geometric and group-theoretic insights strikingly similar to, but at first independent of, those of Klein, and who opened up the theory of automorphic functions.
Introduction.

This work traces the history of linear ordinary differential equation during the nineteenth century, with particular reference to the connections with elliptic and modular functions. In its later chapters it is concerned with the impact of group-theoretic ideas upon the problem of understanding the nature of the solutions to a differential equation. So far as is possible the mathematics is developed from scratch, and no more than an undergraduate knowledge of the subject is presumed. It is my hope that this historical treatment will re-acquaint many mathematicians with a rich and important area of mathematics perhaps known only to specialists today.

The story begins with the hypergeometric equation

\[x(1 - x) \frac{d^2 y}{dx^2} + (c - (a + b + 1)x) \frac{dy}{dx} - aby = 0 \]

studied by Gauss in 1812. This equation is important in its own right as a linear ordinary differential equation for which explicit power-series solutions can be given and, more importantly, their inter-relations examined. Gauss's work in this direction was extended by Riemann in a paper of 1857, in which the crucial idea of analytically continuing the solutions around their singularities in the complex domain was first truly understood. This approach, which may be termed the monodromy approach, gave a thorough global understanding of the solutions of the hypergeometric equation. It was extended in 1865 by Fuchs to those \(n^{th} \) order linear ordinary differential equations none of whose solutions have essential singularities, a class he was able to characterize. Fuchs's work revealed that, for technical reasons, equations other than the hypergeometric would be less easy to understand globally. He suggested, however, that a sub-class could be isolated, consisting of differential equations all of whose solutions
were algebraic functions, and this problem was tackled in the 1870's by many mathematicians: Schwarz (for the hypergeometric equation), Fuchs, Gordan, and Klein (for the 2nd order equation), Jordan (for the n-th order). The methods may be described as geometric (Schwarz and Klein), invariant-theoretic (Fuchs and Gordan), and group-theoretic (Jordan), and of these the group-theoretic was the most strikingly successful. It arose from the monodromy approach by taking all the monodromy transformations, i.e., all analytic transformations of a basis of solutions under analytic continuations around all paths in the domain, and considering this set in totality as a group. In the case at hand this group, which is evidently composed of linear transformations, is finite if and only if the solutions are all algebraic.

The hypergeometric equation is also important because it contains many interesting equations as special cases, notably Legendre's equation

$$(1 - k^2) \frac{d^2 y}{dk^2} + \frac{1 - 3k^2}{k} \frac{dy}{dk} - y = 0$$

which is satisfied by the periods

$$K = \int_{\theta}^{1} \frac{dx}{\sqrt{(1 - x^2)(1 - k^2x^2)}}$$

and

$$K' = \int_{1}^{1/k} \frac{dx}{\sqrt{(1 - x^2)(1 - k^2x^2)}}$$

of elliptic integrals considered as functions of the modulus k^2.

This equation was studied by Legendre, Gauss, Abel, Jacobi, and Kummer. It is useful in the study of the transformation problem of elliptic integrals: given a prime p and a modulus k^2, find a second modulus l^2 for which the associated periods L and L' satisfy $L/L' = pK/K'$. The transformation problem also yields a polynomial relation between k^2 and l^2 of degree p + 1, but Jacobi showed that, when p = 5, 7, and 11, the degree can be reduced to p. This mysterious observation
was discussed by Galois in 1832 in terms of what would now be called the Galois/PSL(2; \mathbb{Z}/p\mathbb{Z}) and shown to depend on the existence of sub-groups of small index (in fact, p) in these groups. Galois's work was taken up by Betti, Hermite, Kronecker, and Jordan in the 1850's and 1860's and a connection was discovered between the general quintic equation and the transformation problem at the prime p = 5, which enabled Hermite to solve the quintic equation by modular functions. Analogous questions at higher primes remained unsolved until, in 1879, Klein explained the special significance of the Galois group PSL(2; \mathbb{Z}/7\mathbb{Z}).

Klein's work grew out of an attempt to reformulate the theory of modular functions and modular transformations without using the theory of elliptic functions. This had been almost completely achieved by Dedekind in 1878, when, inspired by some notes of Riemann's and Fuchs's considerations of the monodromy transformations of Legendre's equation, he constructed a theory of modular transformations based on the idea of the lattice of periods of an elliptic function. Klein enriched Dedekind's approach with an explicit use of group-theoretic ideas and an essentially Galois-theoretic approach to the fields of rational and modular functions. Both men relied on the theory of the hypergeometric equation at technical points in their arguments. Klein's theory divided into the case when the genus of a certain Riemann surface was zero, when it connected with his earlier work on differential equations and with Hermite's theory of the quintic equation, and the cases when the genus was greater than zero.
The latter cases related to the study of higher plane curves, and in particular the case of the group $\text{PSL}(2; \mathbb{Z}/7\mathbb{Z})$ (when the genus is 3) related to plane quartics and their 28 bitangents. These curves had been studied projectively by Plücker and Hesse, and function-theoretically by Riemann, Roch, Clebsch, and Weber. Klein was able to give an account of their work in the spirit of his new theoretical formulations, and began to develop a systematic theory of modular functions.

Meanwhile, and at first quite independently, Poincaré began in 1880 to develop a more general theory of Riemann surfaces, discontinuous groups (such as $\text{PSL}(2;\mathbb{Z})$), and differential equations. At first he seems not to have known of the work of Schwarz or Klein, but to have picked up the initial idea only from a paper of Fuchs. Soon he learned, in correspondence with Klein, of what had already been done, but there is nonetheless a marked contrast been the novelty of Poincaré's work and the impeccably educated approach of Klein. The group-theoretic and Riemann-surface theoretic aspects of the theory were developed jointly, but the connection with differential equations remained Poincaré's concern.

This presentation ends in 1882 with the publication of Poincaré's and Klein's papers on the Fuchsian theory (a choice of name that Klein hotly denounced) and with Klein's collapse from nervous exhaustion. The less complete Kleinian theory of 1883-4 is scarcely discussed.

It can be argued that the history of mathematical ideas is a history of problems, methods, and results. These terms are, of course, not precise - a problem may be to find the method leading to an already known or intuited result, or to explain why a method works. But still
one may sit gingerly on the edge of this Procrustean bed and argue that results in mathematics are, more or less, truths. Such-and-such numbers are prime, such-and-such geometries are possible, such-and-such functions exist. Problems are a more varied class of objects. They may be existence questions, or they may be more theoretical or methodological. They may arise outside mathematics, or so deep inside it that only specialists can raise them. Finally the methods are the means employed to formulate the theory. These methods are often quite personal, and may be subjected to two kinds of test. The first is their critical scrutiny by other mathematicians as to their mathematical validity, itself a matter having an historical dimension. The second is a matter of taste or style, leading mathematicians to adopt or reject methods for their own use.

If this trichotomy is applied to the subject at hand it suggests that the hypergeometric question raised the problem: understand the global relationships of the solutions given locally by power-series. Power-series and their convergence were dealt with carefully by Gauss and did not pose a problem, but the global question did. Riemann gave results in terms of monodromy, and in terms of the associated Riemann surfaces defined by the solutions. The monodromy method was not itself problematic, and could be used to formulate problems about, for example, Legendre's equation. This led to the successful elaboration of new results about modular functions. But the Riemann surface approach constructed functions transcendentally and by means of a doubtful use of Dirichlet's principle, so it raised methodological problems. These problems were avoided by Dedekind, Klein, and Poincaré, but tackled directly by Schwarz and C. A. Neumann. The transcendental approach was also rejected for a while in the study of algebraic curves, and Clebsch, Brill, and M. Noether developed a more strictly algebraic
approach to the theorems of Abel, Riemann, and Roch.

The study of the transformation problem was explicitly raised as a methodological problem, that of emancipating the theory of modular equations from the theory of elliptic functions. As such it was solved by Dedekind, and that solution re-formulated by Klein. By now the formulation was dependent on the transcendental theory of functions. Hurwitz in 1881 freed the theory of modular functions from that embrace, but Poincaré and Klein chose to base their theories of automorphic functions firmly on Riemannian ideas.

This brief sketch is intended to illuminate the importance, for the conduct of the history of mathematics, of the state of the subject as a theoretically organized body of knowledge. Mathematics is not just a body of results, each one attached to a technical argument, but an intricate system of theories and a historical process. Histories which proceed from problems to results and leave out the methods by which those results were achieved, omit a crucial aspect of the process of this theoretical development. The gain in space, essential if a broad period is to be described, is made only by risking making the reasons for the development unintelligible. The vogue for histories of modern mathematics has, with notable exceptions, been too willing to leave out the details of how it was all done, and thus leave unexplored the question of why it was done. Similarly, all but the best histories of foundational topics have concentrated naïvely on the foundations without appreciating the status of foundational enquiry within the broader picture of mathematical discovery. It is probably not true that mathematics can be built from the bottom up, but is it certainly false that its history can be told in that way.
For reasons of space and ignorance I have made no serious attempt to ground this account in any questions of a social-historical kind, although I believe such enquiries are most important. However, the trichotomy of problems, methods, and results would accommodate itself to such an approach. Problems may evidently be socially determined, either from outside the subject altogether or within the development of competing mathematical schools. Methods are naturally historically and socially specific in large part, but results are more objective. The formulation here adopted at least suggests what aspects of the history of modular and automorphic functions may be treated more sociologically while still securing an objectivity for the mathematical results.

I do not claim that this study establishes any conclusions that can be stated at an abstract level. Rather, it represents an attempt to try out a methodology for exploring certain past events.

One striking observation can, however, be made at once. Only Gauss was concerned to find any scientific applications for his results in the theory of differential equations. Riemann, who was deeply interested in physics, sought no role there for his P-functions. Klein, who made great claims for the importance of mathematics in physics, and Poincaré, who later did work of the greatest importance in astronomy and electro-magnetism, likewise confined their researches to the domain of pure mathematics. The Berlin school, led by Weierstrass and Fuchs, showed less interest in physics anyway, but during the period 1850-1880 it is clear that none of the works here discussed were inspired by scientific concerns. It may be a fastidious contemporary preference for not claiming that large purposes stand
behind narrow papers, and it may be that a real concern for physics is shown by some of these mathematicians elsewhere in their work - although their published work is largely free of such claims. It is more likely that we are confronted with an emerging speciality - pure mathematics - perhaps being practised, in Germany at least, by a professeriat disdainful of applications. Several of Klein's remarks about physics suggest such a divorce was taking place, and an examination of physicist's work in the period might suggest a comparable lack of interest in mathematics. On the other hand, this period marks the introduction of the tools of elliptic function theory into that curious hybrid applied mathematics (notably into the study of heat diffusion and Lame's equation, and the motion of the top). It would be quite important to examine the literature with an eye to the distinction between pure and applied science, say between dynamics and electromagnetic theory, and to see what the role of mathematics was in each of them.

Observations on the text

I conclude with some observations.

References have generally been given in the following forms: Shakespeare [1603] refers to the entry in the bibliography under Shakespeare for that date, which is usually the date of first publication. The symbols a, b, ... distinguish between works published in the same year. Well known works are referred to by name, so the above would be given as Hamlet.
Notation is largely as it appears in the original works under discussion, but some simplifications have been introduced. Mathematical comments of an anachronistic kind which I have felt it necessary to make on occasion are usually set off in square brackets [].

References to classic works, such as the German Encyklopädie der Mathematischen Wissenschaften are relatively few. This is because the classics are Berichte (reports) not Geschichte (histories) a useful distinction carefully observed by their authors, but which has reasonably restricted them to brief remarks. I have tended to use these extensive reference works as guides, but to report directly on what they have led me to find.

Conjectures and opinions of my own are usually stated as such; the personal pronoun always indicates that a personal view is being expressed.

I have followed recent German practice in using the symbol :=, as in X:=Y or Y:=X, to mean 'X is defined to be Y'.

I would like to thank my supervisors David Fowler and Ian Stewart for all their help and encouragement during the years.
Chapter One. Hypergeometric equations and modular equations.

1.1 Euler and Gauss.

The hypergeometric series (hgs) and the hypergeometric equation (hge) in the work of Euler and Pfaff. 1-3

The representation of known functions, and Gauss's definition of new ones by means of the series. 4

Gauss's early mathematical isolation. 5

Gauss on the arithmético-geometric mean and the theory of elliptic functions, and his work on the hgs 6-7

Gauss's published paper on the hgs [1812a] and his unpublished one on the hge [1812b] in which monodromy considerations are raised. 10-14

1.2 Jacobi and Kummer.

Jacobi on the transformation of elliptic functions, polynomial and differential equations connecting different moduli. 15-18

Kummer on the hypergeometric equation, transformations of the variable. His list of 24 solutions; the connection with elliptic functions via Legendre's equation. Monodromy considerations 18-26

not to be found in Kummer's work. 27

1.3 Interlude, Cauchy's theory of differential equations.

Cauchy's proofs of the existence of solutions to differential equations; singular points studied by Briot and Bouquet. Weierstrass's unpublished theories. 29-32

Chapter Two. Riemann.

Introductory biography of Riemann. 33-36
2.1 Riemann's approach to complex analysis.

In his papers [1851], [1857c] Riemann regarded a function as a surface and introduced topological considerations of connectivity; 34-40 Dirichlet's principle is used to guarantee the existence of prescribed functions. 41-43

2.2 Riemann's P-function.

P-functions defined. Monodromy matrices at the branch-points, 44-45 and products of same, their coefficients expressed in terms of the exponents of the P-function. 46-50

The P-function shown to satisfy a hge, so the hge is characterized by its exponents at the branch-points. 51-55

2.3 Riemann's lectures on differential equations.

Monodromy. 56-57

Differential equations with algebraic solutions. The quotient of two solutions, and its inverse. Regular solids and mapping functions. 57-60

Chapter Three. Lazarus Fuchs.

Introduction. 61-62

Fuchs a student of Kummer and Weierstrass. 63-64

3.1 Fuchs's early papers.

His approach to differential equations a blend of Riemannian techniques and those of the Berlin school. 66-68

He characterized those equations whose solutions are everywhere locally of the form \((x - x_0)^a \sum_{n=-k}^{\infty} a_n (x - x_0)^n\), as being of the form
\[\frac{d^n y}{dx^n} + \frac{F_{n-1}(x)}{\psi(x)} \frac{d^{n-1} y}{dx^{n-1}} + \frac{F_2(x)}{(x)^2} \frac{d^{n-2} y}{dx^{n-2}} + \cdots + \frac{F_{n-p}(x)}{(x)^n} y = 0 \]

where \(\rho \) is the number of finite singular points \(a_1, a_2, \ldots, a_\rho \),
\(\psi(x) = (x - a_1)(x - a_2) \ldots (x - a_\rho) \), and \(F(x) \) is a polynomial
in \(x \) of degree at most \(s \). Such equations are 'of the Fuchsian class'.

Fuchs gave rigorous methods for solving linear differential equations, and a careful analysis of their singular points in terms of the monodromy matrices and their eigenvalues; the case of repeated eigenvalues is introduced. The 'indicial' equation for the exponents.

Amongst the equations of the Fuchsian class are those all of whose solutions are algebraic. Fuchs asked how these might be characterized.

The hypergeometric equation is the only equation of order \(n > 1 \) and of the Fuchsian class for which the exponents determine the coefficients exactly.

3.2 Hyperelliptic integrals.

Fuchs showed[1870] that the periods of hyperelliptic integrals, as functions of a parameter, satisfy equations of the Fuchsian class.

In the case of the elliptic integral he gave a thorough treatment of the monodromy matrices at the singular points.
3.3 Frobenius and others

Frobenius's [1873] paper simplified the method of Fuchs. In subsequent papers Frobenius introduced the idea of irreducibility of a differential equation, and used it to clarify the work of Thomé. Thome [1873] called the functions which are solutions of equations of the Fuchsian type regular, and studied equations which have irregular solutions.

The introduction of Jordan canonical form by Jordan and Hamburger. J. Tannery on Fuchs's work.

Chapter Four. Algebraic Solutions to a Differential Equation.

4.1 Schwarz.

Schwarz [1872] discussed when all the solutions of a h.g.e. are algebraic. The solution is, essentially, that \(F(\alpha, \beta, \gamma, z) \) is algebraic provided that the quotient of two linearly independent solutions maps the upper half plane onto a triangle whose reflections tessellate the sphere. This condition reduces to the condition on \(\lambda, \mu, \) and \(\nu \) (rational constants related to \(\alpha, \beta, \) and \(\gamma \)) that \(\lambda + \mu + \nu > 1 \).

Schwarz depicted a tessellation of the disc by circular-arc triangles corresponding to the case \(\lambda = \frac{1}{5}, \mu = \frac{1}{4}, \nu = \frac{1}{2} \).

\(\lambda + \mu + \nu = 1 \) corresponds to elliptic functions and a tessellation of the plane by triangles.
4.2 Fuchs's solution

Fuchs [1875] obtained necessary but not sufficient conditions for the general second order differential equation to have all its solutions algebraic, using ad hoc techniques and the methods of invariant theory.

4.3 Klein's solution

Klein and Gordan.

Klein's calculation of the finite groups of motions of the sphere, [1875/76].

The connection with invariant theory.

The connection with differential equations: if a second order differential equation has all its solutions algebraic it can be obtained from the h.g.e. by a rational change of variable [1877].

Brioschi's calculation of h.g.e.'s corresponding to Schwarz's allowable λ, μ, ν.

4.4 The solutions of Gordan and Fuchs

Gordan solved Fuchs's problem purely in terms of invariant theory, [1877a, b].

Fuchs found his earlier solution contained invalid items, and removed them, [1878].
4.5 Jordan's solution

Jordan's main paper, [1878], looks for finite subgroups of $\text{SL}(n; \mathbb{C})$, for an nth order linear d.e. has all its solutions algebraic if and only if its monodromy group is finite. Jordan used Sylow theory, and solved the problem for $n = 2$ and 3. He missed the simple group of order 168.

For general n he established his finiteness theorem, reproved in [1880].

The work of Frobenius, Fuchs, and Halphen on higher order differential equations.
Chapter Five. Modular Equations.

5.1 Fuchs and Hermite

Hermite rekindled Fuchs's interest in the modular function K/K' as a function of k^2 and its inverse.

Fuchs's [1877] studied the inverse of the quotient of two solutions of a differential equation and to the idea of functions invariant under sets of monodromy matrices.

Monodromy matrices were also used by Schl"afli [1870] to explain a passage in Hermite's solution of the quintic [1858] concerning modular transformations of order 2.

H.J.S. Smith on quadratic forms.

5.2 Dedekind.

Dedekind's career.

His paper introducing modular functions.

The function $\text{val}(z)$ and its fundamental domain.

The role of the Schwarzian and hypergeometric equations.

Dedekind's η-function.

Modular equations.

Dedekind's approach based on the lattice-idea and invariance under $\text{SL}(2, \mathbb{Z})$, familiar from the theory of quadratic forms.

5.3 Galois theory, groups and fields.

Galois on solvability by radicals.

And on the reducibility of the modular equation.

The rediscovery of his work in 1846, culminating in Jordan's theory of permutation groups.
Kronecker and Dedekind elaborated a Galois theory of groups and equations which led to the concepts of field theory. 184-188

Klein's approach to group theory. 188

5.4. The Galois theory of modular equations, c. 1858.

Betti [1853] rederived Galois's result that the modular equation of degree $p + 1$ reduces to one of degree p when $p = 5, 7, 11$ but for no higher p. 190

Hermite [1858] showed that when $p = 5$ the reduced form of the equation coincides with the general quintic, so solving the quintic equation by modular functions. 190-193

Kronecker [1858a, b] showed that the corresponding reduction when $p = 7$ produces an equation of degree 7 invariant under 168 permutations of the roots, and conjectured that only these 7th degree equations are solvable by modular equations. 194

The Galois groups (for $p = 5, 7, 11$) were calculated explicitly. 194-195

5.5. Klein.

He interpreted the modular equation in terms of the absolute invariant J of an elliptic integral. J agrees with Dedekind's functions val. The modular equation interpreted as a Riemann surface over the complex J sphere; the particular case when this surface is of genus zero. Reducibility similarly considered. The role of the regular solids. 198-206
Chapter Six. Some algebraic Curves.

6.1 Algebraic Curves, particularly quartics.

Plücker [1834] on the $3n(n - 2)$ inflection points of a plane curve of degree n, and, [1839], on its $\frac{1}{2} n(n - 2)(n^2 - 9)$ bitangents obtained via Plücker's formulae.

Jacobi [1850] derived the estimate for the bitangents independently.

Plücker showed [1839] that the 28 bitangents to a quartic can all be real.

Steiner [1848, 1852] on the configuration of the 28 bitangents.

Hesse [1855a] on systems of curves touching a given a curve.

Hesse's study of the 28 bitangents to a plane quartic in terms of a sextic curve in a space and the 28 lines joining eight points in space. Special configurations of points on a quartic.

Geiser [1869] on the connection between the 28 bitangents and the 27 lines on a cubic surface.

6.2 The theory of Abelian functions

Weierstrass [1853, 1856] on the inversion of systems of hyper-elliptic integrals.

He used a topological argument to reduce the study of Abelian functions on a curve T to a study of functions on a simply connected region T' obtained from T by making 'cuts'.
Dirichlet's principle gave him functions on T'. 225

The moduli obtained on crossing the cuts. 225

Integrands of the first, second, and third kind on T,
and the functions obtained by integrating them. 225-226

The Riemann inequality. 226

All Abelian functions can be obtained by Riemann's argument. 227

Abel's theorem. 229-232

Clebsch [1864] on the converse of Abel's theorem. 233-234

Jacobi inversion, and Riemann's θ function 235

Riemann's period relations guarantee the existence of the
function θ. 236

The zeros of θ. 237-238

Roch on the Riemann-Roch theorem. 240

6.3 Function theoretic Geometry.

θ-characteristics, the odd characteristics correspond to
bitangents. 242-243

Riemann [1862] studied the bitangents via the associated
characteristics. 246-249

Clebsch [1864] extended these results, as did Roch [1866]
and Weber [1876]. 250-254

6.4 Klein

Klein [1878/79] on the group G_{168} as a congruence subgroup of
$\text{PSL}(2;\mathbb{Z})$. 256-257

The fundamental region for G_{168}, and the corresponding algebraic
curve. 257-259
The curve has genus 3, and may be given the equation
\[x^3y + y^3z + z^3x = 0, \]
which embeds it in \(\mathbb{P}^2 \).

The inflection points, bitangent points, and sextactic points can be identified in the fundamental region.

The work of Dyck.

Hurwitz [1881] on modular functions reintroduces Eisenstein's series to exclude elliptic function theory completely from the theory of modular functions.

Chapter Seven. Automorphic Functions.

7.1 Lamé's Equation.

Hermite and Fuchs on the Lamé equation, Quasi-periodic functions, the work of Picard [1879, 1880] and Halphen [1884].
Fuchs's generalization of Jacobi inversion, the introduction of a new class of functions.

7.2 Poincaré.

Biographical details
Correspondence with Fuchs; the birth of Fuchsian functions.
Poincaré's earliest work on linear differential equations, the prize essay of 1880.
His later account of his discovery of the significance of non-Euclidean geometry.
The three supplements to the essay.

7.3 Klein.

His work in 1880, 1881.
7.4 1881

Klein initiates correspondence with Poincaré.

Poincaré's first papers, Fuchsian groups, θ-Fuchsian functions, non-Euclidean geometry.

Klein on fundamental polygons.

The Dirichlet principle unknown to Poincaré.

Poincaré on the connection with linear differential equations.

Kleinian groups and functions, three-dimensional non-Euclidean geometry.

Uniformization of algebraic curves.

Priorities, Klein v. Fuchs.

Poincaré's memoir of 1881 a summary of his work to date.

Klein's reply.

The discovery of 'Grenzkreis' theorem.

Poincaré's approach compared to Klein's.

Klein's discussion with Schwarz.

Klein's "Neue Beiträge ..." [1882].

Klein's health collapsed.

Poincaré's 'Acta' papers of 1882, and a look at his subsequent work.

PART II, Appendices, Notes, and Bibliography.

Appendix 1, Schwarz and Schottky on conformal representation 1
Appendix 2, Klein's later group-theoretic approach 9
Appendix 3, Other responses to Riemann's theory of Abelian functions 19
Appendix 4, On the history of non-Euclidean geometry 25
Appendix 5, Fuchs's inversion problem 36
Notes 42
Bibliography 95
Some principal figures, showing their age in 1870.

Niels Hendrik Abel, 1802 - 1829, (d.).

Enrico Betti, 1823 - 1892, (47).

Jean-Claude Bouquet, 1819 - 1885, (51).

Francesco Brioschi, 1824 - 1897, (46).

Charles-Auguste Briot, 1817-1882, (53).

Augustin Louis Cauchy, 1789 - 1857, (d.).

Arthur Cayley 1821 - 1895, (49).

Rudolf Friedrich Alfred Clebsch, 1833 - 1872, (37).

Peter Gustav Lejeune Dirichlet, 1805 - 1859, (d.).

Ferdinand Gotthold Max Eisenstein, 1823 - 1852, (d.).

Leonhard Euler, 1707 - 1783, (d.).

Ferdinand Georg Frobenius, 1849 - 1917, (21).

Immanuel Lazarus Fuchs, 1833 - 1902, (37).

Evariste Galois, 1811 - 1832, (d.).

Carl Friedrich Gauss, 1777 - 1855, (d.).

Paul Gordan, 1837 - 1912, (33).

Georges Henri Halphen 1844 - 1889, (26).

Charles Hermite, 1822 - 1901, (48).

Ludwig Otto Hesse, 1811 - 1874, (59).

Adolph Hurwitz, 1859 - 1919, (11).

Carl Gustav Jacob Jacobi, 1804 - 1851, (d.).

Leopold Kronecker, 1823 - 1891, (47).

Ernst Eduard Kummer, 1810 - 1893, (60).

Adrien Marie Legendre, 1752 - 1833, (d.).

Carl Neumann, 1832 - 1925, (38).

Charles Emile Picard, 1856 - 1941, (14).
Julius Plücker, 1801 - 1868, (d.).

Henri Poincaré, 1854 - 1912, (16).

Victor Alexandre Puiseux, 1829 - 1883, (50).

Georg Friedrich Bernhard Riemann, 1826 - 1866, (d.).

Gustav Roch, 1836 - 1866, (d.).

Ludwig Schlafli, 1814 - 1895, (56.).

Hermann Amandus Schwarz, 1843 - 1921, (27).

Jacob Steiner, 1796 - 1863, (d.).

Karl Theodor Wilhelm Weierstrass, 1815 - 1897, (55).
CHAPTER I HYPERGEOMETRIC EQUATIONS AND MODULAR TRANSFORMATIONS

This chapter gives a short account of the work of Euler, Gauss and Kummer on the hypergeometric equation, with some indication of its immediate antecedents and consequences. It looks very briefly at some of the work of Gauss, Legendre, Abel and Jacobi on elliptic functions, and in particular at their work on modular functions and modular transformations. It concludes with a description of Cauchy's theory of linear differential equations. There are many omissions, some of which are rectified elsewhere in the literature. The sole aim of this chapter is to provide a setting for the work of Riemann and Fuchs on linear ordinary differential equations, to be discussed in Chapters II and III, and for later work on modular functions, discussed in Chapters V and VI.

1.1 Euler and Gauss.

Euler gave two accounts of the differential equation

\[x(1-x) \frac{d^2y}{dx^2} + [c - (a+b+1)x] \frac{dy}{dx} - aby = 0 \] (1.1.1)

and the power series which represents one solution of it:

\[y = 1 + \frac{ab}{1.c} x + \frac{a(a+1)b(b+1)}{1.2.c.(c+1)} x^2 + \ldots , \] (1.1.2)

now known as the hypergeometric equation and the hypergeometric function respectively. Here y is a real valued function of a real variable x and a, b, and c are real constants. The earlier account occupies four chapters of the *Institutiones Calculi Integralis* [1769, Vol. II, Part 1,
Chs. 8-11], the later one is a paper [1794] presented to the St.
Petersburg Academy of Science in 1778 and published in 1794.

In the paper Euler demonstrated that the power series satisfies
the differential equation, and conversely, that the method of undeter-
termined coefficients yields the power series as a solution to the
differential equation. In the Institutiones he considered the slightly
more general equation

\[x^2(a + bx^n) \frac{d^2y}{dx^2} + x(c + ex^n) \frac{dy}{dx} + (f + gx^n)y = 0 \]

(1.1.3)

which has two solutions of the form

\[y = Ax^\lambda + Bx^{\lambda+n} + Cx^{\lambda+2n} + \ldots \]

where \(\lambda \) satisfies \(\lambda(\lambda+1)a + \lambda c + f = 0 \). When the two values of \(\lambda \) obtained
from this equation differ by an integer Euler derived a second solution
containing a logarithmic term. The substitution \(x^n = u \) reduces Euler's
equation to

\[n^2u^2(a + bu) \frac{d^2y}{du^2} + [(a + bu)n(n-1)u + nu(c + eu)] \frac{dy}{du} + (f + gu)y = 0 \]

(1.1.4)

which would be of the hypergeometric type if \(f \) were zero and one could
divide throughout by \(u \).

Euler, following Wallis [1655], used the term 'hypergeometric' to
refer to a power series in which the \(n \)th term is \(a(a+b)\ldots(a+(n-1)b) \).
The modern use of the term derives from Johann Friedrich Pfaff, who
developed his student Disquisitiones Analyticae (vol. I, 1797) to functions
expressible by means of the series. Pfaff's purpose was to solve the
hypergeometric equation and various transforms of it in closed form,
and he gave many examples of how this could be done. His view of a power
series expansion of a function seems to have been the typical view of his day;
namely that they were a means to the end of describing the function in
terms of other, better understood, functions.

The view that a large class of functions can be understood using power series without a reduction of this kind being possible is one of the characteristic advances made by his student Gauss.

Much has been made of Gauss's legendary ability to calculate with large numbers, and mention of this will be made below, but Gauss was also a prodigious manipulator with series of all kinds. He himself said many of his best discoveries were made at the end of lengthy calculations, and much of his work on elliptic functions moves in a sea of formulae with an uncanny sense of direction. Of course, Gauss's skills as a reckoner with numbers are unusual, even amongst mathematicians, whereas the ability to think in formulae is much more common; one is struck as often by the technical power of great mathematicians as by their profundity. Nonetheless, some mathematicians have the ability more than others. It is present in a high degree in Euler, Gauss, and Kummer, but much less in Klein or Poincaré. Certainly it enabled Gauss to leave the circumscribed eighteenth century domain of functions and move with ease into the large class of functions known only indirectly. This move confronts all who take it with the question: when is a function 'known'?, to which there were broadly speaking two answers. One was to develop a theory of functions in terms of some characteristic traits which can be used to mark certain functions out as having particular properties. Thus one might seek integral representations for the functions, and be able to characterize those functions for which such-and-such a kind of representation is possible. The second answer is to side-step the
question and to regard the inter-relation of functions given in power series as itself the answer. Of course, most mathematicians adopted a mixture of the two approaches depending on their own success with a given problem. We shall see that Gauss was happy to publish a work of the second kind on the hypergeometric series, and that the work of the Berlin school led by Weierstrass regarded the study of series as a corner-stone of their theory of functions, as Lagrange had earlier. On the other hand, Riemann and later workers, chiefly Klein and Poincaré, sought more geometric answers. Fuchs, although at Berlin, adopted an interestingly ambiguous approach.

It is almost impossible to describe Gauss. Gifted beyond all his contemporaries he was doubly isolated: by the startling novelty of his vision, and by a quirk of history which produced no immediate successors to the French and German (rather, Swiss) mathematicians who had dominated the eighteenth century. In 1800 Lagrange was 64, Laplace 51, Legendre 48, Monge 54. Contact with them would have been difficult for Gauss because of the Napoleonic war, and perhaps distasteful, given his conservative disposition. His teachers, Pfaff (then 35) and Kaestner (81) were not of the first rank, nor, unsurprisingly, were his contemporaries Bartels and W. Bolyai. By the time there were young mathematicians around with whom he could have conversed (Jacobi, Abel, or the generation of Cauchy and Fourier) he had become confirmed in a life-long avoidance of mathematicians. His contact was with astronomers, notably Bessel, in whose subject he worked increasingly. Only the tragic figure of Eisenstein caught Gauss's imagination towards the end of his life.

Gauss, it is said, wrote much but published little. This is most true of his work on elliptic functions, of which he published almost nothing. The vast store of discoveries left in the Nachlass account for most of the disparity between what he knew and what he saw fit to
print. There is no space here for an adequate account of Gauss's approach to elliptic functions, and only one aspect can be discussed, which bears most closely on the themes of this chapter.

Gauss discovered for himself the arithmetico-geometric mean (agm) when he was 15. It is defined as follows for positive numbers a_0 and b_0:

$$a_1 = \frac{1}{2}(a_0 + b_0), \quad \text{their arithmetic mean, and}$$

$$b_1 = \sqrt{a_0 b_0}, \quad \text{their geometric mean.}$$

The iteration of this process, defining

$$a_{n+1} = \frac{1}{2}(a_n + b_n),$$

$$b_{n+1} = \sqrt{a_n b_n}, \quad \text{for } n \geq 1,$$

produces two sequences $\{a_n\}$ and $\{b_n\}$ which in fact converge to the same limit, a, called the agm of a_0 and b_0. Convergence follows from the inequality $a_{n+1} - b_{n+1} < \frac{1}{2}(a_n - b_n)$. Gauss wrote $M(a, b)$ for the agm of a and b. Plainly $M(\lambda a, \lambda b) = \lambda M(a, b)$, and Gauss considered various functions of the form $M(1, x)$. For example $M(1, 1+x) = M(1 + \frac{x}{2}, \sqrt{(1+x)})$, so setting $x = 2t + t^2$ he obtained a power series expansions with undetermined coefficients for M in terms of x and then in terms of t, from which the coefficients could be calculated. They display no particular pattern, but various manipulations led Gauss to the dramatic series for the reciprocal of $M(1+x, 1-x)$:

$$y = M(1+x, 1-x)^{-1} = 1 + \frac{1}{4} x^2 + \frac{9}{64} x^4 + \frac{25}{256} x^6 + \ldots$$

$$= 1 + \left(\frac{1}{2}\right)^2 x^2 + \left(\frac{1.3}{2.4}\right)^2 x^4 + \left(\frac{1.3.5}{2.4.6}\right)^2 x^6 + \ldots$$

(1.1.5)
As a function of x, y satisfies the differential equation
\[(x^3 - x) \frac{d^2y}{dx^2} + (3x^2 - 1) \frac{dy}{dx} + xy = 0,\]
and Gauss found another linearly independent solution $M(1, x)^{-1}$.

The connection with elliptic integrals was discovered by Gauss on 30 May 1799, as he tells us in his diary [1917, entry 98]. He considered

the *lemniscatic integral* $\int_0^\frac{\pi}{2} \frac{dx}{(1-x^2)^{1/2}}$, for which $\int_0^1 \frac{dx}{(1-x^2)^{1/2}} = \frac{\pi}{2}$, and showed that $M(1, \sqrt{2}) = \frac{\pi}{2} \sqrt{2}$ "to eleven places". This alerted him to the possibility of making a much more general discovery applicable to any complete elliptic integral, and he was able to claim such a result almost exactly a year later [diary entries 105, 106 May 1800]. He took

$$\int_0^\frac{\pi}{2} \frac{d\phi}{(1-k^2 \cos^2 \phi)^{1/2}},$$

expanded the denominator as a power series in $\cos^2 \phi$,

used the known integrals

$$\int_0^\frac{\pi}{2} \cos^{2n} \phi d\phi = \frac{1 \cdot 3 \cdot \ldots \cdot (2n-1) \pi}{2 \cdot 4 \cdot \ldots \cdot 2n},$$

and found

$$\int_0^\frac{\pi}{2} \frac{d\phi}{(1-k^2 \cos^2 \phi)^{1/2}} = \frac{\pi}{M(1+k, 1-k)} = \frac{\pi}{M(1, (1-k^2)^{1/2})}$$

(1.1.6).

The hypergeometric equation is readily obtained from the equation for $M(1+x, 1-x)^{-1}$ by the substitution $x^2 = z$, when it becomes

$$z(1-z) \frac{d^2y}{dz^2} + (1 - 2z) \frac{dy}{dz} - \frac{1}{4} y = 0.$$

(1.1.7)
This is a form of Legendre's equation and is a special case of the general hypergeometric equation, as will be seen, in which \(a = \beta = \frac{1}{2}, \gamma = 1\). Gauss has obtained an expression for a period of the elliptic integral
\[
\int_0^\pi \frac{d\phi}{(1 - k^2 \cos^2 \phi)^{\frac{3}{2}}}
\]
as a function of the modulus \(k\).

In 1827, Gauss made a study of a function more or less inverse to \(M\), expressing the modulus as a function of the quotient of the periods. These later discoveries will be described in due course, for they remained unpublished until 1876 [Gauss Werke III, 470-480], by which time others had made them independently.

Gauss only published the first part of his study of the hypergeometric equation, [1812a] in 1812. The second part, [1812b], found amongst the extensive Nachlass, follows on from the first, in numbered paragraphs (§§38-57).

Gauss's published paper is not remarkable by Gauss's standards, but even so it has several claims to fame: it considers \(x\) as a complex variable; and it contains the earliest rigorous argument for the convergence of a power series and a study of the behaviour of the function at a point on the boundary of the circle of convergence, as well as a thorough examination of continued fraction expansions for certain quotients of hypergeometric functions. Part two is given over to finding several solutions of the hypergeometric equation and the relationships between them, and will be of more concern to us in the sequel.

In part 1 Gauss observed that the series
\[
1 + \frac{a\beta}{1.\gamma} x + \frac{a(a+1)\beta(\beta+1)}{1.2 \gamma(\gamma+1)} x + \ldots
\]
is a polynomial if either \(a-1\) or \(\beta-1\) is a negative integer, and is not defined at all if \(\gamma\) is a negative integer or zero (this case he excluded).
In all other cases the series is convergent for \(x = a + bi \), by the ratio test, provided that \(a^2 + b^2 < 1 \).

He gave, following Pfaff [1797], a list of functions which can be represented by means of hypergeometric functions and then introduced the idea of contiguous functions (Section 2, §7): \(F(\alpha, \beta, \gamma, x) \) is contiguous to any of the six functions \(F(\alpha+1, \beta+1, \gamma+1, x) \) obtained from it by increasing or decreasing one coefficient by 1. He obtained (§14) 15 equations connecting \(F(\alpha, \beta, \gamma, x) \) with each of the fifteen pairs of its different contiguous functions by systematically permuting the \(\alpha \)'s, \(\beta \)'s, \(\gamma \)'s, \((\gamma-1) \)'s etc. and comparing coefficients. As an example, the fifteenth equation is

\[
0 = \gamma(\gamma-1) - (2\gamma - \alpha - \beta - 1)x) F(\alpha, \beta, \gamma; x) + (\gamma - \alpha)(\gamma - \beta)x F(\alpha, \beta, \gamma + 1; x) - \gamma(\gamma - 1)(1-x) F(\alpha, \beta, \gamma - 1; x).
\]

As Klein remarked [1894, 16] these establish that any three contiguous functions satisfy a linear relationship with rational functions for coefficients. They can be worked up to give linear relationships over the rational functions between any three functions of the form \(F(\alpha+m, \beta+n, \gamma+p, x) \), where \(m, n, \) and \(p \) are integers. Gauss's purpose in introducing contiguous functions was to obtain partial fractions for quotients of hypergeometric functions, e.g. \(\frac{F(\alpha, \beta+1, \gamma+1; x)}{F(\alpha, \beta, \gamma; x)} \), and hence for several familiar elementary functions. Observe that \(F = F(\alpha, \beta, \gamma; x) \),

\[
\frac{dF}{dx} = \frac{\alpha \beta}{\gamma} F(\alpha+1, \beta+1, \gamma+1; x) \quad \text{and} \quad \frac{d^2F}{dx^2} = \frac{\alpha(\alpha+1)\beta(\beta+1)}{\gamma(\gamma+1)} F(\alpha+2, \beta+2, \gamma+2; x)
\]

are contiguous in the obvious generalized sense, the relationship between them being, essentially, the differential equation itself.

In the third and final section of the published paper Gauss considered the question of the value of \(F(\alpha, \beta, \gamma, 1) \), i.e. of \(\lim_{x \to 1} F(\alpha, \beta, \gamma, x) \), at least
for real \(a, b, \) and \(c\). He introduced the gamma function in a somewhat modified form which is, perhaps, more intuitively acceptable, by defining
\[
\Pi(k, z) := \frac{1 \cdot 2 \cdots k \cdot k^z}{(z+k)(z+2k) \cdots (z+k)}
\]
where \(k\) is a positive integer, and \(n(z) := \lim_{k \to \infty} \Pi(k, z)\). The limit certainly exists for \(\text{Re}(z) \geq 0\), and \(n\) satisfies the functional equation \(n(z+1) = (z+1)n(z)\), and \(n(0) = 0\), from which it follows that \(n(n) = n!\) for positive integral \(n\); \(n\) may be called (Gauss's) factorial function, it is infinite at all negative integers. (In the usual notation, due to Legendre [1814], \(n(z) = \Gamma(z+1)\).)

The factorial function enabled Gauss to write

\[
F(a, \beta, \gamma, 1) = \frac{n(k, \gamma-1)n(k, \gamma-\alpha-\beta-1)}{n(k, \gamma-\alpha-1)n(k, \gamma-\alpha-\beta)} F(a, \beta, 1, 1),
\]

and since \(\lim_{k \to \infty} F(a, \beta, \gamma+k, 1) = 1\), he obtained (§23)

\[
F(a, \beta, \gamma, 1) = \frac{n(\gamma-1)n(\gamma-\alpha-\beta-1)}{n(\gamma-\alpha-1)n(\gamma-\beta-1)}. \]

This expression is meaningful provided \(\alpha + \beta - \gamma < 0\).

The gamma function also enabled him to attend to certain integrals, for example Euler integrals of the first kind, in Legendre's terminology

\[
\int_0^x z^{\lambda-1}(1-z)^\nu dz,
\]
which vanishes at \(z = 0\). This Gauss expressed as \(\frac{x^\lambda}{\lambda} F(-\nu, \frac{\lambda}{\nu}, \frac{\lambda}{\nu} + 1, x^\mu)\).

When \(x = 1\) the definite integral \(\int_0^1 z^{\lambda-1}(1-z)dz\) is equal to

\[
\frac{n(\nu)}{\lambda n(\nu + 1).}
\]

Gauss commented\(^8\) (§27) "Whence many relations, which the illustrious Euler could only get with difficulty, fall out at once".

As examples of spontaneous results Gauss considered the lemniscatic
integrals\(^9\) \(A = \int_0^1 \frac{dx}{(1-x^2)^{1/2}} \), \(B = \int \frac{x^2dx}{(1-x^4)^{1/4}} \) and showed

\[
A = \frac{\Pi(\frac{1}{4})\Pi(-\frac{1}{4})}{\Pi(-\frac{1}{2})}, \quad B = \frac{\Pi(\frac{3}{4})\Pi(-\frac{1}{4})}{3\Pi(\frac{1}{4})} = \frac{\Pi(-\frac{3}{4})\Pi(-\frac{1}{4})}{4\Pi(\frac{1}{4})}, \quad \text{so} \quad AB = \frac{\pi}{4}.
\]

The published paper virtually concludes with a study of a function \(\psi \). Gauss attributed to Euler the equation (now usually called Stirling's series) \(\log \Pi(z) = (z+\frac{1}{2}) \log z - z + \frac{1}{2} \log 2\pi + \frac{B_1}{1.2z} - \frac{B_2}{3.4z^3} + \frac{B_3}{5.6z^5} + \ldots \)

where \(B_1, B_2, B_3, \) etc. are the Bernoulli numbers\(^{10} \), which are defined by the expansion

\[
\frac{x}{e^x - 1} = 1 - \frac{x}{2} + \sum (-1)^{k+1} \frac{B_k x^{2k}}{(2k)!}
\]

(so \(B_1 = \frac{1}{6}, B_2 = \frac{1}{30}, B_3 = \frac{1}{42} \)). He introduced

\(\psi(z) = \log z + \frac{1}{2z} - \frac{B_1}{2z^2} + \frac{B_2}{4z^4} - \frac{B_3}{6z^6} + \ldots \) and showed \(\frac{d}{dz} \log \Pi(z) = \psi(z) \).

so \(\psi \) is the logarithmic derivative of \(\Pi \). The last paragraph is a 2 page tabulation of \(z, \log \Pi(z), \) and \(\psi(z) \) where \(0 \leq z \leq 1 \), \(z \) increases in steps of 0.01, and the tabulated values are given to 18 decimal places, thus surpassing Legendre's 12-place tables \(1814 \) of \(\log \Gamma(z) \) over the same range. The paper frequently carries calculations of specific values of functions to over 20 decimal places; such calculations were both easy and congenial to Gauss.

Gauss began the second and unpublished part of the paper, *Determinatio series nostrae per Aequationem Differentialem Secundi Ordinis*, by observing that \(P = F(\alpha, \beta, \gamma; x) \) is a solution of the differential equation

\[
(x-x^2) \frac{d^2P}{dx^2} + (\gamma - (\alpha+\beta+1)x) \frac{dP}{dx} - \alpha \beta P = 0. \tag{1.1.8}
\]

To find a second linearly independent solution he set \(1 - \gamma = x \), when the equation becomes
\[(y-y^2) \frac{d^2P}{dy^2} + (a+\beta+1-\gamma) (a+\beta+1) \frac{dP}{dy} - \alpha \beta P = 0\]

which is the first equation with \(\gamma\) replaced by \(a+\beta+1-\gamma\). It, therefore, has a solution \(F(a, \beta, a+\beta+1-\gamma, 1-x)\), and the differential equation in general has solutions of the form

\[MF(a, \beta, \gamma, x) + NF(a, \beta, a+\beta+1-\gamma, 1-x). \quad (\S 39)\]

Other solutions may arise which do not at first appear to be of this type, but, he remarked, any three solutions must satisfy a linear relationship with constant coefficients. This fact was of most use to him when transforming the differential equation by means of a change of variable. For instance, the substitution \(P = x^\mu P'\) transforms the differential equation into \((x-x^2) \frac{d^2P'}{dx^2} + (2-\gamma-(a+\beta+3-2\gamma)x) \frac{dP'}{dx} - (a+1-\gamma)(\beta+1-\gamma)P = 0\) which has the general solution:

\[P' = MF(a+1-\gamma, \beta+1-\gamma, 2-\gamma; x) + NF(a+1-\gamma, \beta+1-\gamma, a+\beta+1-\gamma; 1-x).\]

But Gauss was able to show

\[F(a, \beta, a+\beta+1-\gamma; 1-x) = \frac{\Pi(a+\beta-\gamma)\Pi(-\gamma)}{\Pi(a-\gamma)\Pi(\beta-\gamma)} F(a, \beta, \gamma; x)\]

\[+ \frac{\Pi(a+\beta-\gamma)\Pi(\gamma-2)}{\Pi(a-1)\Pi(\beta-1)} x^{1-\gamma}(1-x)^{\gamma-\alpha-\beta} F(1-\alpha, 1-\beta, 2-\gamma; x)\]

He considered various substitutions to obtain a variety of equations relating the hypergeometric functions. For instance (§47), setting \(x = \frac{\gamma}{\gamma-1}\) gives a new equation for \(P\) and \(y\), whence, setting \(P = (1-y)^\mu P'\), an equation for \(P'\) and \(y\). From this equation he deduced, when \(\mu = \alpha\),
F(a, β, γ, x) = (1-x)^α F(a, γ-β, γ, y) = (1-x)^-α F(a, γ-β, γ, \frac{x}{1-x}) \text{ and when } \nu = β

F(a, β, γ, x) = (1-x)^-β F(β, γ-α, γ, \frac{x}{1-x}).

The substitutions he considers are of two types: the following transformations of x: x = 1-y, x = \frac{1}{y}, x = \frac{y}{y-1}, x = \frac{y-1}{y}, and these transformations of P: P = x^\mu P', P = (1-x)^\mu P' for particular values of μ. These gave him several solutions to the original equation in terms of functions like F(-,-,γx) and F(-,-,-,1-x) etc., possibly multiplied by powers of x and 1-x, and also some linear identities between these solutions. He also gave an impressive calculation to illustrate the linear dependence of the three solutions

P = F(a, β, γ; x), \quad Q = x^{1-γ} F(a+1-γ, β+1-γ, 2-γ; x) \text{ and }

R = F(a, β, a+β+1-γ, 1-x) :

R = F(a, β, γ)P + F(a+1-γ, β+1-γ, 2-γ)Q, \text{ where }

F(a, β, γ) = \frac{\Pi(a+β-γ)\Pi(-γ)}{\Pi(a-γ)\Pi(β-γ)}.

The paper concluded with a discussion of certain special cases that can arise when a, β, and γ are not independent, for example when β = a+1-γ, and the quadratic change of variable x = 4y - 4y^2 can be made.

Gauss made a very interesting observation at this point. The equation has as one solution in this case F(a, β, a+β+2, 4y-4y^2) = F(2a, 2β, a+β+\frac{1}{2}, γ). If, he said, y is replaced by 1-γ, this produces F(a, β, a+β+\frac{1}{2}, 4y-4y^2) = F(2a, 2β, a+β+\frac{1}{2}, 1-γ), and one is led to the seeming paradox F(2a, 2β, a+β+\frac{1}{2}, γ) = F(2a, 2β, a+β+\frac{1}{2}, 1-γ) which equation is certainly false (§55). To resolve the paradox he distinguished between F as a function, which satisfies the hypergeometric equation, and F as the sum of an infinite series. The latter is only defined within its circle of convergence, but the former is to
be understood for all continuous changes in its fourth term, whether real or imaginary, provided the values 0 and 1 are avoided. This being so, he argued one would no more be misled than one would infer from \(\arcsin 30^\circ = \frac{1}{2} = \arcsin 150^\circ \) that \(30^\circ = 150^\circ \), for a (many-valued) function may have different values even though its variable has taken the same value, whereas a series may not.

Gauss here confronted the question of analytically continuing a function outside its circle of convergence. It was his view that the solutions of the differential equation exist everywhere but at 0, 1, \((\text{and } \infty, \text{ although he avoided the expression})\). However, their representation in power series is a local question, and the same function may be represented in different ways. In particular, the series expression may not be recaptured if the variable is taken continuously along some path and restored to its original value.

Because he here talked of continuous change in the variable in the complex number plane, one may thus infer that Gauss here is truly discussing analytic continuation, and not merely the plurality of series solutions at a given point. In later terminology, used by Cauchy and Riemann in the 1850's, a function is \textit{monodromic} if its analytic continuations always yield a unique value for the function at each point, and such considerations are called 'monodromy questions'. Gauss is therefore the first to raise the monodromy problem in the question of differential equations, albeit in the unpublished part of his paper. One may reasonably speculate that it was connected in his mind with the linear relations that exist between any three solutions at a point, but he does not say so explicitly11.

In these papers, Gauss introduced a large class of functions of a complex variable which were defined by the hypergeometric equation
and were capable of various expressions in series. The main direction of his research was in studying relationships between the series, which in turn provided information about the nature of the functions under consideration.
1.2 Jacobi and Kummer.

Gauss published only a small part of his work on elliptic functions, and made no mention of it in his paper on the hypergeometric series. Kummer, the next author to discuss the series significantly, did so with a view to using them to explore the new functions, which by then had been announced publicly, so before discussing his work it will be necessary to look briefly at the theory of elliptic functions as developed by Abel and in particular, by Jacobi\(^{12}\).

The integral \(u = \int_{0}^{\phi} \frac{d\phi}{\sqrt{(1-k^2 \sin^2 \phi)}} = \int_{0}^{x} \frac{dx}{\sqrt{[(1-x^2)(1-k^2x)]}} \), where \(x = \sin \phi \), defines an infinitely many-valued function of the upper end-point. Jacobi (and Abel independently) had the idea of studying instead the inverse functions \(\phi = \text{am}(u) \), \(x = x(u) = \sin \text{am} u \). Jacobi was from the first particularly interested in the transformation problem for this function, the change of modulus from \(k^2 \) to \(\lambda^2 \):

\[
\frac{dy}{\sqrt{[(1-y^2)(1-\lambda^2y^2)]}} = \frac{dx}{\sqrt{[(1-x^2)(1-k^2x^2)]}}.
\]

This is connected to the problem of relating the inverse functions \(\sin \text{am} u \) and \(\sin \text{am} nu \) for integers \(n \), which was suggested to him by the evident analogy with \(u = \int_{0}^{u} \frac{dx}{\sqrt{[1-x^2]}} \). But whereas the equation connecting \(\sin n \theta \) and \(\sin \theta \) has \(n \) roots, that between \(\sin \text{am} nu \) and \(\sin \text{am} u \) has \(n^2 \). Jacobi explained this in terms of the double periodicity of \(\sin \text{am} \), which, he showed, satisfied \(\sin \text{am}(u + 4K) = \sin \text{am}(u + 2iK') = \sin \text{am} u \), where \(K: = \int_{0}^{1} \frac{dx}{\sqrt{[(1-x^2)(1-k^2x^2)]}} \) and \(K': = \int_{0}^{1} \frac{dx}{\sqrt{[(1-x^2)(1-k'^2x^2)]}} \) are the periods, and \(k'^2: = 1-k^2 \) is the so-called complementary modulus. Jacobi in his Fundamenta Nova [1829]
gave explicit rational transformations of the kind he sought,
\[y = \frac{U(x)}{V(x)} \], and when \(U \) was a polynomial of order \(p \) said the transformation was of order \(p \). To take one of his examples, corresponding to the transformation of order 3, if the periods of the integral taken with modulus \(\lambda \) are \(\Lambda \) and \(\Lambda' \), then one asks for \(\frac{\Lambda'}{\Lambda} = 3 \frac{K'}{K} \).

Jacobi found that the substitution

\[y = \frac{x(a + a'x^2)}{1 + b'x^2} = \frac{U(x)}{V(x)} \]

where \(a = 1 + 2a \), \(a' = a^2 \), and \(b' = a(2 + a) \) produces a complicated expression for \(\frac{dy}{\sqrt{[(1-y^2)(1-\lambda^2y^2)]}} \) of the form \(\frac{P(x)dx}{\sqrt{Q(x)}} \), where \(P(x) \) is of degree 4 and \(Q(x) \) of degree 6. But, for suitable \(\lambda \), \(P(x) \) occurs squared as a factor of \(Q(x) \) and the expression in \(y \) reduces to

\[\frac{dx}{M'[(1-x^2)(1-k^2x^2)]} \]

where \(a' = \sqrt{\frac{3}{\lambda}} \), so, setting \(4/k = u \) and \(4/\lambda = v \), he obtains this equation connecting the moduli \(k \) and \(\lambda \):

\[u^4 - v^4 + 2uv(1 - u^2v^2) = 0. \]
[1829 §13 = 1969, I, 74]

This equation, and the others like it for transformations of higher order, will be discussed in Chapter V, when their significance as polynomial equations will be discussed in the context of the emerging Galois theory. Jacobi also derived differential equations connecting \(k \) and \(\lambda \), and since it was these equations which interested Kummer, they will be presented here.

Legendre, in his *Traité des Fonctions Elliptiques et des Intégrales* Éulériennes [1825, vol I, Ch.13] had derived the equation
\[k(1-k^2) \frac{d^2Q}{dk^2} + (1-3k^2) \frac{dQ}{dk} - kQ = 0 \] (1.2.2)

for the periods \(\Lambda \) and \(2iK' \) as functions of the modulus \(k \), by differentiating the complete integral

\[\int_0^{\frac{\pi}{2}} \frac{d\phi}{(1-k^2 \sin^2 \phi)} \]

with respect to \(k \). Jacobi argued [Fund. Nova §32-34=1969, I, 129-138] that if \(Q = aK + bK' \) and \(Q' = a'K + b'K' \) are two solutions of Legendre's equations then their quotient satisfies

\[\frac{d}{dk} \left(\frac{Q'}{Q} \right) = -\frac{\pi}{2} \left(\frac{ab' - a'b}{k(1-k^2)} \right) \frac{dk}{Q^2}. \]

The same equations hold for the periods \(\Lambda \) and \(\Lambda' \) taken with respect to a different modulus \(\lambda \)

\[(\lambda - \lambda^3) \frac{d^2L}{d\lambda^2} + (1 - 3\lambda^2) \frac{dL}{d\lambda} - \lambda L = 0. \]

So, if \(\lambda \) is obtained from \(k \) by a transformation of order \(n \), i.e. \(\Lambda' = \frac{nK'}{K} \), then \(\Lambda = \frac{K}{M} \), and the corollary of Legendre's equation implies that

\[\frac{ndk}{k(1-k^2)\lambda^2} = \frac{d\lambda}{\lambda(1-\lambda^2)\Lambda^2}, \]

from which it follows that

\[M^2 = \frac{1}{n} \frac{\lambda(1-\lambda^2)dk}{k(1-k^2)d\lambda} \]

If \(n \) is fixed and \(M \) is regarded as a function of \(k \) then Legendre's equations can be used to eliminate \(M \) from this equation, and the result is

\[14) \]
This equation, which may be called Jacobi's differential equation for the moduli, was one of the targets of Kummer's work. It has amongst its particular integrals the quotients of solutions of Legendre's equations:

\[
\frac{a'K + b'K'}{aK + bK'} = \frac{a'\Lambda + \beta \Lambda'}{a\Lambda + \beta \Lambda'} .
\]

The second part of Gauss's paper on the hypergeometric series raises two main types of question. First, it would be useful to have a systematic account of the solutions obtained by the various substitutions, and of the nature of the substitutions themselves. Second, it would be instructive to connect the hypergeometric functions with the newer functions in analysis, especially in complex analysis, such as the elliptic functions. It is striking that Kummer's 1836 paper [Kummer 1836 Collected Papers, II] sets itself both these tasks and resolves them while, moreover, observing Gauss's restrictions where the work would otherwise be too difficult (for example, by considering only real coefficients).

Ernst Eduard Kummer (1810-1893) had studied Mathematics at Halle, after first intending to study Protestant theology - a common enough false start - and in 1836 was a lecturer at the Liegnitz Gymnasium. His earliest work was in function theory, but from the mid-1840's onwards he concerned himself with algebraic number theory, which he came to dominate, and he is also remembered for his quartic surface.
with 16 nodal points. Leopold Kronecker was one of his students at Liegnitz, and with Kronecker and Weierstrass Kummer dominated the Berlin school of mathematics from 1856 until his retirement in 1883. He was a gifted teacher and organizer of seminars; he concerned himself greatly with the fortunes of his many students, and his students were correspondingly devoted to him. He was also a man of great charm, and he had a great appetite for administration, being dean of the University of Berlin twice, rector once, and perpetual secretary of the physics-mathematics section of the Berlin Academie from 1863 to 1878. Although he never attended a lecture by Dirichlet, he considered him to have been his real teacher, and this is perhaps reflected in the topics which he came to study most closely.

Kummer alluded briefly to other discussions of the hypergeometric equation at the start of his long paper [1836]. Of Gauss's paper he remarked: "But this work is only the first part of a greater work as yet unpublished, and wants comparison of hypergeometric series in which the last element x is different. This will therefore be the principal purpose of the present work; the numerical application of the discovered formulae will preferably be made to the elliptic transcendents, to which in great part the general series corresponds". To elucidate the first problem, Kummer sought the most general transformation there could be between two hypergeometric equations. He considered

\[
\frac{d^2y}{dx^2} + \frac{\gamma-(a+b+1)x}{x(1-x)} \frac{dy}{dx} - \frac{a\beta y}{x\delta x} = \frac{d^2y}{dx^2} + p \frac{dy}{dx} + qy = 0, \quad \text{and} \quad (1.2.4)
\]

\[
\frac{d^2v}{dz^2} + \frac{\gamma-(a'+b'+1)z}{z(1-z)} \frac{dv}{dz} = \frac{a'b'v}{z(1-z)} = \frac{d^2v}{dz^2} + p \frac{dv}{dz} + Qv = 0 , \quad (1.2.5)
\]

where x and z are real. He supposed \(z = z(x) \) is a function of x, and
y = w.v where w = w(x) is a function of x to be determined. It is helpful to begin with the equations in p, q, P, Q form. The substitution y = wv reduces (1.2.4) to

\[
\left(\frac{d^2v}{dx^2} \right)w + 2 \left(\frac{dw}{dx} + pw \right) \frac{dv}{dx} + \left(\frac{d^2w}{dx^2} + pdw \right) + qw = 0. \tag{1.2.6}
\]

Equation (1.2.5) can be written as an equation with respect to x by using the relationship\(^\text{17}\) \(\frac{dv}{dz} = (\frac{dz}{dx})^{-1} \frac{dv}{dx}\), when it becomes

\[
\frac{d^2v}{dx^2} \left(\frac{dz}{dx} \right)^{-2} + \left(- \left(\frac{dz}{dx} \right)^{-3} \frac{d^2z}{dx^2} + p \frac{dx}{dz} \right) \left(\frac{dv}{dx} \right) + Qv = 0. \tag{1.2.7}
\]

Equations (1.2.6) and (1.2.7) must be constant multiples of one another, so comparing coefficients of \(\frac{dv}{dx}\) and v:

\[
2 \frac{dw}{dx} + pw = w \left(\frac{dz}{dx} \right)^2 \left(- \left(\frac{dz}{dx} \right)^{-3} \frac{d^2z}{dx^2} + p \frac{dx}{dz} \right), \text{ i.e.}
\]

\[
2 \frac{dw}{dx} \frac{dz}{dx} + w \frac{d^2z}{dx^2} + pw \frac{dz}{dx} = w \left(\frac{dz}{dx} \right)^2 p, \text{ and} \tag{1.2.8}
\]

\[
\frac{d^2w}{dx^2} + p \frac{dw}{dx} + qw = w \left(\frac{dz}{dx} \right)^2 Q.
\]

[1836, 42 = Coll.Papers 78, Kummer's equations (9) and (10)]. \(\tag{1.2.9}\)

The first equation can be integrated for, on dividing it by \(w \frac{dz}{dx}\), it becomes \(2 \frac{dw}{w} + \frac{d^2z}{dx^2} \frac{dx}{dz} p dx - P dz = 0\), so

\[
2 \log w + \log \frac{dz}{dx} + \int p dx - \int P dz = \log c, \text{ or equivalently}
\]
\[w^2 = c \cdot \left(e^{\int \frac{dz}{z}} - \int \frac{dx}{dx} \right) \frac{dx}{dz} \]

[1836, 42 = Coll. Papers 78, Kummer's equation (11)]. \hspace{1cm} (1.2.10)

Kummer now remarked that if \(z \) was known as a function of \(x \) then \(w \) would also be known as a function of \(x \), and so it is necessary to eliminate \(w \) from (1.2.8) and (1.2.9). This can be done by rewriting (1.2.8) as an equation for \(\frac{dw}{dx} \cdot \frac{1}{w} \), (1.2.9) as an equation for \(\frac{d^2 w}{dx^2} \), differentiating the first and substituting the result in the second. This leads to

\[2 \frac{d^3 z}{dx^3} \left(\frac{dz}{dx} \right)^{-1} - 3 \left(\frac{d^2 z}{dx^2} \right)^2 \left(\frac{dz}{dx} \right)^{-2} - \left(2 \frac{dp}{dz} + p - 4q \right) \frac{dz}{dx} = 0, \]

(1.2.11)

and so, he said, the only difficulty was to solve this equation and determine \(z \) as a function of \(x \).

However, if \(\phi(x) \) and \(\phi_1(x) \) are independent solutions of (1.2.4) and \(\psi(z) \) and \(\psi_1(z) \) are independent solutions of (1.2.5), then

\[A\phi(x) + B\phi_1(x) = A'\psi(z) + B'\psi_1(z). \hspace{1cm} (1.2.12) \]

Since Kummer stipulated that the transformations between the transcendental functions should be algebraic, he required algebraic solutions of (1.2.11). The general problem of finding all algebraic solutions to a differential equation appeared to him to be impossible, but in this case he had shown in an earlier paper [1834] that the general solution of (1.2.11) was of the form

\[A\phi(x) \psi(z) + B\phi(x) \psi_1(z) + C\phi_1(x) \psi(z) + D\phi_1(x) \psi_1(z) = 0. \]
Indeed, equation (1.2.10)

\[\frac{ce^{-\int p dx}}{(A\phi(x) + B\phi_1(x))^2} = \frac{e^{-\int p dz}}{(A'\psi(z) + B'\psi_1(z))^2} \]

whence

\[\frac{A\phi(x) + B\phi_1(x)}{C\phi(x) + D\phi_1(x)} = \frac{A'\psi(z) + B'\psi_1(z)}{C'\psi(z) + D'\psi_1(z)} \] (1.2.13)

is the general solution of (1.2.11).

Kummer's analysis of the cases when certain relationships exist between \(\alpha \), \(\beta \), and \(\gamma \), and accordingly quadratic changes of variable are possible, must be looked at only briefly. It led him in fact to the same paradox as Gauss, a seemingly impossible equation between

\[F(-,-,-,x) \] and a sum of two \(F(-,-,-,1/x) \)

for certain \(\alpha \)'s, \(\beta \)'s and \(\gamma \)'s. In this case either one side converges or the other but not both. Kummer took more or less Gauss's (unpublished) view that the equality meant the same function was being represented in two ways, one valid when \(x < 1 \), the other when \(x > 1 \).

But Kummer's discussion was confined to real \(x \), and so lacks the concept of continuous change in \(x \) connecting the two branches. For Kummer \(x = 1 \) is a genuine barrier; the series fail to converge and are, so to speak, kept apart. When in Chapter VII he allowed \(x \) to become complex, he did not return to this problem, so one cannot infer that he was aware of monodromy considerations. This claim is made for him by Klein [1967, 267] and Biermann, [1973, 523] and several workers risk implying it when they connect Kummer's 24 solutions with the question of monodromy. While they are making an entirely permissible interpretation of Kummer's results, it is not one made by Kummer himself.

The honour of discovery must go to Gauss, and the first to grasp the significance of the idea was Riemann.
In section II of his paper Kummer turned to the case of the hypergeometric equation, where

\[p = \frac{\gamma - (\alpha + \beta + 1)x}{x(1-x)}, \quad q = \frac{-\alpha \beta}{x(1-x)} \quad (1.2.14) \]

\[e^{\int p \, dx} = x^\gamma (1-x)^{-\gamma + \alpha + \beta + 1} \]

\[\frac{2dp}{dx} + p^2 - 4q = \frac{((\alpha - \beta)^2 - 1)x^2 + (4\alpha \beta - 2\gamma (\alpha + \beta + 1))x + \gamma (\gamma - 2)}{x^2 (1-x^2)} \]

with analogous formulae for \(P \), \(Q \) etc. in terms of \(z \).

Equation (1.2.11) becomes

\[2 \frac{d^2 z}{dx^2} \left(\frac{dz}{dx} \right)^{-3} \left(\frac{d^2 z}{dx^2} \right)^2 \left(\frac{dz}{dx} \right)^{-2} - \frac{A' z^2 + B' z + C'}{z^2 (1-z^2)} \left(\frac{dz}{dx} \right)^2 + \frac{A x^2 + B x + C}{x^2 (1-x^2)} = 0 \]

(1.2.15)

where \(A = (\alpha - \beta)^2 - 1 \),

\[B = 4\alpha \beta - 2\gamma (\alpha + \beta - 1), \]

\[C = \gamma (\gamma - 2), \]

and there are similar formulae for \(A', B', C' \).

He sought an algebraic solution to (1.2.7), under the following simplifying requirements: \(z \) is a function of \(x \) alone and so is independent of \(\alpha, \beta, \gamma, \alpha', \beta', \gamma' \); there are no relationships between \(\alpha, \beta, \gamma \) and none between \(\alpha', \beta', \gamma' \); but \(\alpha', \beta', \gamma' \) are linear combinations of \(\alpha, \beta, \gamma \) with constant coefficients\(^19\). Under these restrictions \(A' z^2 + B' z + C' \) becomes a sum of ten terms involving \(\alpha, \beta, \gamma \), specifically it is a quadratic in \(\alpha, \beta, \gamma \). So ten equations are extracted from (1.2.15) by equating to zero each coefficient of this quadratic, of which three suffice to determine \(z \). Kummer chose the coefficients of \(\gamma, \beta^2, \gamma^2 \), for which the equations are
\[\frac{-2(1-x)}{x^2(1-x)^2} = \frac{az^2 + bz + c}{z^2(1 - z)^2} \left(\frac{dz}{dx} \right)^2, \quad (1.2.16) \]

\[\frac{x^2}{x^2(1-x)^2} = \frac{a'z^2 + b'z + c'}{z^2(1 - z)^2} \left(\frac{dz}{dx} \right)^2, \quad (1.2.17) \]

\[\frac{1}{x^2(1-x)^2} = \frac{a''z^2 + b''z + c''}{z^2(1 - z)^2} \left(\frac{dz}{dx} \right)^2. \quad (1.2.18) \]

The quotient of the last two gives

\[x^2 = \frac{a'z^2 + b'z + c'}{a''z^2 + b''z + c''} \]

which must be an equation between square roots of rational functions since the quotient of (1.2.16) and (1.2.18) gives

\[2x - 2 = \frac{az^2 + bz + c}{a''z^2 + b''z + c''} \]

Accordingly Kummer (48 = Coll. Papers II 84) found \(z = \frac{ax + b}{cx + d} \).

In §6 Kummer noted that for such a function \(z \) of \(x \)

\[2 \left(\frac{d^3z}{dx^3} \right) \left(\frac{dx}{dz} \right) - 3 \left(\frac{d^2z}{dzdx} \right)^2 \left(\frac{dx}{dz} \right)^2 = 0, \]

simplifying (1.2.11) considerably. It becomes

\[\frac{Ax^2 + Bx + c}{x^2(1-x)^2} = \frac{(ad-bc)^2A'(ax+b)^2 + B'(ax+b)(cx+d)+C'(cx+d)^2}{(ax+b)^2(cx+d)^2((c-a)x+d-b)^2} \quad (1.2.19) \]

There can be no common factors either side since \(a, b, \gamma \) are arbitrary so the two numerators can only differ by a constant factor \(m \) (say). There are precisely six solutions to the two equations that arise for \(m \) by equating the numerators and denominators separately:
1. $F(a, \beta, \gamma, x)$,
2. $(1 - x)^{-\gamma - 1} F^{-1}(\gamma - a, \gamma - \beta, \gamma, x)$,
3. $x^{-\beta} F(a - \gamma + 1, \beta - \gamma + 1, 2 - \gamma, x)$,
4. $x^{-\gamma} F(1 - a, 1 - \beta, 2 - \gamma, x)$,
5. $F(a, \beta, \alpha + \beta - \gamma + 1, 1 - x)$,
6. $x^{-\gamma} F(a - \gamma + 1, \beta - \gamma + 1, \alpha + \beta - \gamma + 1, 1 - x)$,
7. $(1 - x)^{-\alpha + \beta - \gamma + 1} F(\gamma - a, \beta - \gamma - a - \beta + 1, 1 - x)$,
8. $x^{-\gamma} F(1 - a - \beta, \gamma - a - \beta + 1, 1 - x)$,
9. $x^{-\gamma} F(a - \gamma + 1, a - \beta + 1, 1 - x)$,
10. $x^{-\gamma} F(\beta - \gamma + 1, \beta - a + 1, 1 - x)$,
11. $x^{-\gamma} (1 - x)^{-\alpha + \beta - \gamma + 1} F(1 - a, \gamma - a, \beta - a + 1, 1 - x)$,
12. $x^{-\gamma} F(1 - a, \gamma - a, \beta - a + 1, 1 - x)$,
13. $(1 - x)^{-\gamma} F(a, \gamma - a, \beta - a + 1, 1 - x)$,
14. $(1 - x)^{-\gamma} F(\beta, \gamma - a, \beta - a + 1, 1 - x)$,
15. $x^{-\gamma} F(1 - a + 1, \gamma - a, \beta - a + 1, 1 - x)$,
16. $x^{-\gamma} F(1 - a + 1, \gamma - a, \beta - a + 1, 1 - x)$,
17. $(1 - x)^{-\gamma} F(a, \gamma - a, \gamma, \frac{1}{x - 1})$,
18. $(1 - x)^{-\gamma} F(\beta, \gamma - a, \gamma, \frac{1}{x - 1})$,
19. $x^{-\gamma} F(a - \gamma + 1, 1 - a, 2 - \gamma, \frac{x}{x - 1})$,
20. $x^{-\gamma} F(\beta - \gamma + 1, 1 - a, 2 - \gamma, \frac{x}{x - 1})$,
21. $x^\gamma F(1 - a, \gamma - a, \alpha + \beta - \gamma + 1, \gamma, x)$,
22. $x^\gamma F(\beta, \gamma - a, \alpha + \beta - \gamma + 1, \gamma, x)$,
23. $x^{-\gamma} F(1 - a, \gamma - a, \gamma - a - \beta + 1, \gamma, x)$,
24. $x^{-\gamma} F(\gamma - a - \beta + 1, \gamma, x)$.

Table 1.
\[
\begin{align*}
&c = 0 = b = a - d, \quad m = a^6 \\
&c = 0 = d - b = a + b, \quad m = a^6 \\
&a = 0 = d = c - b, \quad m = b^6 \\
&a = 0 = d - b = c + d, \quad m = b^6 \\
&c - a = 0 = b = c + d, \quad m = a^6 \\
&c - a = 0 = d = 0 = a + b, \quad m = b^6
\end{align*}
\] . \quad (1.2.20)

for which the substitutions are precisely \(z = x, z = 1 - x, z = \frac{1}{x} \), \(z = \frac{1}{1-x} \), \(z = \frac{x}{x-1} \), \(z = \frac{x-1}{x} \) respectively.

In the first case, there are four possible substitutions for \(a', \beta', \gamma' \), in place of \(a, \beta, \gamma \)

\((a', \beta', \gamma') = (a, \beta, \gamma) \)
\[= (\gamma - a, \gamma - \beta, \gamma) \]
\[= (a - \gamma + 1, \beta - \gamma + 1, 2 - \gamma) \]
\[= (1 - a, 1 - \beta, 2 - \gamma) \quad \text{(50 = Coll. Papers II, 86)} \]

as can be seen from the equation \(A x^2 + B x + C = A' x^2 + B' x + C' \) upon replacing \(A \) by \((a - \beta)^2 \), \(A' \) by \((a' - \beta')^2 \), and so on.

Furthermore, there are 4 substitutions in \(a, \beta, \gamma \) for each of the other substitutions of \(z \) for \(x \) giving rise to 24 solutions to the differential equations, which Kummer listed in §8. They have become known as Kummer's 24 solutions to the hypergeometric equation, and they are displayed in Table 1 \[52,53 = \text{Coll. Papers, II, 88,89}\].

Independently of Gauss, Kummer pointed out that several of these substitutions could be spotted without going through the argument above. For example (1.2.15) is unaltered by the substitution of \(\gamma' - a' \) for \(a', \gamma' - \beta' \) for \(\beta' \), so from the solution \(F(a', \beta', \gamma', z) \) the solution \((1-z)^{\gamma' - a'} \cdot F(\gamma' - a', \gamma' - \beta', \gamma', z) \) is obtained.
Kummer's analysis presents a complete answer to the first problem: what are the allowable changes of variable for the general hypergeometric equation? It immediately raises the second question: what are the solutions themselves? As Kummer pointed out (§9), there are many relationships between the solutions. Some, in any case, are equal to others, for example

\[
F(a, \beta, \gamma, x) = (1-x)^{\gamma-a-\beta} F(\gamma-a, \gamma-\beta, x)
= (1-x)^{-a} F(a, \gamma-\beta, \gamma, \frac{x}{x-1})
\]

In fact, the six families of four solutions rearrange themselves into six different families of four equal solutions: thus 1,2,17, and 18; 3,4,19, and 20; 5,6,21,22; 7,8,23,24; 9,12,13,15; and 10,11,14,16.

So to find all the linear relations between the twenty-four solutions it is enough to consider the six different ones 1,3,5,7,13,14. Of these, 5 and 7 converge or diverge exactly when 13 and 14 diverge or converge respectively. Kummer here restricted x to be real, but the observations is valid for complex x. The problem is thus reduced to finding the relations between the following triples: 1,3,5; 1,3,7; 1,3,13; 1,3,14. As an example of Kummer's results, the relationship between 1,3, and 5 is:

\[
F(a, \beta, \gamma, x) = \frac{\pi(\gamma-1)\pi(a-\gamma)\pi(\beta-\gamma)}{\pi(1-\gamma)\pi(a-1)\pi(\beta-1)} F(a-\gamma+1, \beta-\gamma+1, 2-\gamma, x \frac{x}{1-x})
\]

\[
+ \frac{\pi(a-\gamma)\pi(\beta-\gamma)}{\pi(a+\beta-\gamma)\pi(-\gamma)} F(a, \beta, a+\beta-\gamma+1, 1-x).
\]

where \(\pi \) stands for Gauss's factorial function. He listed the relationship that arise in §11 (see Table 2).
Chapter 6 of Kummer's paper is his analysis of the transcendental functions which can be represented by the hypergeometric functions. He found that \(F\left(\frac{1}{2}, \frac{1}{2}, 1, c^2\right) \) was already well known in analysis, for

\[
F\left(\frac{1}{2}, \frac{1}{2}, 1, c\right) = \frac{1}{\pi} \int_0^1 u^{-\frac{1}{2}}(1-u)^{-\frac{1}{2}} (1-c^2u)^{-\frac{1}{2}} du
\]

\[
= \frac{2}{\pi} \int_0^{\pi/2} \frac{d\phi}{(1-c^2\sin^2\phi)^{\frac{1}{2}}}
\]

\[
= F^1(c),
\]

an elliptic integral of the first kind, in Legendre's terminology [1825, 11], and

\[
F\left(-\frac{1}{2}, \frac{1}{2}, 1, c\right) = \frac{2}{\pi} \int_0^{\pi/2} (1-c^2 \sin^2 \phi)^{\frac{1}{2}} d\phi
\]

\[
= E^1(c),
\]

an elliptic integral of the second kind. Legendre had shown that

\(F^1(c) \) satisfies \((1-c^2) \frac{d^2y}{dc^2} + \frac{1-3c^2}{c} \frac{dy}{dx} - y = 0\), and that \(E^1(c) \) satisfies \((1-c^2) \frac{d^2y}{dc^2} + \frac{1-c^2}{c} \frac{dy}{dc} + y = 0\). These equations, introduced by him in [1786] (and now called Legendre's equations) were identified by Kummer as special cases of the hypergeometric equation (§29). In the course of deriving them Legendre had deduced his famous relationship between the periods of elliptic integrals:

\[
F^1(c)E^1(b) + F^1(b)E^1(c) - F^1(b)F^1(c) = \frac{\pi}{2} \text{ (where } b^2 = 1 - c^2).\]

Kummer derived this result as a consequence of his theory (§30). As has been remarked, his interest in such matters had been awakened by the related equations for the transformation of elliptic functions found by Jacobi, which had been the subject of his [1834].
Kummer concluded the paper with an unremarkable study of what happens when \(x \) is allowed to be complex but \(\alpha, \beta, \) and \(\gamma \) stay real, largely devoted to the study of special functions. The first significant advance on Kummer's work was to be made by Riemann, who went at once to a general discussion of the complex case. This will be discussed in Chapter II, after a brief look at intervening developments in the general theory of differential equations.
1.3 Cauchy's theory of the existence of solutions of a differential equation.

Cauchy's study of differential equations has been considered frequently by historians of mathematics, notably Freudenthal [1971], Kline [1972] and Dieudonné [1978]. I follow here the recent and thorough discussion of C. Gilain [1977].

Cauchy was critical of his contemporaries' use of power series methods to solve differential equations, on the grounds that the series so obtained may not necessarily converge, nor, if it does converge, need it represent the solution function. He offered two methods for solving such equations rigorously. The first, given in lectures at the École Polytechnique in 1823 and published in 1841, [Cauchy 1841] is a method of approximation by difference equations. It is nowadays known as the Cauchy-Lipschitz method, and it applies to equations

$$\frac{dy}{dx} = f(x,y)$$

where f and $\frac{\partial f}{\partial y}$ are bounded, continuous functions on some rectangle. He suggested that this theory might be extended to systems of such equations.

The second method [1835] treats a system of first order equations by passing to a certain partial differential equation. Candidates for the solution arise as power series, and Cauchy established their convergence by his "calcul des limites" or, in modern terminology, the method of majorants. In this method a series is shown to be convergent if its n^{th} term is less in modulus than the n^{th} term of a series known to be convergent. Cauchy usually took a geometric series for the majorizing series.

Gilain [1877, 14] notes that the second method supplanted the first in the minds of nineteenth-century mathematicians, and that both
were taken to establish the same theorem, although in fact they apply to different types of equation (only the second is analytic). This is in keeping with a tendency throughout the later nineteenth century to regard variables as complex rather than real. Cauchy's preference in this matter is well known, indeed he is the principal founder of the theory of functions of a complex variable, but it was often, if tacitly, understood that function theory really meant complex function theory. Since the eighteenth century had regarded functions as (piece-wise) analytic, the critical spirit of the nineteenth century at first provided a rigorous theory of analytic functions. Cauchy's own example of e^{-1/t^2}, for which the Maclaurin series at $t = 0$ is identically zero, showed that such a theory would necessarily be complex analytic (solving his second objection to the older solution methods for differential equations referred to above).

Cauchy's approach was extended by Briot and Bouquet [1856b] to consider the singularities of the solution functions. These can arise when the coefficients of the equation are singular, but may also occur elsewhere if the equation is non-linear. French mathematicians of the 1850's were much concerned with the nature of an analytic function near its singular points; Puiseux and Cauchy had already studied the singularities of algebraic functions in 1850 and 1851. Briot and Bouquet began by simplifying Cauchy's existence proof using the method of majorants, and then considered cases where it breaks down because $f(y, z)$ becomes undetermined in the equation $\frac{dy}{dz} = f(y, z)$. At such points the solution function may have a branch point and also a pole, even an essential singularity. If it has a branch point it is not single-valued, or "monodrome" in their terminology. But unless it has an essential singularity at the point in question (which may be taken to be $z = 0$) it still has a power series expansion of the form
Briot and Bouquet made a particular study [1856c] of equations of the form $F(u, \frac{du}{dz}) = 0$, where F is a polynomial, which have elliptic functions as their solutions. For such equations the solutions have finite poles but no branch points. The nature of the singular points of an analytic function was to remain obscure for a long time.

Neuenschwander [1978a, 143] has established that the point $z = \infty$ was treated ambiguously by Briot and Bouquet, and the nature of an essential singularity remained obscure until the Casorati-Weierstrass theorem was published. Near an essential singularity the function has a series expansion

$$\sum_{n=\infty}^{\infty} a_n z^n$$

but neither f nor $1/f$ can be defined at the singular point; for example, e^z near $z = \infty$, can be regarded as $e^{1/t} = \sum_{n=-\infty}^{0} \frac{t^n}{(-n)!}$ near $t = 0$ and has an essential singularity at $t = 0$. In France, Laurent [1843] had drawn attention to these points, however they had by then received a much more thorough treatment in Germany at the hands of Karl Weierstrass.

Weierstrass developed his theory independently of both Laurent and Cauchy. In his [1842] he studied the system of differential equations

$$\frac{dx_i}{dt} = G_i(x_1, \ldots, x_n) \quad 1 \leq i \leq n,$$

where the G_i are rational functions and obtained solutions in the form of power series convergent on a certain domain. He also studied differential equations whose coefficients were algebraic. Both studies were left
unpublished until 1894, although he lectured on related topics in the
Abelian functions at Berlin in 1863. In these lectures Weierstrass
connected the singular points with the domain of validity of a power
series expansion, and introduced the idea of the analytic continuation
of a function outside its circle of convergence.
CHAPTER II RIEMANN

Introductory Biography.

Bernhard Riemann died at the age of 39, yet the work he did in his brief life rivals that of Gauss and Poincaré in its significance for the development of mathematics. Much of what we know about him comes from his moving Lebenslauf, written by his friend and colleague Richard Dedekind and printed in the first edition of Riemann's Gesammelte Mathematische Werke (1876, reprinted in Riemann [1953, 541-553]). Dedekind tells us that Riemann was born in 1826, the son of a preacher, and went to Göttingen University in 1845 intending to study theology and philology. However, once at University he decided to resist those temptations, as Kummer and Gauss had done before him, and to take up mathematics. But Gauss taught only elementary subjects, so, says Dedekind, Riemann went to Berlin in 1847, attracted by the seminars of Jacobi, Dirichlet, and Steiner. Of these men Dirichlet exerted the greatest influence on him; the painfully shy young man was always grateful for Dirichlet's interest and support. Riemann spent two years in Berlin, learning number theory, the theory of definite integrals, and partial differential equations from Dirichlet, analytical mechanics and higher algebra from Jacobi, and elliptic functions from Eisenstein. In the March revolution of 1848 he joined the student corps guarding the royal castle; Eisenstein, by contrast, was arrested and beaten up for his republican sympathies (Biermann, [1971, 342]). In 1849 Riemann returned to Göttingen to pursue his interests in philosophy and experimental physics and, in particular to listen to Wilhelm Weber's lectures on electricity and magnetism. His range of interests even as a young man was considerable, but it is hard to assess the influences on him. Jacobi and Weber certainly strengthened his interest in physics, and his approach to mathematics came to rely in part on physical reasoning. This is most clear in
his appeal to Dirichlet's principle to guarantee the existence of
a function minimizing a certain integral, as well as in the general
subject of some of his papers: heat diffusion, wave motion, and
electricity. It perhaps also fits with the empiricist, anti-Kantian
tenor of his Habilitationsvortrag on geometry, which is related by
him to the philosophical views of Herbart. His philosophical learnings
come out again in his insistence on what are the necessary properties
of an object and what are extraneous to the definition as, for example,
metrics in a geometry or differentiability of a function. Riemann thus
had broad philosophical grounds for endorsing Dirichlet's general
concept of a function. Steiner's influence is harder to assess, but
it will be seen in Chapter VI that Riemann knew the geometrical theory
of algebraic curves intimately, although he apparently never gave any
references to his sources. On the other hand the geometric theory of
functions that Riemann developed seems to be entirely his own creation.
Eisenstein for one did not understand it (Biermann [1971, 342]) and the
conceptual rather than algorithmic character of Riemann's thought further
distinguishes him from his teachers
(Freudenthal [1975, 448]). Finally, Weil [1974, 101] has drawn attention
to Riemann's lack of interest in number theory, despite Eisenstein's
attempts to involve him in it. Indeed, Riemann spoke of having to
withdraw from Eisenstein for personal reasons.

In 1851 Riemann presented his inaugural dissertation on the
theory of functions of a complex variable. Although he had been
introduced to this subject by Eisenstein, his approach was quite
different; he defined such functions by means of partial differential
equations (the Cauchy-Riemann equations). The dissertation was much
praised by Gauss, and, thus encouraged, Riemann began to prepare for
his Habilitation. In autumn 1852 Dirichlet visited Göttingen, and
Riemann was able to get his advice about a topic of his Habilitations-
schrift, the theory of trigonometric series. Riemann also spent a lot
of time with W. Weber studying "the connection between electricity, galvanism, light, and gravity" (Riemann, in a letter to his brother, 1853, Lebenslauf, 547). He presented his essays on three themes for the *Habilitation* examination in December 1853, in accordance with the University regulations, expecting to be asked to lecture on the principal topic of trigonometric series. But Gauss instead chose the third topic, entitled 'On the hypotheses which lie at the foundations of geometry', for that was a matter on which he had deliberated all his life and he was curious to hear what so young a man would do with so difficult a subject. Dedekind tells us that Gauss was greatly astonished and much impressed by Riemann's lecture.

Gauss died in February 1855, and Riemann helped edit the Gauss *Nachlass*, a fact which seems not to be as well known as it might be. However, relations with Schering, the editor-in-chief, were strained, and Riemann's name does not appear in volume III of the *Werke*, which came out after his death in 1866. It is possible that his bad health, the fatal tuberculosis which drove him unsuccessfully to Italy in his last years, interfered with a job like editing manuscripts, but he was certainly familiar with several points in this *Nachlass*.

Dirichlet was soon called to Göttingen as Gauss's successor, and was able to get Riemann a small salary of 200 Thaler a year. In November 1857 Riemann was made a Professor extraordinarius, and paid 300 Thaler a year (full professors earned 2000 Thaler). It has been suggested by H. Lewy [Riemann, *Werke*, preface] that these years of self-denial sapped Riemann's health and contributed to his early death. Freudenthal [1975] notes that Riemann's health was always poor, and the *Lebenslauf* makes clear that two of his 5 siblings died before him, which would seem to strengthen that diagnosis. Riemann became a full or ordinary professor in 1859, but in 1862 his health broke down completely, and on his recovery he had to travel as often as possible
to check the development of tuberculosis. It was in these years that he came to know the Italian mathematicians, notably Betti, who later helped to advance his ideas.

There is no vivid picture of him as a lecturer and supervisor, and one might fear that the combination of shyness and profundity would make him unsuccessful in those roles, but several of his students, notably Hatten dorff and Roch, seem to have been devoted to him. However, they were unable to advance Riemann's methods against others, and much of the activity after his death was directed to finding new ways of reaching his conclusions. Much of his theory of Abelian functions was totally re-cast, and his work on differential equations was also re-derived, sometimes in ignorance of what he had already achieved. The ways in which this was done will be one of the principal concerns of the following chapters.

Spes phthisicae, the cruel irony by which tuberculosis offers the illusion of recovery to those in its final throes, gave him June and July 1866 in Italy. He died, fully conscious, his wife beside him, on 20th July. After his death his works were published, many for the first time, edited by Dedekind and H. Weber in 1876, and an extensive Nachträge was added in 1902 by M. Noether and Wirtinger. 3)
2.1 Riemann's approach to complex analysis.

The central theme of both Riemann's mathematics and his physics is that of the complex function, understood geometrically. Riemann sought to prise the independent variable of a complex function off the complex plane and free it to roam over a more general surface. This removed an unnecessary constraint upon mathematicians' attitudes to such functions, and opened the way to a topological study of their properties. To accomplish this Riemann gave a purely local definition of a complex function, so that it may be equally well regarded as defined on a patch of surface or on a part of the plane. He then sought global restrictions determining the nature of function under certain given conditions. The same dialectic between local and global properties can be found in other of his works not particularly concerned with complex variables, for example in his work on the foundations of geometry. It differs considerably from the emphasis on convergent power series and the theory of analytic continuation of his influential contemporary Karl Weierstrass. Where Weierstrass worked outwards from a function defined by an infinite series on a disc towards the complete function, and used analytic tools, Riemann sought to anchor his global ideas in the specifics of a given problem. There is an interesting contrast, within the study of differential equations, between Riemann and Lazarus Fuchs, an exponent of the Berlin school whose work is considered in the next chapter. First, however, Riemann's general view of the theory of functions of a complex variable will be considered.

The papers [1851, 1857c] have become famous for several reasons. They introduced what are now called Riemann surfaces, in the form of domains spread out over the complex plane. They presented enough tools to classify all compact orientable surfaces, and so gave a great impetus to topology. They provided a topological meaning for an otherwise unexplained constant which entered into Abel's work on Abelian
integrals (see Chapter VI), and more generally gave a geometric framework for all of complex analysis. They are thus the first mature, though obscure, papers in the study of topology of manifolds, and are equally decisive for the development of algebraic geometry and the geometric treatment of complex analysis. Riemann's own use of these ideas in his study of Abelian functions and integrals on algebraic curves is perhaps the greatest indication of their profundity, and will be described below (Chapter VI). This chapter concentrates on the implications of his idea of a complex function for the theory of differential equations, which Riemann presented in an earlier paper of 1857, the "Beiträge zur Theorie der durch Gauss'sche Reihe $F(a, \beta, \gamma, x)$ darstellbaren Functionen" [1857a]. His theory of functions will be expounded in this section, and its use in [1857a] in section 2.2.

In his inaugural dissertation [1851], Riemann defined a function of a complex variable in this way: "A complex variable w is called a function of another complex variable z if it varies with the other in such a way that the value of the derivative $\frac{dw}{dz}$ is independent of the value of the differential dz." This is equivalent to the modern definition of an analytic function w as being differentiable at z_0 (as a function of z) in such a way that $\frac{dw}{dz}$ at z_0 is independent of the path of z as it tends to z_0. The function defines a surface in \mathbb{C}^2, which Riemann said may be considered as spread out over the complex z-plane. It follows from the definition that infinitesimal neighbourhoods of z and $w(z)$ are conformally equivalent, as Riemann showed in §3, unless the corresponding variations in z and w cease to have a finite ratio to one another which he said it was tacitly assumed they did not. Riemann observed in a footnote that this matter had been thoroughly discussed by Gauss in [Gauss 1822]. Furthermore, if $w = u + vi$, the functions u and v satisfy the equations $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$, $\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$ (the
Cauchy-Riemann equations) and consequently separately satisfy

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, \quad \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0.$$

Riemann remarked (§§2-4) that these equations can be used to study the individual properties of u and v and thus the complex function $w = u + vi$.

However, he said, it is not necessary to assume z lies in \mathbb{C}. It may lie in some finite domain T, having a boundary, spread out over \mathbb{C}, and covering the plane several times. The different parts of surface covering each region of the plane are joined together at points, but not along lines. Under these conditions the number of times a point is covered is completely determined when the boundary and interior are specified, but the form of the covering may be different. More precisely, the surface winds around various branch points at which the various 'leaves' (Flächentheile, literally 'pieces of surface') are interchanged in cycles. These may be considered as copies of parts of the plane (cut by a line emanating from the branch point) and joined up according to a certain rule.

A point at which m leaves are interchanged was said by Riemann to have order $m-1$. Once these branch points are determined, so is the surface (up to a finite number of different shapes deriving from the arbitrariness in the choice of original leaf in each cycle). Functions can be defined on T provided there is not a line of exceptional points (in which case the function would not be differentiable). In a footnote Riemann observed that this restriction on the set of singular points did not derive from the idea of a function, but from the conditions under which the integral calculus can be applied. He gave as an example of a function discontinuous everywhere in the (x,y) plane the function which takes the value 1 when x and y are commensurable and the value 2 otherwise. Dirichlet [1829] had given the example of a function which takes the value c on the rationals and d on the irrationals.
The connectivity of T is important and Riemann proceeded as follows. Two parts of a surface were said to be connected if any point of one can be joined to any point of the other by a curve lying entirely in the surface. Strictly, this defines the modern concept of path connected, but the notions of connectedness and path connectedness agree here, since Riemann's surfaces are manifolds. A boundary cut [Querschnitt] is a curve which joins two boundary points without cutting itself. A (bounded) connected surface is said to be simply connected if any boundary cut makes it disconnected; it then falls into two simply connected pieces. It is said to be n-fold connected if it can be made simple connected by $n-1$ suitably chosen boundary cuts; the number n is well-defined and independent of the choice of cuts [§6]. The purpose of introducing these concepts is to generalize Cauchy's theorem on contour integration to T. In general the integral of a complex function taken around a closed curve in T which contains no poles of the function does not vanish, and Cauchy's theorem is true only when T is simply connected. From this observation the whole of the elementary theory of analytic functions can be generalized to functions satisfying the Cauchy-Riemann equations locally on T. For instance, such functions, ω, are infinitely differentiable, and locally one-to-one except near branch point. Near a branch point z' of order $(n-1)$ the function becomes one-to-one if $(z-z')^{1/n}$ is taken as the new variable. The image of T is again a surface, S, and the inverse of ω is an analytic function $z = z(\omega)$ [§15].

Furthermore, Riemann sought to prove that if a function u is given which satisfies certain conditions on the boundary of T, then it is the real part of a unique complex function which can be defined on the whole of T. He was able to show that any two simply connected surfaces (other than the complex plane itself - Riemann is only considering bounded surfaces) can be mapped conformally onto one another, and that the map is unique once the images of one boundary point and one interior point are specified; he claimed analogous results
for any two surfaces of the same connectivity \([\S 19]\). To prove that any two simply connected surfaces are conformally equivalent he observed that it is enough to take for one surface the unit disc \(K = \{ z : |z| \leq 1 \}\) and he gave \([\S 21]\) an account of how this result could be proved by means of what he later, \([1857c, 103]\), called Dirichlet's principle. He considered \([\S 16]\):

(i) the class of functions, \(\lambda\), defined on a surface \(T\) and vanishing on the boundary of \(T\), which are continuous, except at some isolated points of \(T\), for which the integral

\[
L = \int_T \left(\left(\frac{\partial \lambda}{\partial x} \right)^2 + \left(\frac{\partial \lambda}{\partial y} \right)^2 \right) dt
\]

is finite; and

(ii) functions \(\alpha + \lambda = \omega\), say, satisfying

\[
\int_T \left(\frac{\partial \omega}{\partial x} \right) \left(\frac{\partial \beta}{\partial y} \right) - \left(\frac{\partial \omega}{\partial y} \right) \left(\frac{\partial \beta}{\partial x} \right) + \left(\frac{\partial \omega}{\partial y} \right)^2 + \left(\frac{\partial \beta}{\partial x} \right)^2 dt = \Omega < \infty
\]

for fixed but arbitrary continuous functions \(\alpha\) and \(\beta\).

He claimed that \(\Omega\) and \(L\) vary continuously with varying \(\lambda\) but cannot be zero, and so \(\Omega\) takes a minimum value for some \(\omega\). The claim that this value is attained for some \(\lambda\) in the first class of functions had earlier been made by Green \([1883, \text{ pub. 1835}]\) and Gauss \([1839/40]\) but it was questioned in another context by Weierstrass \([1870]\), who showed by means of a counter-example that there is no general theorem of the kind: 'a set of functions bounded below attains its bound'. The use of Dirichlet's principle became contentious, and several mathematicians, notably Schwarz, sought to avoid it (Schwarz's work is described in an appendix). It was finally vindicated, under slightly restricted conditions,
by Hilbert [1900a] in a beautifully simple paper\(^8\).

In his next major paper on complex function theory, "Theorie der
Abel'schen Functionen" [1857c], published just after his paper on the
hypergeometric equation, Riemann recapitulated most of the above
analysis. A complex function \(w \) of \(z = x + iy \) is one which satisfies
\[
\frac{\partial w}{\partial x} = \frac{\partial w}{\partial y},
\]
and hence can be written uniquely as a power series in
\(z - a \) where \(a \) is any point near which \(w \) is continuous and single valued.

If \(w \) is defined on a subset of the complex plane it may be continued
analytically along strips of finite width. The continuation is unique
at each stage, but if the path crosses itself the function may take
different values on the overlap. If it does not it is said to be
single-valued or monodromic (\(\text{einwerthig} \)), otherwise multivalued
(\(\text{mehrwerthig} \)). Multivalued functions possess branch points; e.g. \(\log(z-a) \)
has a branch point at \(a \). The different determinations of the
function according to the path of the continuation he now called its
branches or leaves [\(\text{Zweige, Blättern} \)].

Riemann extended his analysis of surfaces to include those
without boundary by the simple trick of calling an arbitrary point
of an unbounded surface its boundary. He concluded the elementary
part of this paper by repeating his argument, based on what he now
explicitly called Dirichlet's principle, that a complex function can
be defined on a connected surface \(T \), which, on the simply connected
surface \(T' \) obtainable from \(T \) by boundary cuts,

\((i) \) has arbitrary singularities, in the sense of becoming infinite
at finitely many points in the manner of a rational function;

and

\((ii) \) has a real part which takes arbitrary values on the boundary.

Riemann was prepared to use power series or Fourier series methods
to express a function locally. He described such methods in his [1857c]
as standard techniques. Where he differed from Weierstrass was in his
emphasis on geometrical reasoning, which was avoided in Berlin. In particular Riemann was prepared to use Dirichlet's principle to guarantee the existence of functions without seeking them necessarily in any other form. For him a function was known once a certain topological property was known about it (the connectivity of the surface it defined) and once certain discrete facts were known (the nature of its singular points). The careful separation of these two kinds of data is characteristic of Riemann, and even more so is his brilliant yoking together of the two. It occurs again, for example, in his study of the zeta function \(\zeta(s) = \sum n^{-s} (\Re(s) > 2) \) [1859]. In a more diffuse form the polarity of continuous and discrete haunts nearly all his work. It also manifests itself as an interplay between global and local properties, and it is in this guise that it appears in his work on differential equations, where it will be seen that he immediately looked for the number of leaves and for the branch points of the solution functions.
2.2 Riemann's \(P \)-functions.

The paper discussed in this section presents Riemann's analysis, [1857a], of the hypergeometric functions as functions

\[
\begin{pmatrix}
 a & b & c \\
 \alpha & \beta & \gamma & z \\
 a' & b' & \gamma'
\end{pmatrix}.
\]

In the next section Riemann's remarkable extension of the theory of the hypergeometric equation as given in his lecture notes of 1858/9 will be discussed.

It will be recalled that Kummer had found 24 solutions to the hypergeometric equation in the form of a hypergeometric series in \(x, \frac{1}{x}, 1-x \) etc, possibly multiplied by some powers of \(x \) or \((1-x)\).

Each solution was therefore presented in a form which restricted it to a certain domain and the relationship between overlapping solutions was given. In [1857a] Riemann observed that this method of passing from the series to the function it represents depends on the differential equation itself. It would be possible, he said, to study the solutions expressed as definite integrals, although the theory was not yet sufficiently developed (a task soon to be taken up by Schläfli [1870] and by Riemann himself in lectures [1858/59, Nachträge 69-94].)

However, he proposed to study the hypergeometric equation according to his new, geometric methods, which were essentially applicable to all linear differential equations with algebraic coefficients.

Riemann began by specifying geometrically the functions he intended to study. Any such function \(P \) is to satisfy three properties:

1. It has three distinct branch points at \(a, b, \) and \(c \), but each branch is finite at all other points:

 \[
 \text{c}'p' + \text{c}''p'' + \text{c}'''p''' = 0;
 \]

2. A linear relation with constant coefficients exists between any three branches \(P', P'', P''' \) of the function:

3. There are constants \(\alpha \) and \(\alpha' \), called the exponents, associated with the branch point \(a \), such that \(P \) can be written as a linear
combination of two branches $P(a)$ and $P(a')$ near a, $(z-a)^{-a} P(a)$ and $(z-a)^{-a'} P(a')$ are single valued, and neither zero nor infinite at a. Similar conditions hold at b and c with constants β, β' and γ, γ' respectively.

To eliminate troublesome special cases Riemann further assumed that none of $\alpha-\alpha'$, $\beta-\beta'$, $\gamma-\gamma'$ are integers, and that, furthermore, the sum $\alpha+\alpha' + \beta+\beta' + \gamma+\gamma' = 1$.

He denoted such a function of z

$$P \left(\begin{array}{ccc}
\alpha & b & c \\
\alpha' & \beta & \gamma \\
& \beta' & \gamma'
\end{array} \right).$$

The first and third conditions express the nature of a P-function, as Riemann called them, in terms of the singularities at a, b, and c: for example, $P(a)$ is branched like $(x-a)^{\alpha}$. The second condition expresses the global relationship between the leaves and says that there are at most two linearly independent determinations of the function under analytic continuation of the various separate branches. It is not immediately clear that this information specifies a function exactly; in fact it turns out that it defines P up to a constant multiple.

When a, b, and c take the value 0, ∞, and 1 respectively, the analogy between P-functions and hypergeometric functions becomes clear. There are two linearly independent solutions of the hypergeometric equation at each singular point, they are branched according to certain expressions in α, β, and γ, and any three solutions are linearly dependent. Riemann showed that information of this kind about the solutions determines the differential equation completely. This goes some way to explaining the great significance of the equation, and to illuminating the difficulties we shall see others were to experience in generalizing from it to other equations.
It is immediate, said Riemann (§2), that any two columns
\[
\begin{pmatrix}
 a \\
 a'
\end{pmatrix}
\begin{pmatrix}
 b \\
 b'
\end{pmatrix}
\begin{pmatrix}
 c \\
 \gamma
\end{pmatrix}
\]
of the \(P \)-function or any pair of exponents, say \(\alpha \) and \(\alpha' \),
may be interchanged without changing the function it represents.

Any map \(z \to \frac{az+b}{cz+d} \) sending \((a,b,c,z)\) to \((a',b',c',z')\) satisfies
\[
\begin{pmatrix}
 a \\
 a'
\end{pmatrix}
\begin{pmatrix}
 b \\
 b'
\end{pmatrix}
\begin{pmatrix}
 c \\
 \gamma
\end{pmatrix}
\begin{pmatrix}
 z \\
 z'
\end{pmatrix}
= \begin{pmatrix}
 a \\
 a'
\end{pmatrix}
\begin{pmatrix}
 b \\
 b'
\end{pmatrix}
\begin{pmatrix}
 c \\
 \gamma
\end{pmatrix}
\begin{pmatrix}
 z \\
 z'
\end{pmatrix}
\]
So it is possible to consider merely the case
\[
\begin{pmatrix}
 1 & 0 \\
 0 & 1 \\
\end{pmatrix}
\begin{pmatrix}
 \alpha \\
 \alpha'
\end{pmatrix}
\begin{pmatrix}
 \beta \\
 \beta'
\end{pmatrix}
\begin{pmatrix}
 \gamma \\
 \gamma'
\end{pmatrix}
\begin{pmatrix}
 z \\
 z'
\end{pmatrix}
\]
which Riemann abbreviated to \(P \begin{pmatrix}
 a \\
 a'
\end{pmatrix}
\begin{pmatrix}
 b \\
 b'
\end{pmatrix}
\begin{pmatrix}
 c \\
 \gamma
\end{pmatrix}
\begin{pmatrix}
 z \\
 z'
\end{pmatrix} \).

From the information about the branching of a \(P \)-function it is
also apparent that \(z^\delta(1-z)^\varepsilon P \begin{pmatrix}
 a \\
 a'
\end{pmatrix}
\begin{pmatrix}
 b \\
 b'
\end{pmatrix}
\begin{pmatrix}
 \gamma \\
 \gamma'
\end{pmatrix}
\begin{pmatrix}
 z \\
 z'
\end{pmatrix} \) = \(P \begin{pmatrix}
 a+\delta \\
 a'
\end{pmatrix}
\begin{pmatrix}
 b-\delta-\varepsilon \\
 b'
\end{pmatrix}
\begin{pmatrix}
 \gamma+\varepsilon \\
 \gamma'
\end{pmatrix}
\begin{pmatrix}
 z \\
 z'
\end{pmatrix} \).

These changes in the exponents are contrived to preserve the exponent
differences \(\alpha-\alpha' \), \(\beta-\beta' \), \(\gamma-\gamma' \).

To investigate the global behaviour of \(P \) functions under
analytic continuation it is enough to specify their behaviour under
circuits of the branch points. When two linearly independent branches
\(P' \) and \(P'' \), say, are continued analytically in a loop around the branch
point \(a \) in the positive (anti-clockwise) direction they return as two
other branches, \(\tilde{P}' \) and \(\tilde{P}'' \), say. But then
\[
\begin{align*}
\tilde{P}' &= a_1 P' + a_2 P'' \\
\tilde{P}'' &= a_3 P' + a_4 P''
\end{align*}
\]
for some constants \(a_1, a_2, a_3, a_4 \), so in some sense the matrix
\[
\begin{pmatrix}
 a_1 & a_2 \\
 a_3 & a_4
\end{pmatrix}
\]
describes what happens at \(a \). Let \(B \) and \(C \) be the matrices
which describe the behaviour of \(P' \), \(P'' \) under analytic continuation
around \(b \) and \(c \) respectively. A circuit of \(a \) and \(b \) can be regarded as
a circuit of c in the opposite direction, so
\[
CBA = \begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}.
\]

Any closed path can be written as a product of loops around a, b, or c in same order, or, as Riemann remarked; "the coefficients of A, B, and C completely determine the periodicity of the function." The choice of the word 'periodicity' ('Periodicität') is interesting, suggesting a connection with doubly-periodic functions and the moduli ('Periodicitätsmoduli') of Abelian functions via the use of closed loops.

The idea of using such a matrix to describe how an algebraic function is branched had been introduced by Hermite [1851], but it seems that Riemann is the first to have considered products of such matrices. We shall see that he effectively determined the monodromy group of the hypergeometric equation, i.e., the group generated by the matrices A, B, C. The term 'monodromy group' was first used by Jordan [Traité, 278] and its subsequent popularity derives from its successful use by Jordan and Klein, to be discussed in Chapter IV.

For definiteness Riemann supposed \(a = 0 \), \(b = \infty \), \(c = 1 \), and chose branches \(p^a, p'^a, p^b, p'^b, p^y, p'^y \) as in (3) above. A circuit around a in the positive direction returns \(p^a \) as \(e^{2\pi ia} p^a \) and \(p'^a \) as \(e^{2\pi ia'} p'^a \) so
\[
\Lambda = \begin{pmatrix}
2\pi ia & 0 \\
0 & e^{2\pi ia'}
\end{pmatrix}
\]

To express the effect on \(p^a \) and \(p'^a \) of a circuit around \(b = \infty \) he replaced them by their expressions in terms of \(p^b \) and \(p'^b \), conducted the new expressions around \(\infty \), and then changed them back into \(p^a \) and \(p'^a \), by writing
\[
p^a = \alpha^b p^b + \alpha'_b, p'^b
\]
\[
p'^a = \alpha'^b p^b + \alpha'_b, p'^b
\]
12) or more briefly12

\[
\begin{pmatrix}
 p^\alpha \\
 p^\alpha'
\end{pmatrix} = \begin{pmatrix}
 B' & 0 \\
 0 & e^{2\pi i \beta'}
\end{pmatrix}
\begin{pmatrix}
 p^\beta \\
 p^\beta'
\end{pmatrix}
\]

Then \(B = B' \begin{pmatrix}
 e^{2\pi i \beta} & 0 \\
 0 & e^{2\pi i \beta'}
\end{pmatrix} B'^{-1} \).

By similarly conducting \(P^\alpha \) and \(P^\alpha' \) around \(c = 1 \), Riemann found

\[
C = C' \begin{pmatrix}
 e^{2\pi i \gamma} & 0 \\
 0 & e^{2\pi i \gamma'}
\end{pmatrix} C'^{-1},
\]

where \(C' \) is the matrix relating \(P^\alpha \) and \(P^\alpha' \) to \(P^\gamma \) and \(P^\gamma' \):

\[
\begin{pmatrix}
 p^\alpha \\
 p^\alpha'
\end{pmatrix} = C' \begin{pmatrix}
 p^\gamma \\
 p^\gamma'
\end{pmatrix}
\]

Since \(CBA = I \), it follows on taking determinants that

\[
\det(C) \det(B) \det(A) = e^{2\pi i (\alpha + \alpha' + \beta + \beta' + \gamma + \gamma')},
\]

so \(\alpha + \alpha' + \beta + \beta' + \gamma + \gamma' \) must be an integer, which Riemann assumed was in fact 1.

Riemann found he could express the entries in \(B' \) and \(C' \) in terms of the six exponents \(\alpha, \ldots, \gamma' \). First of all the four ratios

\[
\frac{\alpha \beta}{\alpha' \beta'}, \frac{\alpha \beta}{\alpha' \beta'}, \frac{\alpha \beta}{\alpha' \beta'}, \frac{\alpha \beta}{\alpha' \beta'}
\]

are be related to one another, for example, a positive circuit around \(c = 1 \) transforms \(P^\alpha = \alpha \gamma \gamma + \alpha \gamma' \gamma' \) into

\[
a_\gamma e^{2\pi i \gamma \gamma} + a_\gamma e^{2\pi i \gamma' \gamma'}.
\]

This circuit may also be regarded as a negative circuit around \(a = 0 \) and \(b = \infty \), and as such it transforms \(P^\alpha = \alpha \beta \beta + \alpha \beta' \beta ' \) into \((\alpha \beta e^{-2\pi i \beta \beta} + \alpha \beta' e^{-2\pi i \beta' \beta'}) e^{-2\pi i a} \), so he obtained the equation:

\[
a_\gamma e^{2\pi i \gamma \gamma} + a_\gamma e^{2\pi i \gamma' \gamma'} = (\alpha \beta e^{-2\pi i \beta \beta} + \alpha \beta' e^{-2\pi i \beta' \beta'}) e^{-2\pi i a}.
\]

Together with the original equality for \(P^\alpha : \alpha \beta \beta' + \alpha \beta' \beta ' = \alpha \gamma \gamma + \alpha \gamma' \gamma' \), this gives, multiplying the new one by \(e^{\pi i \sigma} \) and the old one by \(e^{-\pi i \sigma} \) and subtracting:
A second equation is obtained by working throughout with α'. Eliminating P_Y from both these equations by setting $\sigma = \gamma'$ gives two equations of the form

$$C'P_Y = C''P + C'''P'$$

in which, by postulate (2) the ratios $C' : C'' : C'''$ are uniquely determined. They yield the information that

$$\frac{\alpha_Y}{\alpha} = \frac{\alpha_B\sin(\alpha + \beta + \gamma')e^{-\alpha\pi i}}{\alpha_B'\sin(\alpha' + \beta + \gamma')e^{-\alpha'\pi i}} = \frac{\alpha_B',\sin(\alpha' + \beta' + \gamma')e^{-\alpha'\pi i}}{\alpha_B',\sin(\alpha' + \beta' + \gamma')e^{-\alpha'\pi i}}$$

Riemann observed that if one set $\sigma = \gamma$, thereby eliminating P_Y, then

$$\frac{\alpha_{Y'}}{\alpha_{Y'}} = \frac{\alpha_B\sin(\alpha + \beta + \gamma)e^{-\alpha\pi i}}{\alpha_B\sin(\alpha + \beta + \gamma)e^{-\alpha\pi i}} = \frac{\alpha_B',\sin(\alpha' + \beta + \gamma)e^{-\alpha'\pi i}}{\alpha_B',\sin(\alpha' + \beta + \gamma)e^{-\alpha'\pi i}}$$

These equations are consistent because $\alpha + \alpha' + \ldots + \gamma' = 1$, and $\sin \pi = \sin (1-s)\pi$, as Riemann remarked.

Thus once one ratio, say $\frac{\alpha_B}{\alpha_B'}$, is known the remaining three $\frac{\alpha_B}{\alpha_B'}$, $\frac{\alpha_Y}{\alpha_Y'}$, and $\frac{\alpha_Y'}{\alpha_Y}$ are determined. If the five quantities α_B, α_B', α_Y, α_Y', and α_Y'' are known, then the three remaining, α_B'', α_Y''', α_Y'' can be deduced. The argument must be modified slightly if any of the quantities α_B etc. vanish.

The precise values of α_B, \ldots, α_Y', can also be determined; Riemann had obtained them himself in July of the previous year. It is most convenient to do so by obtaining the differential equation which the P-function satisfies and thence comparing its various branches with various branches of the 24 solutions obtained by Kummer. To do this, one must first see that the nine quantities a, b, c, α, \ldots, γ' define P up to a constant multiple. Accordingly, in §4 Riemann let
\[P_1 = P_1 \left(\begin{array}{cccc} a & b & c \\ \alpha & \beta & \gamma & z \\ a' & \beta' & \gamma' \end{array} \right) \] be another \(P \) function. It enough to show \(\frac{1}{P} \) is always constant, in other words that \(\frac{1}{p_\alpha}, \ldots, \frac{1}{p_\gamma} \) are all equal to the same non-zero constant, for appropriate choices of \(p_\alpha, \ldots, p_\gamma \).

\(P_1 \) satisfies the same monodromy relations as \(P \), so
\[p_\alpha p_\beta - p_\alpha' p_\beta' = (\det B')(p_\beta p_\beta' - p_\beta' p_\beta) = (\det C')(p_\gamma p_\gamma' - p_\gamma' p_\gamma). \]

But \((p_\alpha p_\alpha' - p_\alpha' p_\alpha)z^{-\alpha-\alpha'} \) is single valued and finite at \(z = 0 \), as is \((p_\beta p_\beta' - p_\beta' p_\beta)z^{\beta+\beta'} \) at \(z = \infty \), and \((p_\gamma p_\gamma' - p_\gamma' p_\gamma)(1-z)^{-\gamma-\gamma'} \) at \(z = 1 \).

So \((p_\alpha p_\alpha' - p_\alpha' p_\alpha)z^{-\alpha-\alpha'}(1-z)^{-\gamma-\gamma'} \) is continuous and single valued and behaves at infinity like
\[(p_\beta p_\beta' - p_\beta' p_\beta)(1-z)^{-\alpha+\alpha'+\gamma+\gamma'} = (p_\beta p_\beta' - p_\beta' p_\beta)z^{\beta+\beta'-1} \]
which, however tends to zero as \(z \) tends to \(\infty \). So \((p_\alpha p_\alpha' - p_\alpha' p_\alpha)z^{-\alpha-\alpha'}(1-z)^{-\gamma-\gamma'} \) is bounded everywhere and must be a constant; indeed must be zero, its value at \(z = \infty \). So
\[\frac{p_\alpha'}{p_\alpha} = \frac{1}{p_\alpha}, \]
\[\frac{p_\beta'}{p_\beta} = \frac{1}{p_\beta}, \]
\[\frac{p_\gamma'}{p_\gamma} = \frac{1}{p_\gamma}. \]

It remains to ensure that \(p_\alpha' \) and \(p_\alpha'' \) do not simultaneously vanish for some \(z \neq 0, 1, \infty \). This follows from an analogous consideration of \((p_\alpha \frac{dp_\alpha'}{dz} - p_\alpha' \frac{dp_\alpha}{dz})z^{-\alpha-\alpha'+1}(1-z)^{-\gamma-\gamma'+1} \), which is a non-zero constant (provided \(\alpha \neq \alpha' \), as has been assumed).

This same argument also shows that given two branches \(P' \) and \(P'' \) of a \(P \)-function, whose quotient is not a constant, any other \(P \)-function having the same branch points and the same exponents can be expressed linearly as a sum \(C'P' + C''P'' \). The precise values of the constants
C' and C" can now be found by choosing special values of the variable z.

Riemann gave them as:

\[
\begin{align*}
\alpha_\beta &= \frac{\sin(\alpha+\beta'+\gamma')\pi}{\sin(\beta'-\beta)\pi} \\
\alpha'_\beta &= -\frac{\sin(\alpha+\beta+\gamma)\pi}{\sin(\beta'-\beta)\pi} \\
\alpha'_\gamma &= \frac{\sin(\alpha+\beta+\gamma')\pi e^{(\alpha'+\gamma')\pi i}}{\sin(\gamma'-\gamma)\pi} \\
\alpha'_\gamma &= -\frac{\sin(\alpha'+\beta+\gamma)\pi e^{(\alpha'+\gamma')\pi i}}{\sin(\gamma'-\gamma)\pi}
\end{align*}
\]

Riemann went on to study P-functions whose exponents \(\alpha, \ldots, \gamma\) and \(\bar{\alpha}, \ldots, \bar{\gamma}\), say, differ, by integers. These are Gauss's contiguous functions transformed to Riemann's setting. From the equations for \(\alpha_\beta, \alpha'_\beta, \alpha_\gamma, \alpha'_\gamma\) etc., or from the way in which the exponents govern the branching behaviour (postulate 3) it is clear that the monodromy matrices may be taken to be equal in pairs:

\[
\begin{align*}
&\begin{pmatrix}
\alpha_\beta & \alpha'_\beta \\
\alpha'_\gamma & \alpha'\gamma
\end{pmatrix} = \begin{pmatrix}
\bar{\alpha}_\beta & \bar{\alpha}'_\beta \\
\bar{\alpha}'_\gamma & \bar{\alpha}'\gamma
\end{pmatrix} = \overline{B}' \\
&\begin{pmatrix}
\alpha_\beta & \alpha'_\beta \\
\alpha'_\gamma & \alpha'\gamma
\end{pmatrix} = \begin{pmatrix}
\alpha'_\beta & \alpha'\gamma \\
\alpha'_\gamma & \alpha'\gamma
\end{pmatrix} = \overline{C}'
\end{align*}
\]

where \(\overline{B}'\) and \(\overline{C}'\) give the monodromy relations of \(P_{\alpha', \beta', \gamma', \zeta}\) at \(\infty\) and 1 respectively.

Riemann applied this to determine the differential equation a P function satisfies. If \(P, P_1,\) and \(P_2\) are three P functions whose corresponding exponents differ by integers, it follows from the vanishing of
that there is a linear relationship between $P, P_1,$ and P_2 with coefficients certain rational functions in x. In particular, this is true when $P = y, P_1 = \frac{dy}{dz}$, and $P_2 = \frac{d^2y}{dz^2}$ are considered. For simplicity, Riemann assumed $y = 0$ and found

$$(1-z) \frac{d^2y}{d\log z} - (A + Bz) \frac{dy}{d\log z} + (A' - B'z)y = 0,$$

where $A, A', B,$ and B' are constants. He found a solution to this equation valid near $z = 0$ by the method of undetermined coefficients. The solution $y = \sum_{n=0}^{\infty} a_n x^n$ must satisfy $u^2 - Au + A' = 0$. Since $u = \alpha$ or α' (by applying postulate 3) $A = \alpha + \alpha', A' = \alpha \alpha'$. In the same way, the behaviour of the solutions near ∞ is known and determines B and B' as $B = \beta + \beta', B' = \beta \beta'$. Thus $P \begin{pmatrix} \alpha & \beta & 0 \\ \alpha' & \beta' & y' \end{pmatrix} = y$ satisfies the differential equation

$$(1-z) \frac{d^2y}{d\log z} - (\alpha + \alpha' + (\beta + \beta')z) \frac{dy}{d\log z} + (\alpha \alpha' - \beta \beta' z)y = 0.$$

From the recursion formulae for the solution

$$a_{n+1} = \frac{(n+\beta)(n+\beta')}{(n+1-\alpha)(n+1-\alpha')} a_n,$$

it emerges that $a_n = \frac{\text{Constant}}{\Pi(n-\alpha)\Pi(n-\alpha')\Pi(-n-\beta)\Pi(-n-\beta')}$, and so, in the simplest case where $\alpha = 0$,

$$p^a \begin{pmatrix} 0 & \beta & 0 \\ \alpha' & \beta' & y' \end{pmatrix} = \text{const.} F(\beta, \beta', 1-\alpha', z), \text{ or equivalently } F(a, b, c, z) = \text{const.} p^a \begin{pmatrix} 0 & a & 0 \\ 1-c & b & c-a-b \end{pmatrix}.$$

From this the expression for P as an Euler integral of the second kind can be derived, P^a is

$$z^a (1-z)^{\gamma} \int_s s^{-\alpha' - \beta' - \gamma'} (1-s)^{-\alpha' - \beta - \gamma} (1-s)^{-\alpha - \beta' - \gamma} ds.$$
This established that the hypergeometric equation is the only second order linear equation whose solutions satisfy the geometric conditions of his three postulates.

Riemann gave neither the general form of the differential equation satisfied by \(P \left(\begin{array}{ccc} a & b & c \\ \alpha & \beta & \gamma \\ \alpha' & \beta' & \gamma' \end{array} ; z \right) \) — a task later accomplished by Papperitz [1889] — nor a full discussion of the \(P \)-function as an Euler integral with suitable paths for integration — matters taken up by Pochhammer [1889], Jordan [1915, 251], and Schlüfli [1870].

Riemann concluded by illuminating the relationship between \(P \) and \(F \), its hypergeometric series representation. Since \(\alpha \) and \(\alpha' \) may be interchanged,

\[
P \left(\begin{array}{ccc} a & b & c \\ \alpha & \beta & \gamma \\ \alpha' & \beta' & \gamma' \end{array} ; z \right) = P \left(\begin{array}{ccc} a' & b & c \\ \alpha' & \beta' & \gamma' \\ \alpha & \beta & \gamma \end{array} ; z \right),
\]

there are 8 \(P \) functions for each hypergeometric series in \(z \), say

\[
P \left(\begin{array}{ccc} a & b & c \\ \alpha' & \beta' & \gamma' \end{array} ; z \right) = z^{a(1-z)} F(\beta+a+\gamma, \beta'+a+\gamma, a-a'+1, z).
\]

There are six choices of variable, so 48 representations of a function as a \(P \) function.

The most immediate difference between Riemann and his predecessors is the relative lack of computation. Rather than starting from a hypergeometric series he began with a \(P \)-function having 2 branches and 3 branch-points. To be sure, any two linearly independent branches have expansions as hypergeometric series, and any three branches are linearly dependent, but the argument employed by Riemann inverted that of Gauss and Kummer. His starting point was the set of solutions, functions which are shown to satisfy a certain type of equation. Their starting point was the equation from which a range of solutions are derived. Riemann showed that a very small amount of information, the six exponents at the three branch points, entirely characterizes the equation and defines the behaviour of the
solutions. The hypergeometric equation is special in this respect, as Fuchs [1865] was able to explain, and consequently the task of generalizing the theory to cope with other differential equations was to be quite difficult.

The crucial step in Riemann's argument is his use of matrices to capture the behaviour of the solutions in the neighbourhood of a branch point. These monodromy matrices enable one to study the global nature of the solutions on analytic continuation around arbitrary paths, and were introduced by Hermite in response to Puiseux's [1850, 1851]. Puiseux had considered the effect on a branch of an algebraic function of analytically continuing it around one of its branch-points, and also the effect of integration an algebraic function over a closed path containing a branch point. Cauchy also reported on this work [Cauchy 1851]. Naturally, the question of influence arises. Riemann was sparing with references especially to contemporaries. Quick to mention Gauss, especially in works Gauss was to examine, and always willing to acknowledge his mentor Dirichlet, he otherwise usually contented himself with general remarks of a historical kind which might set the scene mathematically. Yet, as Brill and Noether said [1892-93, 283]: Riemann"... everywhere betrayed an exact knowledge of the literature..." and, they continued, (p. 286) "... evidently the fundamental researches of Abel, Cauchy, Jacobi, Puiseux provide the starting point" for his research on algebraic curves. We must suppose Riemann was one of those mathematicians who absorbed the work of others and then re-derived it in his own way. He did in fact mention Cauchy fleetingly when discussing the development of a function in power series, but never Puiseux by name. However, he tells us that his first work in Abelian functions was carried out in 1851-52 [1857c, 102], and that would fit well with a contemporary study of related French work.
The connection between Riemann's study of the hypergeometric equation itself and those of Gauss and Kummer was, fortunately, a matter on which he chose to be explicit. In the Personal Report, [1857b], on his [1857a], which he submitted to the Göttinger Nachrichten, he wrote. "The unpublished part of the Gauss's study on this series, which has been found in his Nachlass, was already supplemented in 1835 by the work of Kummer contained in the 15th volume of Crelle's Journal." This also makes clear that Riemann had spent some of 1856 looking at the Gauss treasure trove, while working on his own ideas. However, we know from his lectures, see for example [Werke 379-390], that Riemann considered the hypergeometric equation from the standpoint of the linear differential equations with algebraic coefficients, which gave the level of generality he most wanted to attain (see below, Chapter VI). How far he went in the direction will be described in the next section.
2.3 Riemann's lectures on differential equations.

Much of Riemann's work was not published until 1876 and some extracts from his notebooks and lectures were not published until Nachträge added to the 1892 in the second edition of his Werke. By then much of what he had found had been independently rediscovered, and the ideas of these images will only be briefly described here.

The publication of 1902 excited much interest and Schlesinger [1904] and Wirtinger [1904] reported on it to the Heidelberg International Mathematical Congress.

Riemann had lectured on differential equations at Göttingen in the Winter semester 1856/57, the year before he published his paper on the hypergeometric equation. In those lectures [Nachträge 67-53] he analysed the behaviour of two independent solutions of a second order linear differential equation near a branch point, b. He showed that there are two different cases which can arise. The two independent solutions, y_1 and y_2, are each transformed, under analytic continuation around b, into $ty_1 + uy_2$ and $ry_1 + sy_2$ respectively. If there is a combination $y_1 + ey_2$ which returns as $(y_1 + ey_2)$, constant then e must satisfy

$$\epsilon(t + er) = u + es. \quad (2.3.1)$$

Let ϵ satisfy this equation, and choose α so that $t + er = e^{2\pi i \alpha}$, then $(y_1 + ey_2), (z-b)^{-\alpha}$ is unaltered on analytic continuation around b, and so Riemann wrote $y_1 + ey_2 = (z-b)^{\alpha} \sum_{n=-\infty}^{\infty} a_n (z-b)^n$. The two cases arise according as $(2.3.1)$ has one root or two. If it has two roots, say ϵ and ϵ', then the corresponding α and α' are different and two independent solutions can be found which are invariant (up to multiplication by a scalar) upon analytic continuation around b.

But if, and this is the second case, $(2.3.1)$ has a repeated root, ϵ, then the second solution must have the form

$$y_1 = (z-b)^\alpha \log(z-b) \frac{e^{a_n}(z-b)^n}{-\alpha} + (z-b)^\alpha \frac{e^{-a_n}(z-b)^n}{\alpha}.$$
the second solution contains one term which is \(\log(z-b) \) times the first solution, and one term having the form of the first solution.

These two cases correspond to the cases where the monodromy matrix
\[
\begin{pmatrix}
t & u \\
r & s
\end{pmatrix}
\]
can be diagonalized and has distinct eigenvalues and where it cannot. They can be read off from the quadratic equation for the eigenvalues of the matrix, so it is quite possible to pass directly from that algebraic equation at the branch points to the analytic form of the solutions, without the intervening geometry being apparent. This has been the method usually adopted subsequently, perhaps at a cost in intelligibility. The connection between the occurrence of matrices in non-diagonal form and the presence of logarithmic terms in the solution, as described by Fuchs, Jordan and Hamburger, is discussed in the next chapter. From von Bezold's summary of these lectures \([\text{Nachträge}, 108]\) and the extract \([\text{Werk}, 379-385]\) it appears that Riemann considered the \(n \)th order case only when the monodromy matrices can be put in diagonal form \([1953a, 381]\) but gave a complete analysis of the \(2 \times 2 \) case neglecting the trivial diagonal case \(u=r=0, t=s \).

Riemann lectured on the hypergeometric equation \([\text{Nachträge}, 67-94]\) again in the Winter semester 1858-59. In Section A(67-75) he gave a treatment of his \(P \)-function in terms of definite integrals of the form
\[
\int s^a(1-s)^b(1-xs)^c ds.
\]
The theme of differential equations emerges more strongly in Section B(76-94), which teems with ideas which were not to be developed by other mathematicians until much later, and then without direct knowledge of Riemann's pioneering insights.

Riemann began by considering the equation
\[
a_0 y'' + a_1 y' + a_2 y = 0,
\]
where \(a_0, a_1, a_2 \) are function of \(z \), and
\[
y'' = \frac{d^2 y}{dz^2}, \quad y' = \frac{dy}{dz}.
\]
If \(Y_1 \) and \(Y_2 \) are independent solutions, and \(Y = Y_1 / Y_2 \), then under analytic continuation around a closed path in the \(z \) domain \(Y \) is transformed into
\[
\frac{\alpha Y + \beta}{\gamma Y + \delta},
\]
where \(\alpha, \beta, \gamma, \) and \(\delta \) are constants. The inverse function
to Y, say $z = f(Y)$, has the attractive property that $f\left(\frac{\alpha Y + \beta}{\gamma Y + \delta}\right) = f(Y) = z$, so it is invariant under all the substitutions corresponding to circuits in z.

Conversely, Riemann claimed that the inverse of any function f of Y invariant under a set of substitutions $Y \rightarrow \frac{\alpha Y + \beta}{\gamma Y + \delta} Y'$ satisfies a second order linear ordinary differential equation. For $\frac{dY}{dz}$ is transformed by the substitution

$$Y \rightarrow \frac{\alpha Y + \beta}{\gamma Y + \delta} \text{ into } \frac{dY'}{dz} = \frac{d}{dz}\left(\frac{\alpha Y + \beta}{\gamma Y + \delta}\right) = \frac{\alpha \delta - \beta \gamma}{(\gamma Y + \delta)^2} \frac{dY}{dz} = \frac{1}{(\gamma Y + \delta)^2} \frac{dY}{dz},$$

assuming, as Riemann did, that $\alpha \delta - \beta \gamma = 1$.

So, setting $Y_1 = \frac{(dY)^{-1}}{dz}$, $Y_2 = Y \left(\frac{dY}{dz}\right)^{-1}$,

Y_1 and Y_2 are two particular solutions of the equation $y'' + a_2 y = 0$,

where $a_2 = -\frac{d^2}{dz^2} \frac{dY}{dz}$ is, moreover, an algebraic function (it is

$$\frac{d^2Y_2}{dz^2} \frac{dY_1}{dz} - \frac{d^2Y_1}{dz^2} \frac{dY_2}{dz} = \frac{1}{16}.$$ Riemann observed that this analysis is very important for the study of algebraic solutions of a differential equation. I cannot find that the idea of specifying the monodromy group in advance of the differential equation was taken up by anyone before Poincaré in 1880, who undoubtedly came to it independently (see Chapter VII). It is the origin of Hilbert's 21st problem, see Hilbert [1900b]. The conformal mapping properties of $f(Y)$ were studied by Schottky, see Appendix 1. Riemann then turned to the hypergeometric equation and took the constants $\alpha, \alpha', \beta, \beta', \gamma, \gamma'$ to be real. Then the real axis is mapped by Y, the quotient $P^a/P^{a'}$, onto a triangle with sides the real interval $[0, Y(1)]$, a straight line from 0, and circular arc from $Y(1)$. The angles of this triangle are $\pi(\alpha - \alpha')$ at 0, $\pi(\gamma - \gamma')$ at $Y(1)$, and $\pi(\beta - \beta')$ where the two other sides meet. The function takes every value inside this triangle exactly once. Conversely, the inverse function
$Z = Z(Y)$ is single valued inside the triangle, since $\frac{dY}{dz}$ never vanishes, and maps it onto the upper half plane.

This triangle will be a spherical triangle if the angles
\[\lambda \pi = (\alpha - \alpha') \pi \text{ at } Z = 0, \mu \pi = (\beta - \beta') \pi \text{ at } Z = \varphi, \nu \pi = (\gamma - \gamma') \pi \text{ at } Z = 1 \]
are such that \[\lambda + \mu + \nu > 1. \]
Riemann studied the particular cases when this is so which are connected to the quadratic and cubic transformations that can sometimes be made to a P-function, so this is a convenient place to record what he had earlier found in [1875a, § 5]. Let $P(z_1)$ and $\tilde{P}(z_2)$ denote P-functions of their respective arguments, possibly with different exponents. A quadratic transformation replaces z by \sqrt{z}, and one wants to define $\tilde{P}(z) := P(z)$. This clearly forces $\tilde{P}(z) = \tilde{P}(-z) (= P(z^2))$, so the exponent difference at 0 in the \sqrt{z}-domain must be -1. There are singular points at $\sqrt{z} = +1$ and $\sqrt{z} = -1$ which must have the same exponent difference, say $\gamma - \gamma'$, and the exponents at $\sqrt{z} = \infty$ are, say 2β and $2\beta'$. The map $\sqrt{z} \rightarrow z$ therefore maps the quadrilateral

and one has the P-function relation

\[
P\begin{pmatrix} \infty & 0 & 1 \\ 0 & \beta & \gamma \\ \frac{1}{2} & \beta' & \gamma' \end{pmatrix} = P\begin{pmatrix} -1 & \infty & 1 \\ \gamma & 2\beta & \gamma' \\ \gamma' & 2\beta' & \gamma'' \end{pmatrix}
\]

Entirely similar considerations of the transformation $\frac{1}{2}z \rightarrow z$ show that

\[
P\begin{pmatrix} \infty & 0 & 1 \\ 0 & \infty & \frac{1}{2} \\ \frac{1}{3} & \frac{1}{3} & \gamma' \end{pmatrix} = P\begin{pmatrix} 1 & \infty & \frac{2}{2} \\ \gamma & \gamma & \gamma' \\ \gamma' & \gamma & \gamma'' \end{pmatrix}
\]

is also possible. So quadratic and cubic transformations can be made if the exponents are suitable.
Riemann wrote $P(\mu, \sigma, \frac{1}{3} x)$, $P(\mu, 2\sigma, \mu, x_1)$, and $P(\sigma, 2 \mu, \sigma, x_2)$ when he wanted to display the exponent differences, where $x = 4x_1(1-x_1) = 1/4x_2(1-x_2)$. These transformations he discussed in the Nachtrag extract.

If x lies in triangle AOB, then x_1 lies in ADB and x_2 in ACB. Conversely, it was straightforward for him to show that the rational function of x which transforms AOB into ADB is necessarily of the form $x = cx_1(1-x_1)$ for some constant c, which can be normalized to $c = 4$.

This gave him a geometric interpretation of the quadratic transformations of the P function. He also knew that the regular solids provide further examples in which the function mapping the triangle onto the half-plane is algebraic. There is no suggestion, however, that Riemann knew these are essentially the only example of such functions. The recognition of that fact had to wait for Klein (see Chapter IV). Riemann did not consider the problem of analytically continuing Y around several circuits of the branch points, when the image triangles may overlap (unless $\lambda \pi, \mu \pi,$ and $\nu \pi$ are the angles of a regular solid with triangular faces), and an idea Schwarz was the first to develop (see Chapter IV).

Finally, Riemann considered the periods K and iK' of an elliptic integral as functions of the modulus k^2, and considered a branch of the function $\frac{K'}{K}$. As k^2 goes from 0 to 1, $\frac{K'}{K}$ is real and goes from ∞ to 0. The part of the real axis ($-\infty, 0$) is mapped onto the right half line through $-i$ parallel to the real axis, the part $(1, \infty)$ is mapped onto a semicircle centre 2 radius $\frac{1}{2}$ (see figure p. 60).

So one branch of $\frac{K'}{K}$ maps the values of $\frac{k^2}{k}$ on the real axis into the figure bounded by two horizontal straight lines and a semicircular arc. As k^2 ranges over the upper half plane $\frac{K'}{K}$ takes every value exactly once within this domain. When k^2 was allowed to vary over the plane, Riemann found that each branch of $\frac{K'}{K}$ mapped a half plane into a
similar circular arc triangle in the right-hand half plane, and \(\frac{K'}{K} \) takes every value exactly once in that space, whatever circuit \(k^2 \) performs about 0, 1, \(\infty \). So, given an arbitrary function, \(Y(z) \) say, with branch points at 0, 1, and \(\infty \), setting \(z' = \phi(z) \), where \(k^2 = \phi\left(\frac{K'}{K}\right) \), produces \(Y(z) \) which is single valued in \(z \).

The question of the boundary values of \(\frac{K'}{K} \) was also considered by Riemann and the fragment he left [Riemann Werke 455-465] was discussed by Dedekind [Riemann Werke 466-479]. The matter is a subtle one with number-theoretic and topological implications, and Dedekind was able to develop it to advantage when Fuchs, on Hermite's instigation, raised it again in 1876. This will be discussed below, in Chapter V.
CHAPTER III LAZARUS FUCHS

Introduction.

In the years 1865, 1866, and 1868 Lazarus Fuchs published three papers, each entitled "Zur Theorie der Linearen Differentialgleichungen mit veränderlichen Coefficienten". These will be surveyed in this chapter. In them he characterized the class of linear differential equations all of whose solutions have only finite poles and possibly logarithmic branch points. So, near any point x_0 in the domain of the coefficients, the solutions become singled-valued upon multiplication by a suitable power of $(x-x_0)$. This class came to be called the Fuchsian class, and equations in it equations of the Fuchsian type. As will be seen, it contains many interesting equations, including the hypergeometric. In the course of this work Fuchs created much of the elementary theory of linear differential equations in the complex domain: the analysis of singular points; the nature of a basis of n linearly independent solutions to an equation of degree n when there are repeated roots of the indicial equation; explicit forms for the solution according to the method of undetermined coefficients. He investigated the behaviour of the solutions in the neighbourhood of a singular point, much as Riemann had done, by considering their monodromy relations - the effect of analytically continuing the solutions around the point - and, like Riemann, he did not explicitly regard the transformations so obtained as forming a group. One problem which he raised but did not solve was that of characterizing those differential equations all of whose solutions are algebraic. It became very important, and is discussed in the next chapter.
Fuchs's career may be said to have begun with these papers. Born in Moschin near Posen in 1833, he went to Berlin University in 1854 and started his graduate studies under Kummer, writing his dissertation on the lines of curvature of a surface (1858), and then papers on complex roots of unity in algebraic number theory\(^1\).

Just as Fuchs was the first to present his thesis to the new Berlin University under Kummer's direction, so his friend Koenigsberger was the first to present one under Weierstrass's. But where Kummer's lectures were always clear and attractive, Weierstrass at first was a disorganized lecturer, and Fuchs does not seem to have come under his influence until Weierstrass lectured on Abelian functions in 1863. Weierstrass's approach was based on his theory of differential equations, and that subject became Fuchs's principal field of interest, Fuchs in turn becoming its chief exponent at Berlin.

When Fuchs presented his Habilitationsschrift in 1865 Kummer was the principal referee and Weierstrass the second, but by 1870 Fuchs spoke of himself as "a pupil of Weierstrass" (letter to Casorati, quoted in Neuenschwander [1978b, p46]).

In 1866 Fuchs succeeded Arndt at Berlin, before going to Greifswald in 1868. He returned to Berlin in 1884 as Professor Ordinarius, occupying the chair vacated by Kummer. His friend Koenigsberger described him as irresolute and anxious, a temporizer and one easily persuaded by others, but humorous and unselfish. He played a weak role in the battle between Weierstrass and Kronecker that polarized Berlin in the 1880's, disappointing Weierstrass thereby, and was no match for Frobenius in the 1890's, but several of his students, notably Schlesinger, spoke warmly of him.
3.1 Fuchs's theory of linear differential equations.

Of Fuchs's three papers considered here, the [1866] is the most important. Its first three sections are identical with those of the [1865] but thereafter it diverges to give a much more thorough analysis of the case where the monodromy matrices have repeated eigenvalues and logarithmic terms enter the solution. It was also published in a more accessible journal, Crelle rather than the Jahresbericht of the Berlin Gewerbeschule and it was more widely read. [1868], regarded by Fuchs as the concluding paper in the series, goes into more detail in special cases, extends the method to inhomogeneous equations of the appropriate kind, and discusses accidental singular points - the unusual case when a singularity of the coefficients does not give rise to a singularity in the solution. Therefore the two earlier papers will be considered first.

The study of complex functions and their singularities was a matter of active research at this time. The general method used in Berlin was the analytic continuation of power series expansions. If the function could be expanded as a series of the form \(\sum_{n=0}^{\infty} a_n (z-a)^n \), convergent on some disc with centre \(z = a \), then \(a \) was a non-singular point. If a fractional power of \((z-a) \) appeared in the expansion then \(a \) was a branch point, and it was a logarithmic branch point if an arbitrary power \(a \) appeared. No distinction was made between single-valued, many-valued and even infinitely many-valued 'functions'. All were referred to as functions and distinguished as single-valued or many-valued as appropriate (and that usage will be followed here). If a function was analytic in a neighbourhood of \(z = a \) Fuchs and others called it finite and continuous; the term 'regular' introduced by Thome \(^{(2)} \) (see below, p102) will sometimes be used here.

The points at which a function became infinite were called its points of discontinuity, but the nature of these points was obscure \(^2 \). Several writers, for example Briot and Bouquet, equivocated over whether the function was defined at that point (and took the value \(\infty \)) or was not
defined at all. However, Weierstrass had developed the theory of
power series expansions\(^3\) of the forms \(\sum_{n=k}^{\infty} a_n(z-a)^n\) in 1841, although
he did not publish it until 1894, and on the basis of this theory he made a
clear distinction between functions admitting a finite "Laurent"
expansion, which are infinite at \(z = a\), and those of the second kind,
which are not defined at \(z = a\). The behaviour of a function near
such singular points depends dramatically on the kind of expansion
they admit. In the former case its value tends to infinity, but in
the second case the Casorati-Weierstrass theorem asserts that it
comes arbitrarily close to any pre-assigned value. Neuenschwander
[1978a, 162] has considered the history of this theorem and finds
that "Weierstrass had the Casorati-Weierstrass theorem already in
the year 1863", the year he lectured on Abelian functions. So Fuchs
has picked the largest class of linear differential equations whose
solutions can be defined at every point of the domain of the coefficients,
including their singular points.

When Fuchs published his first paper on the theory of linear
differential equations in 1865, he quite correctly stated that the
task facing mathematicians was not so much to solve a given differential
equation by means of quadratures, but rather to develop solutions
defined at all points of the plane\(^4\). Since analysis, he said,
teaches how to determine a function if its behaviour in a neighbourhood
of its points of discontinuity and its multiple-valuedness can be
ascertained, the essential task is to discover the position and nature
of these points. This approach had been carried out, he observed,
by Briot and Bouquet in their paper [1856b] on the solution of
differential equations which are of the form \(f(y, \frac{dy}{dx}) = 0\), where
\(f(y, \frac{dy}{dx})\) is a polynomial expression in \(y\) and \(\frac{dy}{dx}\), and by Riemann in his 1857
lectures on Abelian functions. Fuchs proposed to investigate homogeneous
linear ordinary differential equations. The conventions of
his 1865 and 1866 papers will be followed fairly closely if such an equation is written as

\[\frac{d^n y}{dx^n} + p_1 \frac{d^{n-1} y}{dx^{n-1}} + \ldots + p_{n-1} \frac{dy}{dx} + p_n y = 0, \quad (3.1.1) \]

where \(p_1, \ldots, p_n \) are single-valued meromorphic functions of \(x \) in the entire complex \(x \)-plane, or on some simply-connected region \(T \subset \mathbb{C} \).

Fuchs called the points in \(T \) where one or more of the \(p_i \) were discontinuous singular points, a term he attributed to Weierstrass, and he assumed each \(p_i \) had only finitely many singular points\(^5\).

Fuchs first considered the solution of (3.1.1) in a neighbourhood of a non-singular point \(x_0 \), and showed that it is a single-valued, finite, continuous function which is prescribed once values for \(y, \frac{dy}{dx}, \ldots, \frac{d^{n-1} y}{dx^{n-1}} \) are given at \(x = x_0 \). His method was to replace (3.1.1) by a second differential equation known to have a solution in a neighbourhood of \(x_0 \) and so related to (3.1.1) that its solution guarantees the existence to a solution to (3.1.1). The question of convergence was thus handled by Cauchy's method of majorants, much as Briot and Bouquet had done.

To obtain the new equation Fuchs let \(M_i = \max_{x \in U} |p_i(x)| \), where \(U \) is the neighbourhood of \(x_0 \), let \(a_1 \) be the nearest singular point to \(x_0 \) and \(r = |a_1 - x_0| \) be the distance between them, and defined new functions \(\phi_i(x) = \frac{M_i}{x-x_0}, (i = 1, \ldots, n) \). Then, as Briot and Bouquet had shown \([1856b, 137]\):

\[\left| \frac{d^k p_i}{dx^k} \right|_{x=x_0} \leq \left| \frac{d^k \phi_i}{dx^k} \right|_{x=x_0} \quad \text{for every integer } k. \]

The new differential equation

\[\frac{d^n u}{dx^n} + \phi_1 \frac{d^{n-1} u}{dx^{n-1}} + \ldots + \phi_n u = 0 \quad (3.1.2) \]
is reduced by the substitution $\frac{x-x_0}{r} = z$ to one of the form

$$(1 - z) \frac{d^n u}{dz^n} + M_1 r \frac{d^{n-1} u}{dz^{n-1}} + \ldots + M_n r^n u = 0,$$

which can be solved by the method of undetermined coefficients. The equation yields a recurrence relation for the coefficients b_k in the power series $u = \sum_{k=0}^{\infty} b_k z^k$, and the solution so obtained is valid whenever $|z| < 1$. This in turn gives a solution of (3.1.2) in the form

$$u = \sum_{k=0}^{\infty} b_k (x-x_0)^k$$

valid whenever $|x-x_0| < r$ and from the recurrence relation for the b_k's it is at once apparent that this solution is determined by the values of u, $\frac{du}{dx}$, \ldots, and $\frac{d^{n-1} u}{dx^{n-1}}$ at $x = x_0$. But, for all integers k there are functions A_{ki} and B_{ki} obtained from (3.1.1), (3.1.2) by repeated differentiation such that

$$\frac{d^k u}{dx^k} + A_{kl}(x) \frac{d^{n-1} u}{dx^{n-1}} + \ldots + A_{kn}(x) y = 0$$

and

$$\frac{d^k u}{dx^k} + B_{kl}(x) \frac{d^{n-1} u}{dx^{n-1}} + \ldots + B_{kn}(x) u = 0$$

and, by construction, $|B_{ki}(x_0)| > |A_{ki}(x_0)|$, $k = 0, 1, \ldots$

$$i = 0, \ldots, n.$$

and so the power series solution to (3.1.2) dominates the power series solution to (3.1.1), which is also obtained by the method of undetermined coefficients, and which must therefore converge. Furthermore, since the solutions are of the form $\sum_{n=0}^{\infty} a_n (x-a)^n$, it immediately follows that the singular points of the solution can only be located amongst the singular points of the coefficients $p_1(x)$, \ldots, $p_n(x)$. They are therefore fixed, and determined by the equation. This is in sharp contrast with the case of non-linear differential equations, where the singular points may depend on arbitrary constants involved in the solutions 6,7.
To study the solutions in the neighbourhood of a singular point Fuchs proceeded as Riemann had. With the singular points removed, T becomes a multiply connected region, T', and if circles are drawn enclosing each singular point and the circles joined by cuts to the boundary of T a simply connected region T'' is marked out. Inside T'' a single-valued, continuous, and finite solution y of (3.1.1) can be found by the methods just described, which can be represented by an infinitely many leaved surface spread over T', the leaves joining along the cuts in a fashion to be determined.

The special case of the second-order equation.

In order to make Fuchs's argument more immediately comprehensible I shall specialize to the case of a second-order differential equation

$$\frac{d^2y}{dx^2} + p_1 \frac{dy}{dx} + p_2 y = 0.$$ \hspace{1cm} (3.1.3)

Fuchs worked throughout with an equation of degree n, and I shall indicate the more general results later (pp 76 ff).

Two different sets of initial data at some point x_0 specify two particular solutions y_1 and y_2, which can always be chosen so that D does not vanish at $x = x_0$.

$$D := \begin{vmatrix} \frac{dy_1}{dx} & y_1 \\ \frac{dy_2}{dx} & y_2 \end{vmatrix}$$

A general solution η can be written

$$\eta = c_1 y_1 + c_2 y_2$$

where c_1, c_2 are constants, as can be seen by solving

$$\eta_0 = c_1 y_1(x_0) + c_2 y_2(x_0)$$

$$\eta'_0 = c_1 \frac{dy_1}{dx}(x_0) + c_2 \frac{dy_2}{dx}(x_0).$$

Fuchs called a system y_1, y_2 of solutions for which D vanishes nowhere
in T' and which always admits equation \(\eta = c_1 y_1 + c_2 y_2 \) to hold between any three solutions a fundamental system (nowadays called a basis). In particular, between any three branches of a solution \(y \) there is a linear relation of this kind. It is easy to see that the determinant \(D \) can never vanish in T'.

\[
\begin{vmatrix}
\frac{d^2 y_1}{dx^2} & y_1 \\
\frac{d^2 y_2}{dx^2} & y_2 \\
\end{vmatrix}
\]

Then

\[-Dp_1 = D', \text{ and } \frac{d}{dx} D = D', \text{ so }
\]

\[-p_1 = \frac{d}{dx} (\log D) \text{ or } D = C e^{\int -p_1 dx} , \]

and since \(p_1 \) is holomorphic in T', \(D \) is never zero. Fuchs proved theorems on the freedom to choose the elements of a fundamental system, nowadays familiar from the theory of finite dimensional vector-spaces, but here developed ad hoc, as was often the case in the contemporary work of Weierstrass and Kronecker. Then Fuchs gave a method for producing new solutions from old. Suppose \(y_1 \) is a solution already known, \(y_1 \neq 0 \), and set \(y_2 = y_1 \int z dx \), where \(z \) satisfies the differential equation

\[\frac{dz}{dx} + q_1 z = 0, \text{ where } q_1 = p_1 + \frac{d}{dx} \log y_1 . \]

Then \(y_1 \) and \(y_2 \) form a fundamental system for the original equation, for, if they did not, an equation

\[c_1 y_1 + c_2 y_1 \int z dx = 0 \]

would be possible with \(c_1, c_2 \) not both zero.

But then \(c_1 + c_2 \int z dx = 0 \), and so

\[c_2 z = 0, \text{ by differentiating, whence } c_2 = 0, \text{ which in turn forces } c_1 = 0 \]

and this gives a contradiction.
Fuchs next showed that the prescribed conditions on \(p_1, p_2 \) imply that at least one solution of the equation would be single-valued upon multiplication by a suitable power of \(x-a_1 \), where \(a_1 \) is a singular point. Let \(y_1 \) and \(y_2 \) be a fundamental system near \(a_1 \), and \(\tilde{y}_1 \) and \(\tilde{y}_2 \) the result of analytically continuing the solutions \(y_1 \) and \(y_2 \) once round \(a_1 \). There are then equations of the form

\[
\begin{align*}
\tilde{y}_1 &= a_{11}y_1 + a_{12}y_2 \\
\tilde{y}_2 &= a_{21}y_1 + a_{22}y_2
\end{align*}
\]

where the \(a \)'s are constants, and \(a_{11}a_{22} - a_{12}a_{21} \neq 0 \).

Fuchs showed that the roots of the equation

\[
\begin{vmatrix}
a_{11} - w & a_{12} \\
a_{21} & a_{22} - w
\end{vmatrix} = 0 \quad (3.1.4)
\]

are independent of the choice of fundamental system, and neither can be zero. Let \(w_1 \) be one of them, then \(y_1 \) can be chosen so that \(y_1 = w_1 y'_1 \), and if \(w_1 = e^{2\pi i r} \), say, then \(y_1(x-a_1)^{-r} \) has the required property of being single-valued near \(a_1 \). The case in which \((3.1.4)\) has repeated roots was first discussed by Fuchs in his [1865] then more fully in the later papers, and will be described below (p. 76) when it will be seen that the general solution involves a logarithmic term. Indeed, if the transformations are

\[
\begin{align*}
\tilde{y}_1 &= wy_1 \\
\tilde{y}_2 &= y_1 + wy_2
\end{align*}
\]

(which is the general case if \(w_1 = w_2 = w \)) then the solutions must be of the form

\[
\begin{align*}
y_1 &= (x-a_1)^r \phi_1 \\
y_2 &= (x-a_1)^r \phi_2 + (x-a_1)^r \phi_1 \log(x-a_1)
\end{align*}
\]

where \(\phi_1 \) and \(\phi_2 \) are single-valued and holomorphic near \(a_1 \) and \(w = e^{2\pi i r} \).

So the general solution is \((x-a_1)^r \phi\), where \(\phi \) is a polynomial in \(\log(x-a_1) \) with holomorphic coefficients.

The natural question was then: what conditions must be placed on \(p_1 \) and \(p_2 \) so that all the solutions are regular, i.e., have only finite poles at the singular points \(a_1, ..., a_p, a_{p+1} = \infty \), and are at worst
logarithmic. Upon multiplication by a suitable power of \((x-a_i)\) or \(\frac{1}{x}\) from now on Fuchs took \(\infty\) to be a singular point, and \(T\) to be \(\mathbb{C} = \mathbb{C} \cup \{\infty\}\), so the coefficient functions must be rational functions, i.e. quotients of polynomials in \(x\). His solution to this question [1865, §4, 1866, §4] produced a class of differential equations readily characterized by the purely algebraic restrictions upon the coefficients \(p_i\); this class has become known as the Fuchsian class, and such equations will henceforth be referred to as 'equations of the Fuchsian class'.

Fuchs himself always preferred more modest circumlocutions. (The phrase "Fuchsian equation" refers to a much more general linear differential equation; see below, Chapter VII.)

To answer this question he took a fundamental system \(y_1, y_2\) such that near \(a_i, y_k = (x-a_i)^{\alpha_k} e^{\alpha_k} (k = 1, 2)\) for some single-valued function \(\alpha_k\). If \(I\) denotes the pair \((y_1, y_2)\) by \(\alpha\) then the \(\alpha\)

\[9) \text{y}_1 = y_1 + y_2, \text{y}_2 = y_1 - y_2. \]

(i > 1) are related to \(\alpha\) by equations \(\alpha_1 = B_{12}^{-1}\), \(B_{12}\) matrices of constants, and if the analytic continuation of \(\alpha_1\) once around \(a_1\) produces \(\alpha_2\) then \(\alpha_2 = R_1 \alpha_1\). Likewise a circuit of \(a_i\) produces \(\alpha_i = R_i \alpha_i\) and the analytic continuation of \(\alpha_i\) around \(a_i\) produces \(B_i R_i B_i^{-1} \alpha_i\) and, since a circuit of the finite singular points \(a_1, \ldots, a_p\) is simultaneously a circuit of \(a_{p+1}\) in the opposite sense,

\[10) \text{R}_1 \text{B}_2 \text{B}_2^{-1} \ldots \text{B}_{p+1} \text{B}_{p+1}^{-1} = I, \text{the identity matrix} \]

so

\[\det \text{R}_1 \ldots \det \text{R}_{p+1} = 1.\]

But

\[\det \text{R}_i = \omega_i^{\alpha_i} = e^{2\pi i (\alpha_i + \alpha_i)}/2\]

so

\[\sum_{i=1}^{p+1} (\alpha_i + \alpha_i) = k \text{ is an integer.} \]

Fuchs's notation, and his use of the monodromy matrices, follows Riemann's here. He even wrote his matrices in brackets, \((R)_{1}^{1}, (B)_{1}^{1}\), and so forth. It is likely that Kummer encouraged Fuchs to follow Riemann's ideas; Kummer had earlier commented most favourably on the thesis of Riemann's student Prym. On the other hand his study of the eigenvalues
of these matrices is in the thorough-going Berlin spirit.

The integer k was made precise in the following way (the calculations lead immediately to Fuchs's main theorem). By decree every solution valid near a_i, y_j^i, is to have the form of a function which apart from a logarithmic term becomes single-valued upon multiplication by a suitable power of $(x - a_i)$, say

$$y_j^i = (x - a_i)^{r_{ij}^i} \phi_j^i,$$

where ϕ_j^i is a polynomial in $\log(x - a_i)$ whose coefficients are expressible as power series in $(x - a_i)$,

and Fuchs insisted that r_{ij}^i be chosen so that, as he put it, ϕ_j^i is non-zero at a_i and only infinite like an expression of the form

$$L = c_0 + c_1 \log(x - a_i).$$

Thus the integer part of r_{ij}^i equals s_{ij}^i. If the ω-equation does not have repeated roots, it is easier to consider that the r_{ij}^i are chosen just large enough to kill the poles in the ϕ_j^i at a_i.

Then for each fundamental system Fuchs formed

$$\Delta^i_0 := \begin{vmatrix} \frac{dy_1^i}{dx} & y_1^i \\ \frac{dy_2^i}{dx} & y_2^i \end{vmatrix}, \quad \Delta^i_1 := \begin{vmatrix} \frac{d^2y_1^i}{dx^2} & y_1^i \\ \frac{d^2y_2^i}{dx^2} & y_2^i \end{vmatrix}, \quad \text{and} \quad \Delta^i_2 := \begin{vmatrix} \frac{dy_1^i}{dx} & \frac{d^2y_1^i}{dx^2} \\ \frac{dy_2^i}{dx} & \frac{d^2y_2^i}{dx^2} \end{vmatrix},$$

where $\Delta^i_k p_k = -\Delta^i_k$, $k = 1, 2$.

Now $\Delta^i_k = \det B^i_k$, $k = 0, 1, 2$,

so Δ^i_0 and Δ^i_1 behave everywhere in the same way. Also

analytic continuation shows that Δ^i_k returns as Δ^i_k, where

$$\Delta^i_k = \det R^i_k \Delta^i_k,$$

so Δ^i_k is of the form $(x-a_i)^\epsilon \psi$, where ψ is single-valued near a_i and ϵ satisfies $e^{2\pi i \epsilon} = \det R^i$. In particular, note that Δ^i_k can contain no logarithmic term. even if ϕ_j^i does, therefore

$$\Delta^i_0 (x-a_i)^{-\Gamma_1} \text{ and } \Delta^i_0 (x-a_i)^{-\Gamma_1}.$$
are finite, continuous, and single-valued near \(a_1\) and \(a_i\) respectively, where

\[
\Gamma_i = \sum_{k} r_{ik} - 1 = r_{i1} + r_{i2} - 1, \quad 1 \leq i \leq \rho.
\]

Accordingly \(K_0 = \Delta_0^1(x-a_1)^{-\Gamma_1} \cdots (x-a_\rho)^{-\Gamma_\rho}\) is finite, continuous, and single-valued for all finite \(x\); but at \(\infty\) \(\Delta_0^{\rho+1}\) has a pole of order at most

\[
(r_{\rho+1,1} + r_{\rho+1,2}) + 1, \text{ so } K_0 \text{ has a pole at } \infty \text{ of order at most}
\]

\[
\rho + 1
\]

Fuchs evaluated \(k\) by showing \(K_0\) must be a constant. Indeed, since the elements of a fundamental system may be chosen freely he was able to suppose that

\[
y^i = y_1 \int z \, dx,
\]

and that the solution of the differential equation for \(z\) has the properties of being, after multiplication by some power of \(x-a_i\), everywhere finite and single valued. Now \(\Delta_0^i = C \cdot (y_1^i)^2 \cdot z_i\), so \(\Delta_0^i(x-a_i)\) and \(\Delta_0^1(x-a_i) - \Gamma_i\) do not vanish\(^3\) at \(x = a_i\), and nor (since they have no logarithmic term) can they be infinite at \(a_i\). Similarly \(\Delta_0^{\rho+1} x^{\rho+1}\) and \(\Delta_0^1 x^{\rho+1}\) are neither zero nor infinite at \(x = \infty\). It was shown earlier that

\[
\Delta_0^i = C e^{-\int_{b_1} p_1 \, dx}, \text{ so accordingly } e^{-\int_{b_1} p_1 \, dx} (x-a_i)^{-\Gamma_i} \text{ is finite and non-zero near } a_i,
\]

and therefore \(\lim (x-a_i) p_1\) is finite. Consequently \(x^{a_i} (x-a_i)^{-1}\) in \(p_1\) when \(p_1\) is developed in powers of \((x-a_i)\), and \(p_1\) has a pole of order at most 1 at each singular point \(a_1, \ldots, a_\rho\).

Similarly \(\lim x p_1\) is finite; suppose it is \(+\Gamma_{\rho+1}\). Then

\[
\rho + 1 - \sum_{i=1}^{\rho+1} \Gamma_i = -k + \rho - 1.
\]

But \(p_1\) is single valued in \(C\) and has, by hypothesis, only finitely many poles. It has just been shown that each pole is of finite order,
and that \(p_1 \) is finite at \(x = \infty \); \(p_1 \) must therefore be a rational function.

The condition that \(\lim_{x \to \infty} x p_1 \) is finite entails that the degree of the denominator exceeds the degree of the numerator by at least 1, so

\[
\sum_{i=1}^{\rho+1} \Gamma_i = 0,
\]

i.e. \(k = (\rho-1) \).

A similar consideration of

\[
\kappa = \Delta_k \frac{(x-a_1) \ldots (x-a_\rho)^k}{(x-a_1)^k (x-a_2)^k \ldots (x-a_\rho)^k},
\]

shows that \(\kappa \) is a polynomial of degree at most \((\rho-1)k \), so

\[
P_k = \frac{F(k-1)(x)}{f(x-a_1) \ldots (x-a_\rho)^k}
\]

and the most general differential equation of the Fuchsian class (an \(\omega \) second order) has therefore the following form

\[
\frac{d^2 y}{dx^2} + \frac{F_1(x)}{\psi} \frac{dy}{dx} + \frac{F_2(x)}{\psi^2} y = 0 \tag{3.1.6}
\]

where \(\psi = (x-a_1) \ldots (x-a_\rho) \), and \(F_s(x) \) is a polynomial in \(x \) of degree at most \(s \). This is Fuchs's main Theorem, as it applies to second order equations.

The substitution \(P_{ik}(x) = F(k-1)(x)(x-a_i)^k \psi^{-k} \)

casts the differential equation into the form

\[
\frac{d^2 y}{dx^2} + \frac{P_{i1}(x)}{x-a_i} \frac{dy}{dx} + \frac{P_{i2}(x)}{(x-a_i)^2} y,
\]

and then substituting \(y = (x-a_i)^{\tau} u \) it becomes

\[
\frac{d^2 u}{dx^2} + \frac{Q_{i1}(x)}{x-a_i} \frac{dy}{dx} + \frac{Q_{i2}(x)}{(x-a_i)^2} y = 0
\]

which is particularly useful for the study of solutions near \(a_i \), since they are necessarily of the form

\[
\sum_{s=0}^{\infty} c_s (x-a_i)^s
\]

provided \(r \) satisfies
\[r(r-1) - rP_{i1}(a_i) - P_{i2}(a_i) = 0. \] This last equation was later called the determining fundamental equation (determinierende Fundamentalgleichung) by Fuchs [1868, 367 = 1904, 220] and subsequently the indicial equation by Cayley ([1883, 5]).

The \(r_i \) are related to the \(w_i \) obtained earlier by the equations \(w_i = e^{2\pi i r_i} \). Fuchs here showed how to obtain the solutions valid near a singular point \(a_i \) directly, without considering the monodromy relations, but he did not discuss the case when two of the \(r_i \) differ by an integer, and a \(w_i \) is therefore repeated. He only discussed that situation in terms of \(w \)'s and so of analytic continuation, never in terms of \(r \)'s and the formal derivation of the solutions.

Having shown that any differential equation all of whose solutions are of the form required has necessarily the form of (3.1.5), Fuchs had next to show that, conversely, any equation of that form had solutions of that type. In the case of a second-order equation

\[
\frac{d^2 y}{dx^2} + p_1 \frac{dy}{dx} + p_2 y = 0,
\]

which near a singular point \(a_i \neq \infty \) can be written as

\[
\frac{d^2 y}{dx^2} + \frac{p_{i1}(x)}{(x-a_i)} \frac{dy}{dx} + \frac{p_{i2}(x)}{(x-a_i)^2} y = 0, \text{ Fuchs's method was as follows [1865, §5, 1866, §5].}
\]

He let \(r_{i1} \) be the root of (3.1.7) having real part less than or equal to the real part of \(r_{i2} \), write \(y = (x-a_i)^{r_{i1}} u \), and substituted it in the differential equation, obtaining

\[
\frac{d^2 u}{dx^2} + \frac{Q_{i1}}{(x-a_i)} \frac{du}{dx} + \frac{Q_{i2}}{(x-a_i)^2} u = 0, \text{ where the } Q \text{'s depend on the } p \text{'s in an obvious fashion. This was rewritten as}
\]

\[
(x-a_i)^2 \frac{d^2 u}{dx^2} - Q_{i1}(a_i) \frac{du}{dx} = Q_{i1}(x)(x-a_i) \frac{du}{dx} + Q_{i2}(x) \cdot u
\]

where \(Q_{i1}(x) = \frac{Q_{i1}(x) - Q_{i1}(a_i)}{(x-a_i)} \)

in which form it is more amenable to the method of undetermined coefficients.
The power series \(u = \sum_{k=0}^{\infty} c_k (x-a_i)^k \) is a solution of the new equation provided a certain recurrence relation is satisfied, and provided it has a positive radius of convergence, which the method of majorants ensures much as in the initial case of the nonsingular point. To obtain a second, independent solution of the original equation in \(y \) from the solution \(y_{i1} = (x-a_i)^{r_{i1}} u \), Fuchs wrote

\[
y = y_{i1} \int zdx
\]
as before. It is evident that a fundamental system of solutions is obtained this way with the required property of being single valued after multiplication by some power of \((x-a)\). So Fuchs had shown his condition on the coefficients was sufficient to ensure that the solutions were regular.

The \(n \)th order equation.

I shall now, more briefly, run through Fuchs's argument as it applies to the \(n \)th order equation (3.1.1).

It has been seen that such an equation always has \(n \) linearly independent solution in the neighbourhood of any non-singular point in the domain of definition of the coefficients \(p_1, \ldots, p_n \); Fuchs took this domain to be

\[
\mathcal{C} \backslash \{a_1, a_2, \ldots, a_{n+1} = \infty\} = \Gamma'
\]

Suppose \(y_1, \ldots, y_n \) is a system of solutions which, upon analytic continuation around \(a_k \), return as \(\tilde{y}_1, \ldots, \tilde{y}_n \) respectively. Then there are linear relations between each \(\tilde{y}_i \) and the \(y_1, \ldots, y_n \):

\[
\tilde{y}_i = \sum a_{ij} y_j
\]

and the matrix \(A = (a_{ij}) \) has eigenvalues \(^{14}\) which determine the properties of the fundamental system near \(a_k \). (Of course,
the matrix depends upon which \(a_k \) has been chosen.) The equation for the eigenvalues

\[
|A - \omega I| = 0
\]

(3.1.8)

was called by Fuchs the fundamental equation (Fundamentalgleichung) at the singular point \(a_k \) [1866, §3].

A change of basis permits one solution, \(u \), to be found near \(a_k \) for which \(u = wu \), where \(w \) is a solution of the fundamental equation. If an \(r \) is chosen so that \(w = e^{2\pi i r} \) (Fuchs called \(r \) an exponent at \(a_k \)) then

\[
u(x-a_k)^{-r} \text{ is single-valued near } a_k.
\]

If all the eigenvalues \(w_1, \ldots, w_n \) are distinct then a fundamental system of solutions can be made up of \(n \) elements each with the property that \(y_i = w_i x \) and \((x-a_k)^{ri} y_i \) is single-valued near \(x=a_k \), and

\[
w_{ik} = e^{-2\pi i r_{ik}}.
\]

All solutions near \(a_k \) are therefore sums of the form

\[
\sum_{\lambda} c_{\lambda}(x-a_k)^{r_{\lambda}} \phi_{\lambda}(x-a_k)
\]

for single-valued functions \(\phi_{\lambda} \). If, however, the eigenvalues are not all distinct, and \(w \) is an \(k \)-times repeated root, then Fuchs showed [1866, 136 = 1904, 175] a fundamental system of solutions exists in blocks of the form \(u_1, u_2, \ldots, u_k \) which transform under analytic continuation around \(a_k \) as

\[
u_1 = w_{11} u_1
\]

\[
u_2 = w_{21} u_1 + w_{22} u_2
\]

\[
u_\lambda = w_{\lambda 1} u_1 + w_{\lambda 2} u_2 + \cdots + w_{\lambda \lambda} u_\lambda
\]

where the \(w_{ij} \) are constants. So Fuchs presented the solutions in the form

\[
u_1 = (x-a_k)^{r_1} \phi_{11}
\]

\[
u_2 = (x-a_k)^{r_2} \phi_{21} + (x-a_k)^{r_2} \phi_{22} \log (x-a_k)
\]

\[
\ldots \ldots
\]

\[
u_\lambda = (x-a_k)^{r_{\lambda 1}} \phi_{\lambda 1} + (x-a_k)^{r_{\lambda 2}} \phi_{\lambda 2} \log (x-a_k) + \ldots
\]

\[
+ (x-a_k)^{r_{\lambda \lambda}} [\log (x-a_k)]^{\lambda-1}
\]
where \(r \) again satisfies \(w = e^{2\pi ir} \), and each \(\phi_{ij} \) is a linear combination of \(\phi_{11}, \phi_{21}, \ldots, \phi_{21} \). This is a mildly confusing presentation, but blocks of solutions were found for each repeated eigenvalue \(w \), and the resulting solution then involved logarithmic terms. Fuchs did not write his solutions in the simplest possible way, which would have amounted to putting the monodromy matrix in its Jordan canonical form; this was first done by Jordan [1871] and Hamburger [1873] (see Hawkins [1977]), as will be discussed below. On the other hand Fuchs's presentation is two years earlier than Weierstrass's theory of elementary divisors, which gives a canonical presentation of a matrix equivalent to Jordan's but one couched in a more forbidding study of the minors of the matrix. Weierstrass's theory was designed to explain the simultaneous diagonalization of two matrices and Fuchs's simpler approach benefits from needing to consider only one. Fuchs's minor modifications of his presentation in the solution in his [1868, §1], but it is possible that Fuchs's paper joined with others to re-awaken Weierstrass's interest in the problem of canonical forms.

To relate the solution valid near \(a_1 \) to those valid near \(a_k \), Fuchs extended them analytically in \(T'' \). He found relations of the form

\[
\Sigma' = B_k \Sigma^k,
\]

and

\[
\Sigma^k = B_k R_k B_k^{-1} = R_k \Sigma^k,
\]

extending the earlier notation in the obvious way, and as before

\[
\prod_i \det R_i = \prod (\omega_i \cdots \omega_n) = \prod e^{2\pi i} \sum_{i=1}^{p+1} \sum_{k=1}^{n} r_{ik} = 1, \text{ so}
\]

\[
\sum_{i=1}^{p+1} \sum_{k=1}^{n} r_{ik} = K, \text{ an integer, i.e. the sum of the exponents}
\]

is an integer.
To find K, Fuchs formed the determinants

$$
\Delta_0^k = \left| (d_{pq}) \right| = \begin{vmatrix} \frac{d^{n-q}}{dx^{n-q}} y_k \\ \vdots \\ \frac{d^n}{dx^n} y_p \end{vmatrix},
$$

and λ_k^i, which is obtained from Δ_0^i by replacing the kth row of Δ_0^i with the transpose of

$$(\frac{d^n y_1}{dx^n}, \ldots, \frac{d^n y_n}{dx^n}), \quad k = 1, \ldots, n.$$

So

$$\lambda_0^i = -\lambda_k^i, \quad \text{and} \quad \lambda_k^i (\det \Delta_i) \lambda_k^i \quad \text{for} \quad k = 1, \ldots, n.$$

Again, $\tilde{\lambda}_k^i = \det R_i \det \lambda_k^i$, so

$$\lambda_k^i = (x - a_i)^{\epsilon} \psi, \quad \text{where} \quad \psi \quad \text{is a single-valued function of} \quad x \quad \text{near} \quad a_i, \quad \text{and} \quad \epsilon \quad \text{satisfies} \quad e^{2\pi i \epsilon} = \det R_i. \quad \text{Therefore}

$$\Delta_0^i (x - a_i)^{-\Gamma_i} \quad \text{is finite, single-valued, and continuous

near} \quad a_i, \quad \text{where} \quad \Gamma_i = \sum_k \gamma_{ik} - \frac{n(n-1)}{2}, \quad \text{for

$$\lambda_0^i$$

has a pole of order $\sum_k \gamma_{ik} - \frac{n(n-1)}{2}$, being made up of

products of y_{ik} and its derivatives, and $y_{ik} (x - a_i)^{-\gamma_{ik}}$ has only a logarithmic infinity at a_i, as does

$$\frac{d^s y_{ik}}{dx^s} (x - a_i)^{-\gamma_{ik} + s}. \quad \text{Similarly} \quad \Delta_0^{i+1} \quad \text{has a role of order

$$\Sigma(r_{i+1}, k) + \ln(n - 1) \quad \text{at} \quad \infty.$$

The expression $K_0 = \Delta_0^1 (x - a_1)^{-\Gamma_1} \ldots (x - a_p)^{-\Gamma_p}$ is finite, continuous, and single-valued everywhere in \mathcal{C}. It is infinite at ∞ in a way which can be determined by looking at the solutions near ∞, and the behaviour of Δ_0^{i+1}. Indeed K_0 has a pole at ∞ of order at most
\[- \sum_{i=1}^{\rho} \sum_{k=1}^{n} r_{ik} + (\rho - 1) \frac{n(n-1)}{2} = -K + (\rho - 1) \frac{n(n-1)}{2} \]

Fuchs took as a basis of solutions:

\[y_1, y_2 = y_1 \int z_1 \, dx, \quad y_3 = y_1 \int dx z_1 \int u_1 \, dx, \ldots\]

\[y_n = y_{n-1} \int w_i \, dx, \text{ so that}\]

\[\Delta_0 = C (y_1) z_1 w_1 \ldots w_n.\]

\[\Delta_i (x - a_i)^{-\Gamma_i} \text{ does not vanish at } a_i, \text{ and}\]

\[\Delta_0 = C, \quad \oint p_1 \, dx, \text{ so}\]

\[\oint p_1 \, dx (x - a_i)^{-\Gamma_i} \text{ is regular near } a_i, \text{ i.e. } \lim_{x \to a_i} (x - a_i)^{-\Gamma_i} \text{ is finite,}\]

and \(\Gamma_i\) is the coefficient of \((x - a_i)^{-1}\) in the power series for \(p_1\) near \(a_i\). Likewise near \(a_{\rho-1} = \infty\), \(\Gamma_{\rho-1} = \frac{\Gamma_{\rho-1}}{\rho_{\rho-1}}\) is the coefficient of \(x^{-1}\) in the power series for \(p_1\) near \(\infty\).

So \(\sum_{i=1}^{\rho-1} \Gamma_i = K - (\rho - 1) \frac{n(n-1)}{2}\).

But \(\lim_{x \to \infty} x \, p_1\) being finite entails firstly that \(p_1\) is rational, secondly that the degree of the denominator of \(p_1\) exceeds that of the numerator by at most 1, so \(\sum_{i=1}^{\rho-1} \Gamma_i = 0\) and Fuchs has obtained the following equation for \(K\), the sum of the exponents:

\[K = (\rho - 1) \frac{n(n-1)}{2}. \quad (3.1.9) \] [1865, §4, equation 8, 1866 §4 equation 10].

This reduces \(K_0\) to a constant, which cannot be zero because \(\Delta_0^1\) cannot vanish.

\[K_k = \Delta_k (x - a_1)^{-\Gamma_1} \ldots (x - a_{\rho})^{-\Gamma_{\rho}} \text{ for } k = 1, \ldots, n\]

is likewise related to \(p_k\), and turns out to have a degree at most

\[-K + (\rho - 1) \frac{n(n-1)}{2} + (\rho - 1)k = (\rho - 1)k, \text{ so it is of the form}\]

\[F(\rho-1)k(x) / [(x - a_1) \ldots (x - a_{\rho})]^k, \text{ where } F_s(x) \text{ is a polynomial in } x \text{ of degree at most } s.\]
The general linear ordinary differential equation of the Fuchsian class is therefore of the form:

\[\frac{d^n y}{dx^n} + \frac{F_{p-1}(x)}{y} \frac{d^{n-1} y}{dx^{n-1}} + \frac{F_{p-2}(x)}{y^2} \frac{d^{n-2} y}{dx^{n-2}} + \ldots + \frac{F_{p-1}(x)}{y^n} = 0. \]

(3.1.10)

It can be put in various alternative forms. Near \(x = a_i \) for example, setting \(F_{k(p-1)}(x) (x - a_i)^{p-k} = p_{ik}(x) \), it takes the form

\[\frac{d^n y}{dx^n} + \frac{P_{1i}(x)}{(x-a_i)^1} \frac{d^{n-1} y}{dx^{n-1}} + \frac{P_{2i}(x)}{(x-a_i)^2} \frac{d^{n-2} y}{dx^{n-2}} + \ldots + \frac{P_{ni}(x)}{(x-a_i)^n} = 0. \]

Upon further setting

\[y = (x - a_i)^r u \]

it becomes

\[\frac{Q_{1i}(x)}{x-a_i} \frac{d^n u}{dx^n} + \frac{Q_{1i}(x)}{x-a_i} \frac{d^{n-1} u}{dx^{n-1}} + \ldots + \frac{Q_{ni}(x)}{x-a_i} = 0. \]

where \(Q_{ij}(x) \) is a linear combination of the \(P_{ik} \)'s, \(k = 1, \ldots, j \) and \(r \) is one of the exponents \((r_{i1}, \ldots, r_{im}) \) at \(a_i \) and so satisfies

\[r(r-1)\ldots(r-n+1) - r(r-1)\ldots(r-n+2)P_{i1}(a_i) - r(r-1)\ldots(r-n+3)P_{i2}(a_i) - \ldots - P_{in}(a_i) = 0. \]

(3.1.11)

The advantage of this form is that it can easily be shown to have solutions of the form

\[\sum_{k=0}^{\infty} C_k (x - a_i)^k. \]

To show this Fuchs cleared the denominator \((x - a_i)^n \) from the equation and rearranged it in a form suitable for calculation of the constants \(C_k \). A comparison with the more familiar method of Frobenius is given in Section 3 below.
Fuchs also showed [1868 §5] how his methods could deal with the inhomogeneous equation

\[p_0 \frac{d^ny}{dx^n} + p_1 \frac{d^{n-1}y}{dx^{n-1}} + \ldots + p_n y + q = 0 \]

(3.1.12)

which he abbreviated to \(Y + q = 0 \).

He showed that every solution of \(Y + q = 0 \) and \(Y = 0 \) is a solution of the equation

\[q \frac{dY}{dx} - Y \frac{dq}{dx} = 0 , \]

(3.1.13)

and that conversely every solution of (3.1.13) is either a solution of \(Y = 0 \) or of the inhomogeneous equation \(Y + q = 0 \). Furthermore, if the equation \(Y = 0 \) is of the Fuchsian class then the equation \(Y + q = 0 \) will have all its solutions regular provided \(\frac{d\log q}{dx} \) becomes finite and single-valued on being multiplied by a finite power of \((x-a) \), whenever \(a \) is a singular point of (3.1.12) . The converse is also true, and the function \(q \) must be of the form \(C(x-a_1)^{\mu_1} \ldots (x-a_\rho)^{\mu_\rho} \), where \(a_1, \ldots, a_\rho \) are the finite singular points of the coefficient \(p_1, \ldots, p_n \), and \(C, \mu_1, \ldots, \mu_\rho \) are constants. The conditions on \(q \) are simply derived from insisting that (3.1.13) be an equation of the Fuchsian class.

Corollaries of Fuchs’s work.

Fuchs drew several conclusions from his work. One concerned with the problem of characterizing those differential equations whose solutions were algebraic and another the special role played by the hypergeometric equation.
In [1865, §7] and [1866, §6] he observed that the class of differential equations all of whose solutions are algebraic is contained within the Fuchsian class, for Puiseux had showed [1850, 1851] that in a neighbourhood of a singular point, \(a \), an algebraic function admits an expansion of the form

\[
\eta = \sum_{k=0}^{\mu-1} c_k (x-a)^{-r+k/\mu}
\]

where \(\mu \) and \(\sigma \) are integers. This implies that

\[
\eta = (x-a)^{-r} \phi + (x-a)^{-r+1/\mu} \phi_1 + \ldots + (x-a) \phi_{\mu-1}
\]

say, where the \(\phi \)'s are single-valued, continuous, and finite functions near \(a \) and each term \((x-a)^{-r+1/\mu} \) satisfies the conditions required to make \(\eta \) a solution to differential equation of the Fuchsian class. It would, Fuchs said, be an interesting problem to seek a precise characterization of the equations which have only algebraic solutions, but one which he was then unable to solve. He was able to solve the much simpler special case: when are the solutions always rational functions? The necessary and sufficient conditions are that the roots of the indicial equation are all real integers, for then the solutions are single valued in the entire complex plane. The question of when a differential equation has only algebraic solutions was taken up by many mathematicians in the 1870's and is the subject of the next chapter.

Fuchs also observed ([1865 §6, 1866 §8]) that the hypergeometric equation is of the Fuchsian class. It appears in the form of (3.1.6) as

\[
\frac{d^2 y}{dx^2} + \frac{f_0 + f_1 x}{(x-a_1)(x-a_2)} \frac{dy}{dx} + \frac{g_1 x + g_2 x^2}{(x-a_1)^2(x-a_2)^2} y = 0. \tag{3.1.12}
\]
If \(a_1 = 0, a_2 = 1 \) the indicial (3.1.7) equations at 0, 1, and \(\infty \) are

\[
r(r-1) - f_0 r + g_0 = 0
\]
\[
r(r-1) + (f_0 + f_1) r + g_0 + g_1 + g_2 = 0 \quad \text{and}
\]
\[
r(r-1) + (2 - f_1) r + g_2 = 0
\]
respectively.

If the roots are denoted by \(\alpha, \alpha' \): 0, \(\gamma' \); and \(\beta, \beta' \) respectively where \(\alpha + \alpha' + \beta + \beta' + \gamma' = 1 \) in conformity with equation (3.1.5), the differential equation takes Riemann's form

\[
(1-x) \frac{d^2 y}{d \log x} - \left[(\alpha + \alpha' + \beta + \beta') x \right] \frac{dy}{d \log x} + (\alpha' - \beta \beta') y = 0,
\]
where it is assumed that none of \(\alpha - \alpha' \), \(\beta - \beta' \), \(\gamma' \) are integers.

Fuchs was also able to give a significant characterization of the hypergeometric equation. In the general differential equation of the Fuchsian type, each function \(F_{k(p-1)} \) contains \(k \rho - k + 1 \) constants, so there are \(\frac{1}{4} n(n+1) \rho - \frac{1}{4} n(n-1) \). There are \(n \) exponents at each of the \(\rho + 1 \) singular points (including \(\infty \)). So there are \(n(\rho + 1) \) in all, of which only \(n(\rho + 1) - 1 \) are arbitrary in virtue of Fuchs's equation (3.1.9). Accordingly, if a set of given exponents is to determine the equation, then

\[
\frac{n(n+1)\rho}{2} - \frac{n(n-1)}{2} = n(\rho + 1) - 1
\]

(3.1.13)

so \(\rho = 1 + \frac{2}{n} \) and either \(15) n = 1, \rho = 3 \) or \(n = 2, \rho = 2 \).

Accordingly, if the first-order equations are excluded, the class of equations of the Fuchsian type for which the exponents at the singular points determine the coefficients of the equation contains precisely the hypergeometric equation. This explains why Riemann's methods worked so well for the Gaussian equation, for it is precisely in that case that his initial data (the exponents) characterize not only the solution functions but also the equation itself. Contrariwise, in all other cases, the number of exponents is too few to characterize the equation, and the excess numbers, called the auxiliary parameters, have since proved quite intractable.
3.2 Generalizations of the hypergeometric equation.

After 1868, Fuchs turned his attention to finding applications and consequences of his theory, rather than to finding ways of extending it. Among the problems then arousing the greatest interest in mathematics was the investigation of hyper-elliptic functions. Weierstrass had published two important papers on Abelian functions and the inversion of hyper-elliptic integrals in Crelle's *Journal für Mathematik* of 1854 and 1856 (Weierstrass [1854, 1856]) which were instrumental in securing him an invitation to become associate professor at the University of Berlin. Liouville hailed the first papers as "one of those works that marks an epoch in science" (quoted in Bierman: [1976, 221]), and Weierstrass's influential lecture cycle also dealt largely with elliptic and Abelian functions. Riemann's [1857c] had solved the inversion problem for an arbitrary integral of an algebraic function by means of the theory of \(\theta \)-functions in several variables, and this work was also much discussed in Berlin (see Chapter VI).

Fuchs first proposed, in his [1870a], to study the periods of hyper-elliptic integrals from the standpoint of his new theory, reserving the full treatment of Abelian integrals for a subsequent opportunity [1871 a, b]. These later works require a knowledge of the theory of \(\theta \)-functions, so a discussion of them is deferred to Chapter VI. It will be clearest to begin with the example that dominates the [1870] paper, the hyper-elliptic integral

\[
\int \frac{dx}{\sqrt{(x-k_1 \ldots (x-k_{n-1})(x-u)}} = f(z) \quad (3.2.1)
\]

Fuchs introduced this example in §7 to illustrate the more general integral

\[
\int \frac{dx}{s}, \quad \text{where } s^2 = \phi(x, u) \text{ and } \phi(x, u) \text{ is algebraic of degree } n \text{ in } x, \ "partly" \ as \ he \ said \ "to \ elucidate \ the \ preceeding \ and \ partly \ for \ later \ use". \ It \ certainly \ presents \ a \ simpler \ piece \ of \ analysis, \ and \ one \ not
Fuchs's strategy for finding the periods of integral (3.2.1) was straightforward. Suppose \(u \) is fixed for the moment, then the periods are found by cutting the \(x \)-plane along a curve, called the principal cut, joining \(u \) to \(k_1 \), \(k_1 \) to \(k_2 \), \ldots, \(k_{n-2} \) to \(k_{n-1} \), and (if \(n \) is odd) \(k_{n-1} \) to \(\infty \). If \(a, b \) are any two consecutive points of the sequence \((k, k_1, \ldots, k_{n-1}, \infty) \) the period corresponding to the cut joining \(a \) to \(b \) is found by evaluating \(f(z) \) around a closed curve \(\gamma \) enclosing that part of the principal cut but no other points in \(\{ u, k_1, \ldots, k_{n-1}, \infty \} \). Precisely,

\[
\eta = \frac{1}{2} \int_\gamma y \, dx, \quad y = ((x - k_1) \ldots (x - k_{n-1})(x - u))^{-\frac{1}{2}}
\]

The first question is, how to arrange all this when \(u \) is allowed to vary? Fuchs showed that the periods were continuous, single-valued functions of \(u \) away from the branch points. Continuity is evident; to show they are single-valued Fuchs considered

\[
s^2 = [(x - k_1) \ldots (x - k_{n})(x - u)]
\]

For each \(u \), \(s \) is defined as a two-leaved Riemann surface \(T_u \) over the complex \(x \)-plane. The branch points are at \(u \), and at \(k_1, k_2, \ldots, k_{n-1} \) and possibly \(\infty \), all of which are independent of \(u \).

Accordingly the principal cut is independent of \(u \) once it has reached \(k_1 \). It can furthermore be made to lie in the upper leaf of \(T_u \) for all \(u \), for, as \(u \) makes a circuit \(\sigma \) around some \(k_\lambda \) the factor \(x - u \) of \(s \) becomes \(e^{2\pi i} (x - u) \) if \(x \) is enclosed within \(\sigma \) while all the others remain unchanged, so \(s \) becomes \(-s \). On the other hand, if \(x \) is not within \(\sigma \), then \(x - u \) does not change and \(s \) remains unaltered. The circuit \(\sigma \) has transformed \(T_u \) into \(T'_u \), and outside \(\sigma \) upper leaves are joined to upper leaves because \(s \) did not change. But \(\sigma \) could be taken arbitrarily small, whence the desired result.

Of course, the periods are not single-valued functions of \(u \), but Fuchs could now write down (§7) a sequence of equations connecting the periods before and after a circuit is made by \(u \) around any \(k_\lambda \). This gave
him the monodromy relations at each singular point of the differential equation he sought connecting the periods. To obtain the differential equation he observed that it must be of order $n-1$ since there are $n-1$ linearly independent periods. It therefore has the form

$$\beta_{n-1} \frac{d^{n-1}}{dx^{n-1}} + \ldots + \beta_0 = 0,$$

(3.2.2)

whose solutions, n_1, \ldots, n_{n-1}, are the periods along the parts of the principal cut. After some calculation he was able to show that

$$\frac{\beta_{(n-1)-i}}{\beta_{n-1}}$$

is necessarily of the form $\frac{F_i(n-2)(u)}{\psi^i(u)}$ where $F_i(n-2)$ is a polynomial of degree at most $i(n-2)$ and $\psi(u) = (u - k_1) \ldots (u - k_{n-1})$.

So the singular points are precisely k_1, \ldots, k_{n-1} (and only if n is odd) none are accidental. The differential equation is of the Fuchsian type and all of its solutions are regular.

When $\phi(x, u) = A((x - k_1) \ldots (x - k_{n-1})(x - u) = O(x)(x - u)$, the calculations to find $\beta_{n-1-i}/\beta_{n-1}$ are not too difficult. Fuchs did not work directly with the monodromy relations he had obtained in §7 but preferred the expressions involving partial derivatives of y with respect to u.

The result is clear, even if the method chosen passed through some murky country; Fuchs found (§19, equation 4) $\beta_{n-i} = \rho_0 \tau_{n-1} \psi^{(i-1)}(u)$, where ρ_0 is a constant,

$$\tau_{n-i} = \frac{i - 2n + 2}{2 \cdot n ! (i-1) !} \cdot$$

and

$$\sigma_k = \frac{1.3 \ldots (2k-1)}{2^k}.$$

The monodromy relations give directly (§13) that the roots of the indicial equation are rational numbers. This result remains true if the general integral

$$\int \frac{f(x)}{s} \, dx \quad , \quad s^2 = \phi(x, u), \quad \phi \text{ of order } n \text{ in } x,$$

is considered, but the rest of the analysis is more complicated. Some of the periods may now depend linearly on others, so, if there are exactly p linearly independent ones the differential equation has order only p. It remains of the Fuchsian class, but the β's are much harder to find. There
are n finite singular points (∞ is singular if and only if n is odd) which are actual, and there may also be accidental singularities, depending on $f(x)$. Fortunately the examples Fuchs gave are of the simpler type (3.2.1).

For the elliptic integral $n = 3$ and $\psi(x) = x(x-1)$,

$$\beta_2 = -2u(u - 1)\rho_0, \quad \beta_1 = -2(2u - 1)\rho_0, \quad \beta_0 = -\frac{1}{2}\rho_0,$$

and the differential equation is

$$2u(u - 1) \frac{d^2n}{du^2} + 2(2u - 1)\frac{dn}{du} + \frac{n}{2} = 0 \quad (3.2.4)$$

This takes Legendre's form on substituting $u = \frac{1}{k^2}$, $n = k\zeta$:

$$k(1 - k^2) \frac{d^2\zeta}{dk^2} + (1 - 3k^2)\frac{d\zeta}{dk} - k\zeta = 0.$$

For the hyper-elliptic integral of the first kind $n = 5$ and Fuchs obtained a differential equation equivalent, as he said, to the system of simultaneous differential equations deduced by Koenigsberger in the first volume of the Mathematische Annalen.

Fuchs concluded the paper with a detailed study (§21) of the case of the elliptic integral, which turned out to be important for his later work. He knew the singular points of (3.2.4) were at $u = 0, 1,$ and ∞, and he knew the monodromy relations at each point; taking them in order he found:

at $u = 0$ the indicial equation is $r^2 = 0$, so one solution is

$$v_{01} = 1 + \sum_k \frac{(1,3,\ldots,2k-1)^2}{2,4,\ldots,2k} u^k,$$

and substituting $n = v_{01} \int r_0 \, du$ into (3.2.4) he found $r_0 = -\frac{C}{u} + C\rho_0(u)$, where

$$C_0(u) = \frac{1 + v_{01}^2 (u - 1)}{v_{01}^2 u(u - 1)}$$

and C is an arbitrary constant.

Accordingly, a second solution of (3.2.4) valid near $u = 0$ is

$$v_{02} = H_0(u)v_{01} - v_{01} \log u,$$

where

$$H_0(u) = 4 \log 2 + \int_0^u C_0(u) \, du.$$
But the monodromy relations between \(\eta_1 \) (the period along \((u,0)\)) and \(\eta_2 \) (the period along \((0,1)\)) relate \(\eta_1 \) and \(\eta_2 \) to \(v_{01} \) and \(v_{02} \).

The monodromy relations for \(\eta_1 \) and \(\eta_2 \) are \(\eta_1 = \eta_1 \) and \(\eta_2 = 2\eta_1 + \eta_2 \). The relations for \(v_{01} \) and \(v_{02} \) are immediate from their explicit representations:

\[
\widetilde{\eta}_1 = v_{01} \quad \text{and} \quad \widetilde{\eta}_2 = -2\pi iv_{01} + v_{02}.
\]

So the relationships

\[
\eta_1 = c_{11}v_{01} + c_{12}v_{02}, \quad \eta_2 = c_{21}v_{01} + c_{22}v_{02}
\]

simplify, because

\[
c_{12} = 0, \quad c_{11} = -\frac{\pi i c_{22}}{4\pi i c_{22}}, \quad c_{21} = -\frac{1}{\pi i c_{22}}.
\]

The constants \(c_{11}, c_{21} \) can be found from

\[
\eta_1 = \int_0^1 \frac{dx}{u [x(x-1)(x-u)]}, \quad \eta_2 = \int_0^1 \frac{dx}{x(x-1)(x-u)},
\]

on letting \(u \to 0 \). It turns out that \(\eta_1 = -\pi v_{01}, \quad \eta_2 = \pi v_{01} - iv_{02}. \)

For \(\eta(0) = -\pi = c_{11}v_{01}(0) = c_{11}1 \), and, as \(u \to 0 \)

\[
\eta_2(u) \sim \int_0^1 \frac{1 - (-x)^{1/2}}{(x(x-1)(x-u))^{1/2}} dx + \int_0^1 \frac{dx}{x(x-1)(x-u)} v_2
\]

\[= -2i \log 2 + -2i \log ((u - 1)^{1/2} + i) + i \log u.\]

\(H_0(0) = 4 \log 2, \) so \(v_{02}(u) \approx 4 \log 2 - \log u, \)

and \(\eta_2(u) = c_{21} v_{01}(u) - iv_{02}(u) \) implies

\[i \log u - 4 \log 2 + \pi = c_{21} - i(4 \log 2 - \log u), \) so \(c_{21} = \pi. \)

An exactly similar calculation near \(u = 1 \) produces solutions \(v_{11}, v_{12} \) to (3.2.4) related to \(\eta_1 \) and \(\eta_2 \) by

\[
\eta_1 = -\pi v_{11} + v_{12}, \quad \eta_2 = -2\pi v_{11} - v_{12}
\]

Finally near \(u = \infty \), where the indicial equation is \((r - \frac{1}{2})^2 = 0 \)

\[v_{\infty 1} = \left(\frac{1}{u}\right)^{1/2} \left[1 + \sum_{K=1}^{\infty} \left(\frac{1.3\ldots(2K-1)}{2.4\ldots2K}\right)^2 \left(\frac{1}{u}\right)^K \right]
\]

and

\[v_{\infty 2} = v_{\infty 1} - 4 \log 2 + \int_0^1 \frac{dt + v_{\infty 1}^2(t-1)}{v_{\infty 1}(1-t)} dt - v_{\infty 1} \log u.
\]

\[\eta_1 = -\pi v_{\infty 1} - iv_{\infty 2}, \quad \eta_2 = -\pi v_{\infty 1}
\]

The substitution \(u = \frac{1}{2}, \ x = z^2 \) transforms the integral

\[\int_{\left[\frac{dx}{\sqrt{(x(x-1)(x-u))}}\right]}^{2k} \int_{\left[\frac{dx}{\sqrt{(1-z^2)(1-k^2z^2)}}\right]}
\]
So, if
\[
K = \int_0^1 \frac{dz}{\sqrt{(1-z^2)(1-k^2z^2)}} \quad \text{and} \quad K'i = \int_0^1 \frac{dz}{\sqrt{(1-z^2)(1-k'z^2)}}
\]
then
\[
K = -\frac{1}{2k} \eta_2 = \frac{\pi}{2k} \omega_1
\]
and
\[
K'i = \frac{1}{2k} (\eta_1 - \eta_2) = -\frac{1}{2k} \omega_1
\]
which give the well-known power series for K and K'.

Fuchs's techniques were thus able to give him a new derivation of the solutions to Legendre's equation, and in principle they were capable of handling the analogues of Legendre's equation for the periods of hyper-elliptic integrals. Legendre had also considered what he called elliptic integrals of the second kind, for which the periods are

\[
J = \int_0^1 \frac{k^2 y^2 dy}{(1-y^2)(1-k^2y^2)} \quad \text{and} \quad J'i = \int_1^1 \frac{k^2 y^2 dy}{1[(1-y^2)(1-k^2y^2)]}
\]

J and J' satisfy the differential equation

\[
(1-k^2)\frac{d^2y}{dk^2} + \frac{1-k^2}{k} \frac{dy}{dk} + y = 0, \quad \text{Legendre} \ [1828, I, 62].
\]

They are connected to K and K' by Legendre's relation \(KJ' - K'J = \frac{\pi}{2}\),

\[\text{Legendre} \ [1825, I, 61].\]

Legendre's relation had been generalized by Weierstrass \([1848/49]\)
to a system of \(2n^2 - n\) relations between periods of a hyper-elliptic integral of order \(n\), and, as a determinant, by Haedenkamp \([1841]\), who, however, considered the periods only over real paths. Fuchs was easily able to extend Haedenkamp's work, and he found (Fuchs \([1870h]\)) that if

\[
\eta_{ij} = \int_{\gamma_j[\phi(x)]} x^i dx
\]

where \(\phi(x) = (x-u)(x-k_1) \ldots (x-k_{n-1})\)

and \(\gamma_j\) is a path from \(k_{j-1}\) to \(k_j\) \((1 \leq j < n-1)\)

and \(\gamma_1\) connects \(u\) and \(k_1\).
then the $(n-1) \times (n-1)$ determinant

$$H = \begin{vmatrix} n_{01} & n_{02} & \cdots & n_{0,n-1} \\ n_{11} & n_{12} & \cdots & n_{1,n-1} \\ \vdots & \vdots & \ddots & \vdots \\ n_{n-2,1} & n_{n-2,2} & \cdots & n_{n-2,n-1} \end{vmatrix}$$

is independent of u, as Haedenkamp had claimed. So it can be evaluated when $\phi(x) = x^{n-1}$, and Fuchs found

$$H = \frac{(-1)^{n-1} \pi}{(n-2)(n-4)\ldots3.1}$$

$$H = \frac{(-1)^{n-1} (2\pi)^{n-1}}{(n-2)(n-4)\ldots2}$$

Legendre's relation is the special case $n = 2$.

Fuchs's study of nth order differential equations was thus based on a very specific problem. By contrast, Thomae and Pochhammer sought to generalize the hypergeometric equation. Thomae [1870] studied the power-series $y = 1 + \frac{a_0 a_1 a_2}{1 \cdot b_1 b_2} x + \frac{a_0 (a_0+1) a_1 (a_1+1) a_2 (a_2+1) x^2}{1 \cdot 2 \cdot b_1 (b_1+1) b_2 (b_2+1)} + \ldots$

and showed that many of the properties of the hypergeometric series carried over to the higher hypergeometric series, as he called them. For example, the series converges inside $|x| = 1$, it satisfies an nth order linear ordinary differential equation, it can be written as an $(n-1)$-fold integral, contiguous functions can be defined in the obvious way, and any $n+1$ contiguous functions satisfy linear relationships with rational coefficients. Thomae was much influenced by Riemann's [1857a] and presented his solutions as generalized P functions, which he denoted $P^{a_1 \ldots a_{(h-1)}}_{\beta \ldots \beta_{(h-1)}} x$. For computational reasons he concentrated in his [1870] on the 3rd order case, and deduced a host of relationships for the monodromy coefficients, his generalizations of Riemann's a_{β}'s.

In his [1874], Thomae generalized the P-function to a function $P^{a_1 \beta \gamma \delta}_{k \beta \gamma \delta'}$, which had branch points at 0, ∞, 1, and $1/k$ and $1/k'$. 18
for which the exponent pairs were $\alpha, \alpha', \alpha_0$, etc (and $\alpha + \alpha' + \beta + \ldots + \delta' = 2$).

He showed that much of Riemann's theory went over to the new functions with inessential changes, for example P satisfies a second order differential equation, but that P depended in an essential and complicated way on a parameter t (which, in later terminology, is an accessory parameter). Thomae showed that if $\delta = \delta' = 0$ then t can be chosen arbitrarily without affecting the differential equation satisfied by P and that if $\delta = 1, \delta' = 0$ the equation reduced to Riemann's form of the hypergeometric equation.

Pochhammer [1870] independently sought to produce an n^{th} order differential equation like the hypergeometric. He argued that there was a unique function (upto a constant multiple) with the following properties.

1) it is the general solution an n^{th} order differential equation;
2) it has n finite singular points, at a_1, \ldots, a_n say, and a singular point at ∞;
3) the roots of the indicial equation at each finite singular point and at ∞ are $0, 1, \ldots, n-2$ and a negative quantity, which depends on the singular point;
4) no solution of the differential equation contains a logarithmic term.

So to each singular point a_i Pochhammer attached a number b_i which determined the exponents, and to infinity he attached a number λ. The b's and λ satisfied restrictions which ensured that the differential equation his function was to satisfy was of the Fuchsian class. He also gave the question explicitly, and an integral form of the solution:

$$\int_{a_i}^{a_j} \frac{(u-a_1)^{-1} \ldots (u-a_n)^{n-1} (u-x)^{\lambda-1}}{(u-x)} \, dx.$$

However, the paper was faulty. In a brief reply [1870c] Fuchs pointed out that one of two things goes wrong. Either the final exponent at each singular point is negative, in which case the equation is not unique, or it is one of $0, 1, \ldots, n-2$, in which case the equation has no basis of solutions entirely free of logarithmic terms.
Pochhammer's error, Fuchs pointed out, lay in his assumption that the integral was single-valued when every term in the integral was, but, for example, \(\int_0^1 \frac{du}{u-x} = \log \left(\frac{x-1}{x} \right) \) is not a single-valued function of \(x \).

Finally, Fuchs added that if Pochhammer's equation is differentiated once an equation is obtained which was already known and was due to Tissot [1852], who had also given an integral form of its solution.

The disagreement was continued in Hamburger's article in the abstracting journal *Fortschritte* [1871, 151-152]. Pochhammer objected that in the example \(\int_0^1 \frac{dx}{u-x} \) the integrand is not everywhere finite, a condition he had not, however, insisted upon before, and Hamburger replied that even so the example \(\int_0^1 \frac{x(1-x)dx}{u-x} = x(1-x) \log \left(\frac{x-1}{x} \right) \) still refutes the theorem. Pochhammer also said that he had not heard of Tissot's work until Fuchs had pointed it out.
Conclusion

In these papers Fuchs succeeded in characterizing those linear ordinary differential equations none of whose solutions have an essential singular point anywhere in the extended complex plane. In so doing he developed the theory of their singularities in terms of their monodromy matrices and their eigenvalues the roots of the associated fundamental equation. He showed how these roots were connected to the exponents of the branch points, which themselves satisfy the indicial or determinantal fundamental equation. He gave a thorough analysis of the situation when one or more eigenvalues are repeated and logarithmic terms enter the solution. He indicated the special position occupied by the hypergeometric equation among equations of the Fuchsian class, and raised the problem of isolating those equations which have algebraic solutions. He followed Riemann in using monodromy matrices to study the analytic continuation of the solutions around the singular points, but did not rely on Dirichlet's principle to obtain the solutions globally. Rather he preferred to study the global forms using the analytic continuation of power series in the Weierstrassian style. His study of hyper-elliptic integrals is his most 'Riemannian' paper, later ones are couched more and more in the theory of power series. This shift of emphasis reflects a general tendency during the 1870's to avoid Dirichlet's principle, and to seek to obtain Riemann's results in other ways (see Chapter VI p239 and Appendix I). This tendency was most marked in Berlin.

This achievement raised three areas for future work. One, with which I shall be little concerned, is the problem of going outside the Fuchsian class to study equations whose solutions have essential singularities. This problem was taken up by Thomé
in the 1870's, and later by Poincaré. Although power series solutions to such equations can be found formally, they frequently do not converge in the neighbourhood of singular points of the coefficients which are not of Fuchs's type. Instead they provide asymptotic solutions to the equation, as was first realized by Poincaré [1886].

The second area was the use of the methods of Riemann and Fuchs to explore equations of the Fuchsian class. This included using the methods to reformulate and add to the knowledge of familiar equations, such as Legendre's, and attempting to discuss new equations. By and large Fuchs took the former path, quite successfully, but attempts to delineate new equations with precision were less successful. The pioneer in this direction was Thomae. The difficulty here is precisely Fuchs's discovery that the hypergeometric equation is the only equation of order greater than 1 for which the exponents at the branch points uniquely determine the coefficients.

The third area was the attempt to formulate a theory of differential equations whose coefficients were not rational functions but, say, elliptic functions. This class includes, for example, Lamé's equation, and was studied accordingly by several writers in the 1870's. It forms an intriguing stepping stone on the way to the general theory of differential equations with algebraic coefficients, and will be described in Chapter VII.
3.3 The new methods of Frobenius and others.

Fuchs's arguments were, one might say, solidly contemporary adaptations of general methods for studying algebraic differential equations. Consequently they are long, and more difficult than they need be. The man who first proposed the simpler methods which have since become customary in treatments of linear ordinary differential equations was Georg Frobenius, in 1873. Frobenius, then 24, had not yet presented his Habilitationsschrift, and even before he did so he was nominated by Weierstrass for a newly created Professorship Extraordinarius the next year. He only held that post for half a year before going to the Polytechnic in Zurich, one of a series of distinguished professors the Swiss recruited from Berlin; see K. R. Biermann [1973b, 96].

Frobenius' main aim in his paper [1873a] was, as he said, to find simpler methods for obtaining Fuchs's results. He found that this could be done by working directly with power-series. He considered the differential equation (where x and y are complex and $y^{(n)} = \frac{d^n y}{dx^n}$)

$$x^n p(x) y^{(n)} + \ldots + p_n(x)y = 0,$$

which he denoted $R(y) = 0$, in a neighbourhood of $x = 0$. The solutions were to be bounded near 0 when multiplied by a suitable power of x. He assumed, as he may without loss of generality, that $p(x) = 1$ and the other p_i have power series expansions near $x = 0$.

For y, he substituted the power series $g(x, \rho) = \sum_{j=0}^{\infty} g_j x^{\rho+j}$, containing a parameter ρ, and observed that $P(x^\rho) = x^\rho f(x, \rho)$, where
f(x, p) is a polynomial in p:

\[f(x, p) = \rho(p-1) \ldots (p - n + 1)p(x) + \rho(p - 1) \ldots + (p - n + 2)p_1(x) \]
\[+ \ldots + p_n(x) \]
\[= \sum_j f_j(p)x^j \]

where each \(f_j(p) \) is a polynomial function of \(p \). Accordingly he obtained a recurrence relation for the \(g_j \)'s:

\[g_0f_0(p) = 0 \]
\[g_1f_0(p+1) + g_0f_1(p) = 0, \]
\[\cdots, \]
\[g_jf_0(p+j) + g_{j-1}f_1(p+j-1) + \ldots + g_0f_j(p) = 0. \]

Since it is assumed that \(g_0 \neq 0 \) the equation \(g_0(p) = 0 \) determines \(p \). Frobenius observed this, but preferred to let \(p \) remain a variable and determine the \(g_j \) as functions of \(p \) instead. Each \(g_j \) is a rational function,

\[g_j(p) = \frac{g_0(p)h_j(p)}{f_0(p+1) \ldots f_0(p+j)}, \]

where \(h_j(p) \) can be determined explicitly as a function of \(f_j(p + k) \)'s. If \(p \) is restricted to suitably small neighbourhoods of the roots of \(f_0(p) = 0 \) then the denominators of the \(g_j \)'s vanish only at the roots of \(f_0(p) = 0 \), and \(g_0(p) \) can be chosen so that the functions \(g_j(p) \) are bounded. So, if the series \(g(x, p) = \sum g_j x^{p+j} \) converges it represents a solution of the differential equation. Frobenius next established the necessary convergence, by means of the ratio test and a simple majorizing argument, and showed explicitly that within that domain the convergence is uniform. This established that the power series can be differentiated term by term, and concluded the proof that the series represents a solution of the differential equation.
In the next two sections of his paper Frobenius considered the nature of the solutions which are obtained once \(p \) is a root of \(f_0(p) = 0 \). He simplified Fuchs's treatment of repeated roots (when polynomials in \(\log x \) enter the solution) by exploiting the parameter \(p \). Since \(P(g(x, p)) \equiv f_0(p)g(p)x^p \), if \(\rho_k \) is a \(k \)-fold root of \(f(p) = 0 \), then differentiating both sides of this identity \(k \) times with respect to \(p \) and setting \(p = \rho_k \) yields \(P\left(\frac{d^k}{dp^k} g(x, \rho_k)\right) = 0 \). This implies that \(\frac{d^k}{dp^k} g(x, \rho_k) = g^{(k)}(x, \rho_k) \) is a solution of the differential equation \(P(y) = 0 \), and since \(g(x, p) = x^p g_j(p)x^j \), the solution obtained is

\[
g(k)(x, \rho_k) = x^k \sum_j g_j^{(k)}(\rho_k) + kg_j^{(k-1)}(\rho_k) \log x + \frac{k(k-1)}{2!} g_j^{(k-2)}(\rho_k)(\log x)^2 + \ldots + g_j(\rho_k)(\log x)^k x^j
\]

Consequently the solution to the differential equation has no logarithmic terms if the equation \(f_0(p) = 0 \) has no repeated roots. Frobenius concluded the paper with other methods for obtaining the coefficients \(g_j(p) \).

Frobenius confined his first study of linear differential equations to rederiving the results of Fuchs. Almost none of the results were new: the indicial equation is to be found in Fuchs's [1865] and [1866], as are the associated power series solutions. The concern about uniform convergence is also present in the earlier work. What is new is the method, involving the parameter \(p \), for proving the convergence of the solutions obtained via the indicial equation. Frobenius was quite scrupulous in acknowledging Fuchs's work, but as his simpler methods drove out those of Fuchs, the comparison became blurred until he is sometimes remembered more for the results than the methods (see e.g. Birkhoff [1973, 282], Hille [1976, 344], or Piaggio [1962, 109]).
Frobenius's new results were largely connected with the idea of the irreducibility of a differential equation, which he introduced in his next paper [1873b], published simultaneously with the one just described. By analogy with polynomial equations he said a differential equation was irreducible if it had no solutions in common with a differential equation of lower order or one of the same order but lower degree. This implies, for instance, that a differential equation all of whose solutions are algebraic is reducible, for its solutions are the roots of a polynomial equation, which is a differential equation of order zero. More substantially, Frobenius showed (§5) that if the hypergeometric equation is reducible then the hypergeometric series entering in to one of its solutions must be a polynomial. Since this result displays nearly all the features of Frobenius's theory of irreducibility, and since that theory is strikingly similar to the theory of irreducible algebraic equations, the exposition may reasonably be confined to this example.

The hypergeometric equation
\[x(1 - x) \frac{d^2 y}{dx^2} + (\gamma - (\alpha + \beta + 1)x) \frac{dy}{dx} - \alpha \beta y = 0 \]
is reducible if one of its solutions is the solution of a first order equation. Frobenius took as a basis of solutions two which are defined on a neighbourhood of the singular point \(x = 1 \):

\[w = F(\alpha, \beta, \alpha + \beta - \gamma + 1, 1 - x), \]

\[w' = (1 - x)^{\gamma - \alpha - \beta} F(\gamma - \alpha, \gamma - \beta, \gamma - \alpha - \beta + 1, 1 - x) \]

because, as he said, each has part of its domain of convergence in common with the series solutions valid near \(x = 0 \) and \(x = \infty \). Indeed, if \(u \) and \(u' \) are a basis of solutions near \(x = 0 \) and \(v \) and \(v' \) are a basis of solutions near \(x = \infty \), then Kummer's relations imply that

\[w = a \cdot u + a'u', \quad w = cv + c'v' \]
\[w' = bu + b'u', \quad w' = dv + d'v' \]

for precise constants \(a, a', \ldots, d' \). Accordingly, if the equation is reducible then either one coefficient vanishes in each expression for \(w \) or in each expression for \(w' \), else analytic continuation of \(w \) (or \(w' \)) would yield two linearly independent branches, which must satisfy a differential equation of order two. Frobenius considered each possibility in turn.

For example,

\[a = \frac{\Pi(\alpha+\beta-\gamma)\Pi(-\gamma)}{\Pi(\alpha-\gamma)\Pi(\beta-\gamma)}, \quad c' = \frac{\Pi(\alpha+\beta-\gamma)\Pi(\alpha-\beta-1)}{\Pi(\alpha-\gamma)\Pi(\alpha-1)} \]

The function \(\Pi \) never vanishes, but it is infinite at the negative \(\gamma \) integers, so \(a \) and \(c' \) vanish if \(\gamma = \nu + 1 \), for some non-negative integer \(\nu \). But then in the solution \(u' = x^{1-\gamma}F(\alpha-\gamma+1, \beta-\gamma+1, 2-\gamma, \nu) \)

the \(F \) term is a polynomial of degree \(\nu \). The other cases proceeded similarly.

To put his conclusion in a clearer light, as he said, he rederived it starting from the observation that the hypergeometric equation is completely determined by its exponents at its singular points. Now, if analytically continuing two solutions round a singular point only multiplies them by constants then the exponent differences must all be integers without the solution containing a logarithmic term.

The general first order equation of the Fuchsian type has the form

\[\frac{dy}{dx} - \left(\frac{\alpha_1}{x-a_1} + \frac{\alpha_2}{x-a_2} + \ldots + \frac{\alpha_\mu}{x-a_\mu} \right)y = 0 \]

with solution

\[y = C(x-a_1)^{\alpha_1}(x-a_2)^{\alpha_2}\ldots(x-a_\mu)^{\alpha_\mu} \]

Its singular points are \(a_1, a_2, \ldots, a_\mu \) and \(\infty \), at which the exponents are \(\alpha_1, \alpha_2, \ldots, \alpha_\mu \) and \(\beta \) respectively, and Fuchs's condition (3.1.9) in this case is
α₁ + α + ... + αₜ + β = 0. Frobenius had shown earlier in this paper (§4, Theorem I) that the singular points of a differential equation of lower order are either the singular points of the equation of higher order with which it has solutions in common, or they are accidental singular points of the lower-order equation for which the roots of the corresponding indicial equation are less than the order of the higher order equation. So here, α₂ = α₃ = ... = αₜ = 1. Furthermore, the common solution of the two differential equations may be taken to have its singular points at 0, 1, and ∞ with exponents α, γ, β, so it is

\[y = Cx^α(1 - x)^γ(x - a₁)(x - a₂)...(x - aₜ). \]

In this way Frobenius obtained the necessary conditions

\[\alpha + \beta + \gamma + \nu = 0, \quad \alpha' + \beta' + \gamma' = \nu' + 1. \]

These conditions are also sufficient, as can be seen from consideration of the function

\[P \begin{pmatrix} 0 & \infty & 1 \\ 0 & -\nu & 0 \\ \alpha' - \alpha & \beta' - \beta - \nu & \gamma' - \gamma \end{pmatrix} \]

for which the corresponding hypergeometric series is a polynomial.

Frobenius used his theory of irreducibility to clarify three aspects of the theory of linear differential equations: the behaviour of the solutions under analytic continuation; the nature of accidental singular points; and the occurrence of solutions with essential singularities when the equation is not of the Fuchsian type.

Typical of his results under the first heading is this ([1873b §3, Theorem IV]): if a differential equation is reducible there is an equation
of lower order with which it has all its solutions in common. Indeed, if an equation of order \(\lambda \) has all of its solutions in common with the equation \(Q(y) = 0 \) of order \(\mu (\lambda > \mu) \) then each of its solutions satisfy an equation of the form \(Q(y) = w \) in which \(w \) is a solution of a certain equation of order \(\lambda - \mu \).

His analysis of the singular points has already been described. To consider his treatment of equations not of the Fuchsian type it is necessary to look also at the work of his contemporary at Berlin, L.W. Thomé. Thomé was the first to consider how Fuchs's theory might be extended to such equations, and starting in 1872 he published a series of increasingly long papers on this topic in the Journal für Mathematik. In the second of these [1873, 266] he introduced the convenient word 'regular' to describe solutions of the kind Fuchs had sought (reguläre Integrale); in this terminology he sought properties of the coefficients of a differential equation which indicated how many linearly independent regular integrals it would have. His first main theorem in this direction [1872, §5, Theorem 2] applied to the equation

\[
\frac{d^m y}{dx^m} + p_1 \frac{d^{m-1} y}{dx} + \ldots + p_m y = 0,
\]

whose coefficients applied to the equation

\[
\frac{d^m y}{dx^m} + \frac{d^{m-1} y}{dx} + \ldots + p_m y = 0,
\]

may be written \(\frac{f(x)}{(x-a)^{\pi_1}} \) in lowest terms. He showed that, if in the sequence \(\pi_1 + m - 1, \pi_2 + m - 2, \ldots, \pi_m \), the greatest has value \(g > m \), then not all solutions of the equation are regular. Furthermore, if \(\pi_h + m - h \) is the first to equal \(g \), then at most \(m - h \) solutions are regular. As he observed, in Fuchs's study, \(g \leq m \). In [1873] Thomé sought to characterize those equations for which precisely \(m - 1 \) linearly independent solutions are regular, and obtained an answer which I shall mention below. In subsequent papers Thomé [1874, 1876] looked at the question of reducing differential equations to those of lower order, and this work caught the attention of Frobenius.
Frobenius [1875b] considered the differential equation

$$A(y) = p_m \frac{d^m y}{dx^m} + p_{m-1} \frac{d^{m-1} y}{dx^{m-1}} + ... + p_0 y = 0$$

and its adjoint

$$(-1)^m \frac{d^m}{dx^m} (p_m y) + ... - \frac{d}{dx} (p_1 y) + p_0 = 0,$$

an expression introduced independently by Fuchs, Thomé, and himself earlier (but known already to Lagrange). He established that, if $B(y) = 0$ denotes another differential equation, then the equation $A(B(y)) = 0$ has no fewer regular solutions than $B = 0$ and no more than $A = 0$. (Solutions of $A(B(y)) = 0$ are either solutions of $B(y) = 0$, or, if $A(u) = 0$, of $B(y) = u$.) Now, if the equation $C = 0$ has a regular solution, say $x^\rho v$, where $v(x) = \sum_0^\infty a_n x^n$, then y satisfies the first order differential equation $B_1(y) = 0$, where

$$B_1(y) = (\rho v + xv')y - xvy' = 0.$$

Frobenius redefined reducibility here so that, in the new sense of the word, $C(y) = 0$ is reducible. His definition applied only to equations whose coefficients near $x = 0$ had the character of rational functions, and said that such a linear differential equation was reducible if it had a solution in common with a linear differential equation of lower order having the same property near $x = 0$. To avoid confusion I shall refer to this property as local reducibility. In this terminology Frobenius showed that an m-th order equation of the Fuchsian type is locally reducible to

$$B_m(B_{m-1}(...(B_1(y))...)) = 0,$$

where each B_i is of the first order and has a regular solution, and that the converse also holds. So in particular the regular solutions of a differential equation $C(y) = 0$ all satisfy a differential equation $B(y) = 0$ of the kind Frobenius considered, and if $C = A(B(y)) = 0$, then $A(y) = 0$ has no regular solutions. Turning to the adjoint equation $A(y) = 0$ of $A(y) = 0$, Frobenius showed that if $A(y) = 0$ has only
regular solutions then \(\hat{A}(y) = 0 \) likewise has only regular solutions. This followed from the result just cited and the reciprocity theorem due to him and Thomé independently: that \(A(B(y)) = B(\hat{A}(y)) \). It was connected with the number of regular solutions by the observation that the *indicial* equation at \(x = 0 \) has as many roots (counted according to multiplicity) as the differential equation has regular solutions (§5. Theorem 3). So Frobenius obtained Thomé's result that \(A(y) = 0 \) of order \(\gamma \) has exactly \(\beta \) regular integrals if and only if \(\hat{A}(y) = 0 \) is reducible (in the earlier sense) to an equation of order \(\gamma - \beta \) whose indicial equation is a constant. In particular, this implies Thomé's theorem mentioned above, that \(A(y) = 0 \) has all but one of its solutions regular if and only if its indicial equation is of order \(\gamma - 1 \), and the adjoint equation \(\hat{A}(y) = 0 \) has a solution of the form

\[
\exp \left\{ \left(\frac{c_0}{x} + \ldots + \frac{c_1}{x} \right) \right\} \sum_{v=0}^{\infty} a_v x^{\alpha + v}.
\]

These results conclude our discussion of Frobenius's work on differential equations, which is complete except for his short paper on the existence of algebraic solutions which will be described in its proper place below (Chapter IV). It remains to look briefly at one further simplification of Fuchs's theory, that of Jordan and Hamburger, and one addition to it, that of Jules Tannery.

The form of the solution to a differential equation in the neighbourhood of a singular point \(x = 0 \) was discussed by Fuchs, who, as has been seen, presented it in this form when when the monodromy matrix had a \(k \) times repeated eigenvalue \(\omega \) and \(e^{2\pi i r} = \omega \):

\[
\begin{align*}
 u_1 &= x^r \phi_{11} \\
 u_2 &= x^r \phi_{21} + x^r \phi_{22} \log x
\end{align*}
\]
\[u_k = x^r \phi_{k1} + x^r \phi_{k2} \log x + \ldots + x^r \phi_{kk} (\log x)^{k-1} \quad [1866, 136, \text{eq} \, \text{11}]. \]

The \(\phi_{ij} \) are functions of \(x \), single-valued near \(x = 0 \), and each is a linear combination of \(\phi_{11}, \phi_{21}, \ldots, \phi_{kk} \). So, in the particular case when \(k = 2 \), the solutions in Fuchs's form are

\[
\begin{align*}
 u_1 &= x^r \phi_{11} \\
 u_2 &= x^r \phi_{21} + x^r \phi_{22} \log x.
\end{align*}
\]

These arise as Fuchs had shown, when the analytic continuation of solutions \(u_1 \) and \(u_2 \) around the singular point produces

\[
\begin{align*}
 u_1' &= w u_1 \\
 u_2' &= w_2 u_1 + w u_2 \quad [1866, 135, \text{eq.} \, 10 \, \text{abbreviated}].
\end{align*}
\]

It is easy to see, by writing \(xe^{2\pi i} \) for \(x \), that a suitable basis of solutions in this case is \(u_1 = x^r \phi \), \(u_2 = \frac{x^r \phi \log x}{2\pi i} \) for which \(w_2 = 1 \). In other words, the monodromy matrix with respect to this basis has the form \(\begin{pmatrix} w & 1 \\ 0 & w \end{pmatrix} \), and is in Jordan canonical form.

The Jordan canonical form of a matrix had been introduced by Jordan in his *Traité des substitutions et des équations algébriques* [1870, Section II, Chapter 2] to simplify the discussion of linear substitutions. That same year Yvon Villarceau drew the attention of the Paris Académie des Sciences to a gap in the general theory of linear differential equations with constant coefficients: the method used to resolve even a second order equation into two first order ones breaks down when the characteristic equation has equal roots. Villarceau wished to resolve \(\dot{Y} = AY \), where \(Y \) was a vector and \(A \) a matrix of constants, into \(\dot{y}_1 = \lambda_1 y_1 \), \(\dot{y}_2 = \lambda_2 y_2 \), but of course this is impossible in the case just mentioned.
Jordan observed [1871] that the gap is readily filled by his theory of canonical forms for matrices, which he proceeded to do, so simplifying Fuchs's form of the solution in the case of an equation with constant coefficients (which is, however, not an equation of the Fuchsian type). The introduction of Jordan canonical form into the Fuchsian theory of differential equations was carried out by Hamburger [1873]. He concluded (p. 121) that, if \(w \) is a \(k \)-fold repeated eigenvalue of a monodromy matrix then a basis of solutions \(y_1, \ldots, y_k \) can be found for which the transforms under analytic continuation are:

\[
\begin{align*}
y'_1 &= wy_1 \\
y'_2 &= y_1 + wy_2 \\
&\quad \vdots \\
y'_m &= y_{m-1} + wy_m
\end{align*}
\]

Jordan's theory of canonical forms had been preceded, in 1858 and 1868, by Weierstrass's theory of elementary divisors which he developed in connection with his study of the problem of simultaneously diagonalizing two bilinear or quadratic forms. Hamburger also sketched the correspondence between Jordan's analysis, which he had presented in quite an elementary form, and that of Weierstrass, which makes considerable use of the theory of determinants. However, the theory of matrices, especially in Germany, continued to rely on Weierstrassian ideas at least until the turn of the century, as Hawkins [1977] has established. The reader is referred to Hawkins's paper for a full discussion of Weierstrass's theory and its influence.

In 1875 Tannery published a paper on linear differential equations which closely resembled those of Fuchs. As observed above, it corrected
the mistake in Fuchs's [1866], and it also contained a pleasing converse to Fuchs's main theorem. Tannery showed [1875, 130] that if

\[y_1, y_2, \ldots, y_m \] were functions of \(x \) continuous except at points \(a_1, \ldots, a_p \) around which each became, on analytic continuation, a linear combination of \(y_1, y_2, \ldots, y_m \), then they were solutions of a linear differential equation of order \(m \) with single-valued coefficients:

\[
\frac{d^m y}{dx^m} = p_1 \frac{d^{m-1} y}{dx^{m-1}} + \ldots + p_m y, \quad \text{where} \quad p_i = D_i/D'.
\]

\[
D = \begin{vmatrix}
 y_1 & \frac{dy_1}{dx} & \ldots & \frac{d^{m-1} y_1}{dx^{m-1}} \\
 \frac{dy_2}{dx} & \ldots & \frac{d^{m-1} y_2}{dx^{m-2}} \\
 \frac{dy_m}{dx} & \ldots & \frac{d^{m-1} y_m}{dx^{m-1}}
\end{vmatrix}
\]

and \(L \) is obtained from \(D \) by replacing the \(i^{th} \) column by the transpose of \(\left(\frac{d^m y_1}{dx^m}, \frac{d^m y_2}{dx^m}, \ldots, \frac{d^m y_m}{dx^m} \right) \). So in particular every algebraic function of order \(m \) satisfies such a differential equation. The proof is straightforward, and I omit it.
CHAPTER IV. ALGEBRAIC SOLUTIONS TO A DIFFERENTIAL EQUATION

This chapter considers how Fuchs's problem: when are all solutions to a linear ordinary differential equation algebraic? was approached, and solved, in the 1870's and 1880's. First, Schwarz solved the problem for the hypergeometric equation. Then Fuchs solved it for the general second-order equation by reducing it to a problem in invariant theory and solving that problem by ad hoc means. Gordan later solved the invariant theory problem directly. But Fuchs's solution was imperfect, and Klein simplified and corrected it by a mixture of geometric and group-theoretic techniques which established the central role played by the regular solids already highlighted by Schwarz. Simultaneously Jordan showed how the problem could be solved by purely group-theoretic means, by reducing it to a search for all finite monodromy groups of 2x2 matrices with complex entries and determinant 1. He was also able to solve it for 3rd and 4th order equations, thus providing the first successful treatment of the higher order cases, and to prove a general finiteness theorem for the nth order case (Jordan's finiteness theorem). Later Fuchs and Halphen were able to treat some of these cases invariant-theoretically.

The problem occupied the attention of many leading mathematicians in this period, and provided an interesting test of the relative powers of the older methods of invariant theory and the new group-theoretic ones, which favoured the new techniques. It also led to Schwarz's discovery of a new class of transcendental functions associated with the hypergeometric equation which, although not appreciated at the time, were to be of vital importance in the theory of automorphic functions (discussed in Chapter VII).
4.1 Schwarz.

On 22nd August 1871, at a meeting of the mathematical section of the Swiss Naturforschenden Gesellschaft, H.A. Schwarz announced the solution to the problem: "When is the Gaussian hypergeometric series $F(\alpha, \beta, \gamma, x)$ an algebraic function of its fourth element?" His paper on this question appeared in the Journal für Mathematik for 1872 (Schwarz [1872]) and his arguments have been popular ever since.

Schwarz wrote the equation for complex x and y as

$$\frac{d^2 y}{dx^2} + \frac{\gamma - (\alpha + \beta + 1)x}{x(1-x)} \frac{dy}{dx} - \frac{\alpha \beta}{x(1-x)^\gamma} = 0 \quad (4.1.1)$$

and considered two different cases: where the equation has only one algebraic solution, and where it has two linearly independent algebraic solutions. These cases must be treated separately, and Schwarz first considered the simpler case where one particular integral is algebraic; but either this algebraic function or its logarithmic derivative is a rational function, so the quotient of two branches of the function is constant, and the existence of a second algebraic solution cannot be inferred.

From the work of Fuchs, he said, it is clear that the general solution of (4.1.1) has one of the following forms as a convergent power series:

$$x^a (1 + c_1 x + c_2 x^2 + ...),$$

$$(\frac{1}{x})^b (1 + \frac{c_1}{x} + \frac{c_2}{x^2} + ...), \quad \text{or}$$

$$(1 - x)^c (1 + c_1 (1 - x) + c_2 (1 - x)^2 + ...).$$
where
\[a = 0 \text{ or } 1 - \gamma \]
\[b = \alpha \text{ or } \beta \]
\[c = 0 \text{ or } \gamma - \alpha - \beta. \]

If (4.1.1) has a particular integral, \(y_1 \), which is algebraic and whose logarithmic derivative is a rational function of \(x \), then it must be of the form
\[y_1 = x^a (1 - x)^c g(x) \]
where \(a \) and \(c \) are rational numbers and \(g \) is a polynomial function of \(x \) of degree \(n \), say. For simplicity one may assume \(b = \alpha \), when there are four sub-cases to consider, according as \(a = 0 \) or \(1 - \gamma \) and \(c = 0 \) or \(\gamma - \alpha - \beta \). Schwarz showed that each of them is possible and that the corresponding \(F(\alpha, \beta, \gamma, x) \) is algebraic.

The rest of the paper was devoted to the case of two linearly independent algebraic solutions. In this case every solution is algebraic, and the quotient of any two solutions is also algebraic. The equation
\[\frac{d^2y}{dx^2} + p \frac{dy}{dx} + qy = 0 \quad (4.1.2) \]
may be supposed to have two linearly independent solutions \(y_1 \) and \(y_2 \). They satisfy
\[y_2 \frac{dy_1}{dx} - y_1 \frac{dy_2}{dx} = Ce^{-\int p dx}, \]
\[y_2 \frac{dy_1}{dx} - y_1 \frac{dy_2}{dx} = Ce^{\int p dx}, \]
a result which Schwarz took from Abel [1827], a paper in which Abel derived differential equations, notably Legendre's, for functions defined by definite integrals. In this case
\[y_2 \frac{dy_1}{dx} - y_1 \frac{dy_2}{dx} = Cx^{\gamma} (1-x)^{\gamma-\alpha-\beta-1} \]
so \(\gamma \) and \(\alpha + \beta \) must be rational numbers. Indeed, said Schwarz, one sees by consulting entries 9 and 10 in Kummer's table of 24 solutions.
that α and β must themselves be rational, and for the rest of the paper be therefore assumed α, β, and γ were rational numbers.

Schwarz proposed to consider the quotient of y_1 and y_2, and the related quotients $s = \frac{C_1 y_1 + C_2 y_2}{C_3 y_1 + C_4 y_4}$ where C_1, \ldots, C_4 are constants. These quotients all satisfy a differential equation obtained by eliminating the three ratios $C_1 : C_2 : C_3 : C_4$ by successive differentiation:

$$
\psi(s, x) = 2 \frac{d^3 s}{dx^3} - 3 \left(\frac{d^2 s}{dx^2} \right)^2 = 2p - \frac{1}{2} p^2 - \frac{dp}{dx} = F(x).
$$

(4.1.3)

Following the usage later established by Cayley ([1883, 3]), $\psi(s, x)$ will be called the Schwarzian of s with respect to x or, more briefly, the Schwarzian derivative. Schwarz himself regarded the equation $\psi(s, x) = F(x)$ as a special case of Kummer's equation in [1834] discussed above.

In the present case

$$
\psi(x) = 2p - \frac{1}{2} p^2 - \frac{dp}{dx}
$$

$$
= \frac{1-(1-\gamma)^2}{2x^2} + \frac{1-(\gamma-\alpha-\beta)^2}{2(1-x)^2} - \frac{(1-\gamma)^2 - (\alpha-\beta)^2 + (\gamma-\alpha-\beta)^2 - 1}{2x(1-x)}
$$

or, on setting

$$
(1 - \gamma)^2 = \lambda^2, (\alpha - \beta)^2 = \mu^2, (\gamma - \alpha - \beta) = \nu^2,
$$

(4.1.3) becomes

$$
\psi(s, x) = \frac{1 - \lambda^2}{2x^2} + \frac{1 - \nu^2}{2(1-x)^2} - \frac{\lambda^2 - \mu^2 - \nu^2 - 1}{2x(1-x)}.
$$

(4.1.4)

λ, μ, ν will be taken to be the positive roots of λ^2, μ^2, ν^2 respectively. The advantage of (4.1.3) over (4.1.2) is that, as Heine pointed out to Schwarz, if y_1/y_2 and $e^{-\int p dx}$ are both algebraic then y_1 and y_2 are algebraic, for $y_2^2 \frac{dy_1}{dx} = Ce^{-\int p dx}$. So Schwarz needed only to consider the algebraic nature of one function, y_1/y_2, not two.
The power series solutions of (4.1.1) involve \(x, 1-x, \) or \(\frac{1}{x}, \) so the effect of replacing \(x \) by \(z = \frac{c_{3} x + c_{4}}{c_{1} x + c_{2}} \) is therefore to be considered:

\[
\psi(s, x) = \left(\frac{d\psi}{dx} \right)^{2} \psi(s, z).
\]

The effect of replacing \(x \) by \(1-x, \) or \(\frac{1}{x} \) or compositions thereof on the solutions to (4.1.3) is then readily seen to be, if \(s(\lambda, \mu, \nu, x) \) is one solution:

\[
\begin{align*}
\Lambda(s, \mu, \nu, z) &= s(\lambda, \mu, \nu, x) \quad \text{if } z = x, \\
\Lambda(s, \mu, \lambda, x) &= s(\nu, \mu, \lambda, x) \quad \text{if } z = 1-x, \\
\Lambda(s, \mu, \nu, x) &= s(\mu, \lambda, \nu, x) \quad \text{if } z = \frac{1}{x}, \\
\Lambda(s, \nu, \lambda, x) &= s(\nu, \lambda, \mu, x) \quad \text{if } z = \frac{1}{1-x}, \\
\Lambda(s, \lambda, \nu, x) &= s(\lambda, \nu, \mu, x) \quad \text{if } z = \frac{x}{1-x}, \\
\Lambda(s, \mu, \nu, \lambda, x) &= s(\mu, \nu, \lambda, x) \quad \text{if } z = \frac{x-1}{x},
\end{align*}
\]

which agrees with Riemann's theorem concerning his \(\Phi \)-function, so \(s(\lambda, \mu, \nu, x) \) is a quotient of two linearly independent branches of the \(\Phi \)-function \(\Phi(\lambda, \mu, \nu, x) \).

To solve (4.1.3), Schwarz first considered the solutions near a point \(x_{0} \neq 0, 1, \) or \(\infty \). Here

\[
F(x) = a_{0} + a_{1}(x-x_{0}) + \ldots + a_{n-1}(x-x_{0})^{n-1} + \ldots
\]

Let \(s' \) be a particular integral, then (omitting the Weierstrassian considerations of convergence dealt with by Schwarz)

\[
\frac{d}{dx} \log \frac{ds'}{dx} = r = \frac{-2}{x-x_{0}} + \ast + b_{1}(x-x_{0}) + \ldots
\]

whence

\[
\log \frac{ds'}{dx} = -2 \log(x-x_{0}) + \log(-1) + \frac{1}{2} b_{1}(x-x_{0})
\]

\[
\frac{ds'}{dx} = \frac{-1}{(x-x_{0})^{2}} + b_{0} + b_{1}'(x-x_{0}) + \ldots
\]

and finally
\[s' = \frac{1}{x-x_0} + b_0' (x-x_0) + \frac{1}{2} b_1' (x-x_0)^2 + \ldots \]

where the b's are polynomial functions in the b's with rational coefficients.

\(s' \) is then characterized as that solution which is infinite to the first order at \(x = x_0 \), and is unbranched near \(x_0 \). A simply connected domain \(X \) contained in a neighbourhood of \(x_0 \) is then mapped onto a simply connected domain \(S \) containing \(s = \infty \). But the general solution of (4.1.4) is then

\[s = \frac{C_1 s' + C_2}{C_3 s' + C_4}, \]

so Schwarz had shown:

Theorem 4.1.5 The map \(s(\lambda, \mu, \nu, x) \) from the complex \(x \)-plane to the complex \(s \)-plane maps each simply-connected region \(X \) not containing 0, 1, or \(\infty \) onto a simply connected region \(S \) containing \(\infty \) once or several times in its interior but having no branch point in its interior.

If in particular \(x_0 \) is real and neither 0, 1, nor \(\infty \) then, since \(\lambda^2, \mu^2, \) and \(\nu^2 \) are real, \(s' \) is real when \(x \) is and \(S \) is marked out by circular arcs.

Next, he considered the solutions to (4.1.4) in the neighbourhood of the singular points \(x = 0, 1, \infty \). Near \(x = 0 \),

\[F(x) = \frac{1-\lambda^2}{2x^2} + \frac{a_0}{x} + a_1 + a_2 x + \ldots + a_n x^{n-1} + \ldots \]

Accordingly

\[\frac{d}{dx} \log \frac{ds'}{dx} = r = -\frac{1+\lambda}{x} + b_0 + b_1 x + \ldots + b_n x^n + \ldots, \]

which led Schwarz eventually to

\[s' = -C x^{-\lambda} \left(\frac{1}{\lambda} - \frac{b_1 x}{1-\lambda} - \frac{b_2 x^2}{2-\lambda} - \ldots \right) + C' \]
(provided λ is neither an integer nor zero) or, setting $\sigma = -\frac{\lambda}{C} s'$,

$$\sigma = x^{-\frac{\lambda}{C}} (1 + b_1 x + b_2 x^2 + ...) + C''$$

(4.1.6)

and, when either $\lambda = 0$ or an integer m,

$$\sigma = x^{-m} (1 + b_1 x + b_2 x^2 + ...) + B_m \log x + C_m.$$

In each case the b^n are polynomial functions of the a's. B_m ($m \neq 0$) is also a polynomial function of a_0 to a_{m-1} and can be found by setting $p = -\frac{(m-1)}{x}$ and $q = \frac{1}{2} \left(\frac{1}{q^2} + \frac{dp}{dx} + f(x) \right)$, and solving the appropriate version of (4.1.2) by the method of undetermined coefficients. It turns out then that

$$B_m = -\frac{1}{2^m} \frac{1}{m!} \frac{1}{(m-1)!} D,$$

where D is a determinant of order m, the vanishing of which is a necessary and sufficient for $x = 0$ to be an accidental singular point of the equation (see Fuchs [1868], and Chapter III n. 7). For $m = 1$, $D = a$ and $x = 0$ is an actual singularity. For $m = 2$, $D = a_0^2 + 2a$, and vanishes if and only if $a_0 = \frac{1}{2} (\mu - \nu)$. Finally if $\lambda = 0$, $x = 0$ is always an actual singularity.

The map σ is thus determined geometrically near x by the nature of x^λ (recall that λ is rational and positive). The map $s = \sigma^{-1}$ is thus a conformal map of a neighbourhood of $x = 0$ in the upper half x-plane onto a region bounded by two circular arcs meeting at an angle $\lambda \pi$. If $\lambda = m \neq 0$ and $B_m = 0$ the circular arcs touch, if $B_m = 0$ they coincide. Analogous results hold at $x = 1$ and $x = \infty$, so Schwarz had established:
Theorem 4.1.6 The upper half \(x \)-plane \(E \) is mapped conformally by \(s \), a particular integral of (4.1.3), onto a simply connected domain \(S \), having no winding point in its interior, which is, in general, a circular arc triangle. The angles at the vertices corresponding to 0, 1, \(\infty \) are \(\lambda \pi \), \(\mu \pi \) and \(\nu \pi \) respectively.

How are these circular-arc triangles connected? To avoid irksome special cases, Schwarz first assumed that none of the \(\lambda, \mu, \nu \) are integers and, to avoid overlapping the triangles unnecessarily, he reduced \(\lambda, \mu \) and \(\nu \) mod 2. It then turns out by the reflection principle that each domain \(S \) is a circular arc triangle for which
\[
\lambda + \mu + \nu > 1 \quad \text{and} \quad -\lambda + \mu + \nu < 1, \quad \lambda - \mu + \nu < 1, \quad \lambda + \mu - \nu < 1.
\]
In precisely this case \(S \) can be taken to be bounded by great circles.

An adjoining triangle \(S_1 \) comes from a second copy of the half plane \(E \), say \(E_1 \), and corresponding points in \(E \) and \(E_1 \) are mapped onto reciprocal points in \(S \) and \(S_1 \), that is, to points which are images under the Möbius transformation of inversion in the common side. For reasons of symmetry each triangular region \(S \) is the image of its neighbour, and the question reduces to finding all circular-arc triangles which, when so transformed, give only a finite covering of the sphere. This is equivalent to finding such triangles as only occupy a finite number of positions upon successive reflections in their sides, and in this case \(S \) is an algebraic function of \(x \in E \), for, said Schwarz, the Riemann surfaces of \(x \) and \(s \) are then closed surfaces with finitely many leaves. Schwarz observed that this problem had already been discussed to some extent by Riemann himself, in a paper published just after his death ([Riemann 1867]) where, in §12, Riemann considered the case when \(\frac{du}{d \log n} \) is an algebraic function of \(n \), and in §18 alluded to the conformal representations of regular solids onto the sphere.
Indeed, Schwarz noted, the solution of his problem is precisely that the triangles must either fit together to form a regular double pyramid (angles $\pi/2, \pi/2, \pi$, $\nu = \frac{1}{n}$) or a regular solid.

This gave him a table of 15 cases (up to an ordering of λ, μ, ν) in which s was algebraic, given in Table 4.1, and in all other cases (when $\lambda + \mu + \nu \leq 1$ or $\lambda + \mu + \nu > 1$ but λ, μ, ν not as tabled) s was transcendental. In each case it is possible to write down the associated Gaussian hypergeometric series and exhibit it directly as an algebraic function. Schwarz gave as an explicit example the case: $\lambda = \frac{1}{3} = \mu$, $\nu = \frac{1}{2}$, for which the regular solid is a tetrahedron, divided by its symmetry planes into 24 triangles with angles $\frac{\pi}{2}, \frac{\pi}{3}, \frac{\pi}{2}$ and, in slightly less detail, the cases of the octahedron, icosahedron, and dodecahedron. His analysis was extended by Brioschi [1877a, b] and completed by Klein [1877], see Section 4.3.

It remained for Schwarz to consider the special cases where some of λ, μ, ν are integers. If $\lambda = 0$ the function s is necessarily transcendental. When $\lambda = m \neq 0$ he showed s can only be algebraic if $B_m = 0$ and $x = 0$ is an accidental singularity. This, it turned out, would happen if and only if one of $|\lambda| - |\mu + \nu|$ or $|\lambda| - |\mu - \nu|$ was an odd positive integer. Further conditions are necessary for s to be algebraic, namely, that all of λ, μ, ν are non-zero integers, their sum is odd, and the sum of the absolute value of any two exceeds the absolute value of the third.

Schwarz did more than solve the problem he set himself of finding algebraic solutions to the hypergeometric equation. His thorough treatment of the tetrahedral case revealed elegant connections with elliptic function theory, as one might expect, but even more important for the direction of future work was his investigation of the simplest transcendental cases when $\lambda + \mu + \nu < 1$. This occupied §5 of his paper.
Tabelle

enthaltend, abgesehen von genannten Factor w, das Bogenschenk der Winkel und
den Flächeninhalt der reduzierten sphärischen Dreiecke, welche auf einer Kugelober-
fläche von Radius 1 durch die Symmetrieachsen von konzentrischen regelmäßigen
Doppelpyramide oder einem konzentrischen regelmäßigen Polyeders bestimmtd werden.

<table>
<thead>
<tr>
<th>No.</th>
<th>u^2</th>
<th>p^2</th>
<th>r^2</th>
<th>n</th>
<th>Polyeder</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Regelmäßige Doppelpyramide</td>
</tr>
<tr>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tetraeder</td>
</tr>
<tr>
<td>II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$2A$</td>
</tr>
<tr>
<td>III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$2B$</td>
</tr>
<tr>
<td>IV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Würfel und Oktaeder</td>
</tr>
<tr>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$2B$</td>
</tr>
<tr>
<td>VI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>VII</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$2C$</td>
</tr>
<tr>
<td>VIII</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$2C$</td>
</tr>
<tr>
<td>IX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$3C$</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$4C$</td>
</tr>
<tr>
<td>XI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$6C$</td>
</tr>
<tr>
<td>XII</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$6C$</td>
</tr>
<tr>
<td>XIII</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$6C$</td>
</tr>
<tr>
<td>XIV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$7C$</td>
</tr>
<tr>
<td>XV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$10C$</td>
</tr>
</tbody>
</table>

Dodekaeder und Ikosaeder

Table 4.1.
To Fac. p. 118.
Here he showed that a circular-arc triangle with angles $\lambda \pi$, $\mu \pi$, $\nu \pi$ can be formed with sides perpendicular to a fixed boundary circle, and that successive reciprocation can then fill out the interior of this fixed circle with copies of the original triangle. A picture of the case $\lambda = \frac{1}{5}$, $\mu = \frac{1}{4}$, $\nu = \frac{1}{2}$ was supplied. The function s is necessarily transcendental, but it is single valued whenever $\frac{1}{\lambda}$, $\frac{1}{\mu}$, $\frac{1}{\nu}$ are integers. In such a case the fixed circle is a natural boundary of s, and s cannot be analytically continued onto the boundary. This phenomenon had been noticed earlier by Weierstrass in 1863, indeed, Schwarz went on, Kronecker had pointed out that the θ-series for $\frac{\sqrt{2K}}{\pi}$

$$\frac{\sqrt{2K}}{\pi} = 1 + 2q + 2q^4 + 2q^9 + \ldots$$

gives an example where q cannot be taken on or outside the unit circle, nor can the function be analytically continued past $|q| = 1$ in any other way. Other examples pertained to the case $\lambda + \mu + \nu = 0$, and had been discussed by Weierstrass in 1866. Thus, if in the usual notation:

$$K = \int_0^1 \frac{dx}{\sqrt{(1-x^2)(1-k^2x^2)}}, \quad K' = \int_0^1 \frac{dx}{\sqrt{(1-x^2)(1-k'^2x^2)}}$$

where $k^2 + k'^2 = 1$ then

$$s = \frac{a'K + b'K'}{ak' + bK}$$

is a function of k^2 when a, b, a', b' are given, and s is bounded but k^2 unbounded.

Yet another Weierstrassian example given by Schwarz pertained to the case $\lambda + \mu + \nu = 1$, when the triangles tessellate the plane and s is a single valued function provided, up to order, either $\lambda = \frac{1}{3} = \mu = \nu$, or $\lambda = \frac{1}{2}$, $\mu = \nu = \frac{1}{4}$.
or \(\lambda = \frac{1}{2}, \mu = \frac{1}{3}, \nu = \frac{1}{6} \). In these cases \(x \) is a single-valued function of \(s \) as \(s \) runs over the plane.

Schwarz's elegant solution of the all-solutions algebraic problem for the case of the hypergeometric equation indicated the important role to be played by geometrical reasoning in analysing such problems. But it was an open question for his contemporaries as to how to proceed with the attractive problem of dealing either with the second order equation when more than three singular points are present, or with equations of higher order. The challenge was either to be met both with the then-traditional methods of invariant-theory, and, more directly, with the then-novel methods of group theory. I shall suggest that the relative success of the new group-theoretic methods, coupled with their triumphant extension into Schwarz's transcendental case \((\lambda + \mu + \nu < 1)\), did much to advance group theory at the expense of invariant theory.
4.2 Fuchs’s Solution.

Schwarz’s solution to the algebraic-solution problem for the hypergeometric equation had been simple, because the hypergeometric equation is unique amongst second order equations of the Fuchsian class in that the exponents at the singular points uniquely determine the nature of the solutions, as Fuchs had shown. So the question extending his results was a difficult one. It was to prove much easier to treat the second order case with n singular points and several attempts were made upon this problem. These may be divided into two kinds, and briefly characterized as invariant-theoretic and group-theoretic.

In the early 1870's invariant theory was a central domain of mathematics. It is the study of forms (homogeneous polynomials of some degree in various indeterminates) enjoying special properties under linear changes of the indeterminates. Expressions, in the coefficients of a form, which were unchanged by all such transformations were called absolute invariants, or else, if they altered by a constant which depended on the coefficients of the form but was independent of the linear transformation, they were called relative invariants. Analogous expressions involving the indeterminates were called covariants. A computational procedure was developed for producing new covariants from old, and the central question in any given problem in invariant theory was always to find a complete basis of covariants in terms of which all other covariants could be expressed as sums and products. Gordan, the leading invariant theorist of his day, had established the existence of a finite basis for binary forms in his important [1868]. The well-developed theory of binary forms, however, stood in marked contrast to the difficulties encountered in the extending the study of invariants to forms in three or more variables, and so it is not surprising to find that Fuchs and Gordan,
who sought to use invariant theory to solve the algebraic-solution problem, first considered the second-order differential equation.

Group theory on the other hand was a new subject in the 1870's although implicitly group-theoretic ideas had been around for some time (see Wussing [1969]). Crucial papers stressing the importance of the group idea were Jordan: Traité des substitutions et des équations algébriques (1870), Sylow [1872], and Klein's Erlanger Programm [1872]. Klein drew his inspiration from Jordan, whose Traité he was later to describe as a book with seven seals (Klein [1922]) and he was at pains in the Erlanger Programm to stress the value of relating group theory to the invariants as a classificatory principle. (He had gone to Paris in 1870 with his friend Sophus Lie to learn the new ideas, although his studies were interrupted by the Franco-Prussian war.) Jordan's Traité contains a range of applications of group theory to mathematics, and so it was natural for him and Klein to take up the algebraic-solutions problem in differential equations from that point of view, but the Traité is even more remarkable for its reformulation of the ideas of Galois theory.

Lagrange's work on the theory of equations emphasized polynomials called resolvents with certain invariance properties under permutations of the roots. Replacing the indeterminate, say \(x\), in these polynomials by a homogenous coordinate \(x_1: x_2\) produces a binary form, and indeed invariant theory derives in part from this kind of study. Jordan's Traité is the first book to place the underlying groups of permutations in the foreground and to diminish the importance of specific polynomials. Jordan took the burden of Galois' ideas to lie in a permutation-theoretic form of the theory of groups and their normal subgroups which Galois had begun, and he developed this theory of such groups without regard for the hierarchies of invariant forms which correspond to the subgroups of a given Galois group. German mathematicians on the other hand, notably Kronecker and Dedekind, sought to explore this correspondence between groups and families of invariant functions, as is described in Chapter V. This is also the approach Klein
envisaged for the algebraic-solutions problems, as is particularly clear in his treatment of the transcendental functions discovered by Schwarz. Klein was also extremely interested in the resolvents of equations and their geometric representation. This particular emphasis, present in his work and Gordan's, but absent from Jordan's, led Klein and Gordan in conversation to call their study 'hyper-Galois' theory. So one may say the schools of thought brought to bear on the algebraic-solutions problem derived from the traditional approach to theory of polynomials, as it had developed into invariant-theory; the modern group theoretical approach, pioneered by Jordan, of Galois theory; and a geometric blending of the two, preferred by Klein.

The first person to follow up Schwarz's paper was Lazarus Fuchs, returning to the problem he had first stated in 1865. His methods were traditional, and, as will be seen, by no means completely successful. Later work by Gordan resolved the matter fully in invariant-theoretic terms, but by then Klein and Jordan had also solved the problem group theoretically, and Jordan had gone beyond it to a study of the third order case. It seems that on this question the new methods surpassed the old.

Fuchs published four accounts of his work: a summary [1875], a complete account [1876a], a short note for French readers in the form of a letter to Hermite [1876b], and more definitively, [1878]. I shall proceed to give a summary of the main paper, [1876a].

If a second order differential equation with rational coefficients

$$\frac{d^2 u}{dz^2} + p \frac{du}{dz} + qu = 0 \quad (4.2.1)$$

has an algebraic solution u_1, then u_1 is a root of some irreducible polynomial equation

$$A_m u^m + A_{m-1} u^{m-1} + \ldots + A_0 = 0 \quad (4.2.2)$$

where the A_i, $i = 0, 1, \ldots, m-1$, are rational functions of z. Any other root of (4.2.2) is also a solution to (4.2.1), because (4.2.2) is
irreducible, so the question arises: how are the roots of (4.2.2) related? Essentially two cases can arise, which are the cases considered by Schwarz. Either there are two roots, say \(u_1 \) and \(u_2 \), which do not have a quotient which is a rational function of \(z \), in which case \(u_1 \) and \(u_2 \) can be taken as a basis of solutions to (4.2.1), or there are not. This latter case is simpler and will be dispensed with at once. If \(u_k \) is another root of (4.2.2) and \(u_k = ju_1 \), say, then one sees at once on substituting \(ju_1 \) into (4.2.2), that \(j \) must be a constant and indeed a primitive root of unity. Now this is true for every root of (4.2.2) so it reduces to

\[
A_m u_m^m + A_0 = 0
\]

and \(u_1 \) is a root of a rational function. Accordingly, in this case every solution to (4.2.1) is a root of a rational function. But, said Fuchs, this case can be detected in advance by purely algebraic means which are adequate in fact to deal with the \(n \)th order differential equation, and need be discussed no further. There remains the more interesting case when (4.2.1) has two independent algebraic solutions, and hence all its solutions are algebraic.

Fuchs reduced (4.2.1) in this case

\[
\frac{d^2 y}{dz^2} + py = 0 \quad (4.2.3)
\]

by means of the substitution \(u = py \), \(\mu = e^{-\frac{1}{2}\int p dz} \), where

\[
P = q - \frac{1}{4}p^2 - \frac{1}{2} \frac{dp}{dz},
\]

Since the general theory of equations of the Fuchsian class implies that

\[
p(z) = \sum_{i=1}^{\rho} \frac{\alpha_i}{z-a_i}, \quad q(z) = \sum_{i=1}^{\rho} \frac{\beta_i + (z-a_i)\gamma_i}{(z-a_i)^2},
\]

where \(a_1, \ldots, a_{\rho} \) are the singular points of (4.2.1) and the \(\alpha_i, \beta_i, \gamma_i \), and \(\gamma_i, i = 1, \ldots, \rho \) are constants such that \(\Sigma \gamma_i = 0 \),

\[
\mu = (z-a) \ldots (z-a_{\rho})^{-\frac{1}{2}a} \ldots (z-a_{\rho}^{-\frac{1}{2}}).
\]
So all the solutions to (4.2.3) are algebraic if all the solutions
to (4.2.1) are, and conversely all the solutions to (4.2.1) are algebraic
if all solutions to (4.2.3) are and, in addition, \(a_1, \ldots, a_p\) are
rational (i.e. \(p\) is the logarithm of a rational function). Henceforth
Fuchs worked with (4.2.3).

The general solution to (4.2.3) has the form
\[
\alpha y + \beta \phi(y) \tag{4.2.5}
\]
where \(\alpha, \beta\) are constants, \(y\) is as algebraic solution to (4.2.3), and
\(\phi(y)\) a rational function of \(y\) and \(z\), say
\[
\phi(y) = c_0 + c_1 y + \ldots + c_m y^m, \tag{4.2.6}
\]
where \(c_0, \ldots, c_m\) are rational functions of \(z\). Taking \(y\) and \(\phi(y)\) as a
basis of solutions to (4.2.3), Fuchs next considered the monodromy of
the differential equation, and obtained various constraints upon the
nature of the solutions that can arise which will be discussed below.

If \(y\) is any algebraic solution to (4.2.3) then it satisfies an
irreducible equation of degree \(m\) in \(y\), and Fuchs showed that the number
\(m\) does not depend on the choice of the solution of the differential
equation [1876a, §8]. Suppose the equation for \(y\) is
\[
A_my^m + A_{m-1}y^{m-1} + \ldots + A_0 = 0, \tag{4.2.7}
\]
and \(y_1, \ldots, y_{m-1}\) are its other roots. These roots may be divided up
into equivalence classes, where one is equivalent to another if and only
if their quotient is constant. A family of pair-wise inequivalent roots
was said by Fuchs to form a reduced root system \(y, y_1, \ldots, y_{m-1}\) say,
and \(y_i, y_{i_1}, \ldots, y_{i_j}^{-1}\) to be the roots corresponding to \(y_i\), \(j\) being a
primitive \(k_i\)th root of unity. Fuchs called the least common multiple of
the \(k_i\)'s as \(y_i\) runs through a reduced root system the index of the equation,
and he showed [§9 Theorem 2]:
\[
kn = m, \tag{4.2.8}
\]
since (4.2.7) is irreducible. For that reason, too, the analytic
continuation of any two distinct roots of (4.2.7) along a closed path
produces distinct roots [§9 Theorem 3].
Fuchs was now ready to translate his problem into invariant-theoretic terms. He let n, n_1, ..., n_{n-1} be a reduced root system of index ℓ, and y_1 and y_2 any basis of solutions of the differential equation (4.2.4). Then $n_1 = A_{11}y_1 + A_{12}y_2$, and a form of the nth degree is constructed:

$$f(y_1, y_2) = (A_{01}y_1 + A_{02}y_2) \cdots (A_{n-1,1}y_1 + A_{n-1,2}y_2). \quad (4.2.9)$$

Any circuit in z changes f by at most a multiple of a primitive ℓth root of unity, so f is a root of a rational function of z, with highest exponent ℓ. Conversely, any form which is a root of a rational function of z and has $n = A_{01}y_1 + A_{02}y_2$ as a factor also has factors $n_1 = A_{11}y_1 + A_{12}y_2$, where n, n_1, ..., n_{n-1} are a reduced root system for the irreducible equation which n satisfies. Fuchs [910] called any form which only has m factors the members of a reduced root system and in which every factor has degree one a ground form (Primform). Accordingly, every ground form is the root of a rational function, and if two ground forms have a common factor they are identical up to a common factor. Conversely, any form which is the root of a rational function can be written as a product of ground forms and contains each member of a reduced root system equally often. Fuchs's purpose in introducing these forms was to replace the solutions to the original differential equation, which are algebraic functions, with related quantities which are simpler, being roots of rational functions.

Although m depends only on the differential equation, the index ℓ, and the order of the reduced root system, n, may depend upon the choice of solution y_1. Fuchs therefore chose y_1 so that n was as small as possible, say N, and let the corresponding index be L, when $m = NL$. N is then the least degree of a form which is a root of a rational function, and any such form is a ground form. Fuchs's approach was to calculate the possible values of N, using the machinery of invariant theory whenever possible. As it stands the problem would be solved if one could characterize these binary forms of degree N all of whose covariants of
lower degree vanish identically, but this Fuchs confessed himself unable to do in letter to Hermite, January 1876, = Fuchs [1876b]. He therefore resorted to less direct methods.

The Hessian covariant of a form $\phi(y_1, y_2)$ is the determinant

$$
\begin{vmatrix}
\frac{\partial^2 \phi}{\partial y_1^2} & \frac{\partial^2 \phi}{\partial y_1 \partial y_2} \\
\frac{\partial^2 \phi}{\partial y_2 \partial y_1} & \frac{\partial^2 \phi}{\partial y_2^2}
\end{vmatrix}.
$$

If ϕ is a ground form of degree N, its Hessian, which Fuchs denoted Υ, is again a root of a rational function, and is of degree $2N-4$. It is therefore a ground form, since it cannot be a product of ground forms. It cannot vanish identically unless it a power of linear function, in which case $N=1$, so Fuchs henceforth assumed $N>1$.

The case $N=2$ was disposed of simply [§13]. In this case y_1 and y_2 satisfy

$$a_0 y_1^2 + a_1 y_1 y_2 + a_2 y_2^2 = \phi(z), \quad (4.2.10)$$

where ϕ is a root of a rational function and $4a_0 a_2 - a_1^2 \neq 0$ in order that the quadratic have unequal factors. He set $\frac{y_2}{y_1} = u$ and

$$a_0 + a_1 u + a_2 u^2 = \frac{\phi(z)}{y_1^2} = f(u).$$

The logarithmic derivative of the root of a rational function is a rational function, so, taking the logarithmic derivative of both sides of the last equation

$$y_1^2 \phi_1(z) - 2y_1 \frac{dy}{dz} = c f_1(u) \quad (4.2.11)$$

(where f_1 and ϕ_1 denote the logarithmic derivatives with respect to u and z respectively). By differentiating again and comparing the result with the original equation

$$\frac{d^2 y}{dz^2} + Py = 0$$

Fuchs obtained the result

$$\lambda = \phi(z)^2 [\phi_1(z)^2 + 2 \frac{d \phi_1(z)}{dz} - 4P], \quad (4.2.12)$$

where $\lambda = c^2 (4a_0 a_2 - a_1^2)$ is a non-zero constant. According $\phi(z)$ is the square root of a rational function, say

$$\phi(z)^2 = \frac{-\lambda}{4 \psi(z)} \quad (4.2.13)$$
and
\[p = \frac{5}{16} \left(\frac{d \log \psi(z)}{dz} \right)^2 - \frac{1}{4\psi(z)} \frac{d^2 \psi}{dz^2} + \psi(z). \] (4.2.14)

A basis of solutions for the differential equation in this case is
\[y_1 = \psi(z) \frac{-1}{4} e^{\int \psi(z)^4 dz} \]
\[y_2 = \psi(z) \frac{-1}{4} e^{-\int \psi(z)^4 dz} \] (4.2.15)
which are algebraic if and only if \(\int \psi(z)^4 dz \) is the logarithm of an algebraic function. In that case the solutions can be written
\[y_1 = \psi(z) \frac{-1}{4} [p + q (z)^{\frac{1}{L}}]^a \]
\[y_2 = \psi(z) \frac{-1}{4} [p + q (z)^{\frac{1}{L}}]^a \] (4.2.16)
for \(p, q \) rational functions of \(z \) and \(a \) a rational number.

The cases \(N>2 \) were attacked in a somewhat piecemeal fashion and only a flavour of the methods can be given. The index of \(\Psi \), the Hessian of \(\phi \), is \(L' \), say, and \((2N-4)L' = m = NL \), by (4.2.8). Suppose \(n \) is a linear factor of \(\phi \) and \(r \) a linear factor of \(\Psi \) such that the monodromy of the equation forces
\[C = F(n) = \beta n^{L-1} \psi(n^L). \]
where \(\beta \) is a constant, and
\[\psi(n^L) = c_0 + c_1 \gamma^L + \ldots + c_{(N-1)L} \gamma^{(N-1)L} \] (4.2.17)
This is the simplest form of the monodromy relations obtained by Fuchs in his examination of the monodromy relations in §7. From this he deduced \(L' \geq L \), and so, if \(N \geq 4 \) (and \(N \leq 2N-4 \) then \(L' = L \) and \(N = 4 \). Whereas, if \(N = 3 \), \(3L = 2L' \), so \(L < L' \) and \(L \) must, by an earlier result, divide \(L' \). But then \(\frac{2L'}{L} \) is an even number equal to 3, which is absurd, so \(N = 3 \) is impossible. The case under discussion arises, Fuchs observed, when \(L = 1 \), and it then follows from \(L'(2N-4) = N \) that \(L' = 1 \) and \(N = 4 \). Finally, if \(\zeta = \alpha n \), for some constant \(\alpha \), then \(\phi \) and \(\Psi \) have a common linear factor, and necessarily \(2N-4 \) and \(N = 4 \), [§14].
The remaining possible values of N are associated with the more complicated forms of the monodromy relations, and required more ad hoc methods. After four paragraphs and seven pages Fuchs finally produced the following table of possibilities:

<table>
<thead>
<tr>
<th>N</th>
<th>L</th>
<th>(\phi(y_1, y_2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3 or 6</td>
<td>(a_0 y_1^4 + a_3 y_1^3 y_2)</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>(a_1 y_1^5 y_2 + a_3 y_1^3 y_2^3 + a_3 y_1 y_2^5)</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>(a_1 y_1^5 y_2 + a_5 y_1 y_2^5)</td>
</tr>
<tr>
<td>8</td>
<td>3 or 6</td>
<td>(a_1 y_1^7 y_2 + a_4 y_1^4 y_2^4 + a_7 y_1 y_2^7)</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>(a_1 y_1^9 y_2 + a_5 y_1 y_2^5 + a_9 y_1 y_2^9)</td>
</tr>
<tr>
<td>12</td>
<td>5 or 10</td>
<td>(a_1 y_1^{11} y_2 + a_6 y_1^6 y_2^6 + a_{11} y_1 y_2^{11})</td>
</tr>
</tbody>
</table>

Together with the cases already discussed: N=4, L=2, N=4, L=1, N=2; and N=1 (§19).

The most interesting fact in the table is the upper bound on \(N \leq 12 \). It is testimony to the intricacies of Fuchs's method that it contains incorrect cases (N=6 and L=4; N=8, L=3 or 6; and N=10) which are not possible values, as Klein was quick to notice (Klein [1876, = 1922, 305]).

Klein also commented on these cases in Fortschritte, VII, 1877, 172-3.

Fuchs summarized his finding in two theorems [§20 Theorems 1 and 2]: if a differential equation has algebraic solutions then either the general solution or one of the tabulated forms in \(y_1 \) and \(y_2 \) (a basis of arbitrary solutions) is a root of a rational function. Conversely, if a fundamental system of solutions can be made to yield a form (of degree >2 and not a power of a form of degree 2) which is a root of rational function then the original differential equation has algebraic solutions.

It can hardly be said that this conclusion, although very interesting, amounts to a characterization of the differential equations having algebraic solutions. It does not yield for instance, a simple test which can be applied to a given equation. Fuchs spent the last fifteen pages trying
to improve matters, as follows.

Setting \(v = y^\mu \) turns the original equation (4.2.3) into

\[
\frac{d^{\mu+1}v}{dz^{\mu+1}} + p_{\mu-1} \frac{d^{\mu-1}v}{dz^{\mu-1}} + \ldots + P_0v = 0 \tag{4.2.19}
\]

with the same singular points as the original equation, and Fuchs showed the necessary condition for (4.2.3) to have algebraic solutions is that for some value of \(\mu = 1, 2, 4, 6, 8, 10, 12 \) (4.2.19) is satisfied by the root of a rational function. If this is the case for \(\mu \neq 2 \) then conversely, if (4.2.19) has algebraic solutions so does (4.2.3). The case \(\mu = 2 \) reduces to the case \(N = 2 \) and the differential equation (4.2.3) is identical with (4.2.14).

He made various attempts to avoid the passage to (4.2.19) but without much success. Two theorems appear that are worth of notice (§24). They concern the solutions with exponent \(r = p/q \) in a neighbourhood of a singular point \(z = a \). A circuit of that singular point sends \(y \) to \(y^p j \), \(j \) a primitive \(q^{th} \) root of 1, and \(qj^m \), the degree of the irreducible equation satisfied by \(y \).

So, if \(\sigma \) is the number of members of the reduced root system containing \(y, \sigma \geq N \), so \(\sigma \leq \sqrt[q]{N} \), i.e. \(\sigma \leq N^{1/q} \) from which it follows that \(q \leq L \). If \(N > 2 \) then from the table above \(q \leq 10 \). Fuchs stated the theorem [§24]: if any denominator, in lowest terms, of the exponents is greater than 10 then (4.2.3) has no algebraic solution unless it, or (4.2.10) with \(\mu = 2 \) is satisfied by a root of a rational function. He went on to prove that if (4.2.19) is satisfied by a root of a rational function and the denominators of the exponents are not 1, 2 or 3 then (4.2.3) is satisfied either by no algebraic functions or by roots of rational functions.
He compared this result with the result of Schwarz on the hypergeometric equation where unless two of \(\lambda, \mu \) and \(\nu \) equal 2, no value of them in Schwarz's table exceeds 5. Fuchs noted in the case \((2,2,n)\) that if all the denominators of the exponents, \(q_i \) say, are equal to 2, and the necessary subsidiary condition for the avoidance of logarithmic terms is satisfied, then \((4.2.3)\) is satisfied by a square root of a rational function.
4.3 Klein's Solution.

Klein first heard of Schwarz's work in the late Autumn of 1874 or Spring of 1875, after Gordan came to join him at Erlangen. Klein wrote, in the introduction to the Vorlesungen über das Ikosaeder [1884] "I had at that time already commenced the study of the Icosahedron for myself (without then knowing of Professor Schwarz's earlier works, ...) but I considered my whole manner of attacking the question rather in the light of preliminary training". He always spoke warmly of the semester he spent with Gordan, his last semester at Erlangen before going to Munich, and it seems to have been a rewarding clash of styles and approaches to mathematics for both men. Klein, only 25 in 1874, had already published over thirty papers on line geometry, on surfaces of the third and fourth degrees, on non-Euclidean geometry, and on the connection between Riemann surfaces and algebraic curves. He was an enthusiast for anschauliche geometry, stressing the importance of a visual and tangible presentation of mathematical ideas, and preferring the conceptual framework of group theory to the more algebraic and computational study of explicit invariants. Gordan, then 37, had spent a year in Göttingen with Riemann, who, however, has been very ill. Together with Clebsch, Gordan had attempted to put Riemann's function-theoretic ideas on a sound algebraic footing in their Theorie der Abelschen Funktionen[1866], but Gordan soon turned to what was to be his great love: the formal side of the theory of invariants. In his [1868] he proved the important theorem that for any binary form there is always a finite basis for its rational invariants and covariants. He became the acknowledged master of the theory of invariants, greatly preferring the mechanisms of the algebra to the more suggestive domain of geometry, quarrying deeply where Klein chose to soar aloft, seeking detailed and difficult results where Klein sought to unify the disparate parts of mathematics.
Their work from 1875 to 1877 reveals many reciprocal influences and contrasts. Klein wrote several papers on invariants, chiefly on the icosahedral invariants which he was beginning to connect with the unsolvability of the quintic equation. In 1875 his work received a special impulse, as he later said (Klein [1922, 257]) from Fuchs's work on the algebraic solutions problem. It seemed to Klein that, with his understanding of the role of the regular solids, he could complete Fuchs's treatment and, indeed, simplify it. His approach, as he was later to stress to Poincaré, was much closer to that of Schwarz than that of Fuchs, and he seems to have had little respect for Fuchs's achievements, which he found ungeometric (a letter from Klein to Poincaré, 19 June 1881 = Klein [1923, 592]). Klein placed the regular solids and their groups at the centre of his study of the algebraic-solution problem, and when he produced the appropriate forms it was done "without any complicated calculation only with the ideas of invariant theory". Klein [1875, = 1922, 276] (italics in original). Gordan for his part found Klein's geometric considerations "very abstract and not bound up of necessity with the question in any way" and proposed to show how the finite groups of linear transformations in one variable could be found algebraically (Gordan [1877a, 23]). Klein replaced Fuchs's indirect resolution of his form problem with an ingenious reduction of the whole question to Schwarz's five cases. Gordan accepted Fuchs's terms and solved the form-problem directly. Klein's method will now be discussed.
Klein began his [1875/76] with the problem of finding all finite groups of motions of the sphere or, equivalently, of finding all finite groups of linear transformations of \(x + iy \). This connection between metric geometry and invariant theory was one he had been pleased to make in the Erlanger Programm (see particularly §6). The root of the connection is that, in the case of the icosahedron, say, there is a group of order 60, the symmetry group of proper motions of the solid. A typical point of the sphere can be moved to a total of 60 different points under the action of this group, but certain points have smaller orbits. There is an orbit of order 12 corresponding to the vertices of the icosahedron, an orbit of order 20 corresponding to the midpoints of the faces, and an orbit of order 30 corresponding to the midpoints of the edges. An orbit of each of these four kinds can be specified as the zeros of a form of the appropriate degree. Klein denoted the forms of order 12, 20 and 30 by \(f \), \(H \), and \(T \) respectively, and calculated each explicitly. But between three forms of order 60 there must be a linear relationship (since a form is known up to multiplication by a constant once its zeros are given), and in this case the relationship is \(T^2 + H^3 - 1728f^5 = 0 \). Furthermore, as one would expect, \(H \) and \(T \) are known when \(f \) is known (the vertices specify the icosahedron completely) so it is enough to determine \(f \) and to explain its relationship to \(H \) and \(T \). Accordingly the invariant theory can be easily developed, once it has been established what the possible finite groups are, and Klein accomplished this classical task anew in §2 of the paper.

Klein regarded the general motion of the sphere as screw-like or loxodromic about an axis. If a finite group is to be constructed each element in it must have finite order, and so be of the form \(z' = \varepsilon z \), \(\varepsilon \) a rational root of unity. Furthermore, the axes of any
any two motions must meet inside the sphere, and indeed all the axes
must meet in the same point. But this reduces the finite group to
one of the five classical examples: the cyclic, dihedral, tetrahedral,
octahedral, and icosahedral groups. As Klein remarked in §3, this
argument simultaneously determines all the finite groups of non-
Euclidean motions.

The groups having been found, the forms in each case can be
written down and related to one another by what Klein called a
general principle (§5). This asserted that, if \(\Pi = 0 \) and \(\Pi' = 0 \)
are the equations of two sets of points which arise from two given
points by the action of a finite group and they are of the proper
degree (say, the order of the group) then \(\kappa \Pi + \kappa' \Pi' = 0 \) represents
any other such system of points, for some choice of parameter \(\kappa/\kappa' \).
Otherwise put, if \(\Pi \) and \(\Pi' \) are two \(G \)-invariant polynomials of the
same degree any third \(G \)-invariant polynomial is linearly dependant
on them. This is true, Klein observed, because there is only a
single infinity of orbits of the same degree, parameterised, one
might add, by the sphere 10.

To give the forms explicitly in the case of the octahedron
Klein took the canonical form obtained by Schwarz and wrote it in
homogeneous co-ordinates as

\[
f = x_1 x_2 (x_1^4 - x_2^4) \quad (\S\ 6)\ .
\]

The general procedures of invariant theory then suggested the
following manoeuvres:
\[f = \frac{a^6}{x}, \] which is the symbolic notation for \(f \) as a binary form of degree 6; the 6th, 4th, and 2nd transvectants of \(f \) with itself are:

\[(ab)^6 = A, \text{ a constant}; \]
\[(ab)^4 = \frac{a^2 b^2}{x^4}, \text{ of degree 4}; \text{ and} \]
\[(ab)^2 = \frac{a^4 b^4}{x^8} = H, \text{ of degree 8, the Hessian of } f. \]

Any form of the sixth degree with isolated roots can be reduced to the form \(x_1 x_2 p^4 \), where \(p^4 \) is of degree four and the coefficients of \(x_1^4 \) and \(x_2^4 \) are, respectively, 1 and -1. Accordingly if its fourth transvectant (Überschiebung) \((ab)^4 \frac{a^2 b^2}{x^4} \) is made to vanish identically it corresponds to the canonical form of the octahedron, and the converse is also true. \(H \) itself cannot vanish identically (else all the roots of \(f \) would coincide).

The eight roots of \(H = 0 \) give the centres of the eight faces of the octahedron. For the same reason the functional determinant of \(f \) and \(H, T, \) is of the twelfth degree and equated to zero locates the twelve mid-edge points of the octahedron. Together with the invariant \(A \) these forms satisfy

\[\frac{A f^4}{36} + \frac{1}{4} H^3 + T^2 = 0 \]

as is easily seen in the canonical case.

Analogous reasoning dispatched the icosahedral equation, and enabled Klein to discuss the irrational covariants in each case.

Klein concluded the paper with a brief reference to the Galois group of the icosahedral equation. There are, he said, 60 proper motions of the icosahedron itself, and for each motion four elements of the Galois group corresponding to the map \(\epsilon \rightarrow \epsilon^v \), \(\epsilon = e^{2\pi i/5} \), \(v = 1, 2, 3, 4 \). The Galois group, then, has 240 elements, but adjoining \(\epsilon \) reduces it to a group of 60 elements. These sixty motions permute the five octahedrons inscribed in the icosahedron, which establishes an isomorphism between the Galois group and the even permutations on five elements.
Klein's next paper, [1876], described the implications of this work for the algebraic-solutions problem. Suppose the equation is
\[y'' + py' + qy = 0. \]
It is algebraically integrable if and only if \(p \) is the logarithm of an algebraic (indeed, rational) function, so Klein was assumed this was the case. Then \(y \), a quotient of linearly independent solutions to the second order equation, is a solution of the Schwarzian equation
\[[\eta] = f(Z) = 2q - \frac{1}{2}p' - p'', \quad (4.3.1) \]
where \([\eta]\) is Klein's notation for the Schwarzian derivative, nowadays written \(\{\eta,Z\}\), and Klein sought to determine the rational function \(f(Z) \).

The monodromy group of the original equation is known because it is finite and so a specific one of the five possibilities. To that group \(G \), say, is associated a canonical \(G \)-invariant rational function \(Z = Z(z) \) which is such that the inverse function \(z = z(Z) \) satisfies a canonical Schwarzian equation
\[[\eta] = R(Z). \quad (4.3.2) \]

But \(y \) is also such that its inverse function \(\zeta = \zeta(y) \) is \(G \)-invariant, and rational, and so \(\zeta \) and \(Z \) are rational functions of each other. So, finally, the substitution \(z = \phi(y) \) where \(\phi \) is a rational function, converts \(Z = Z(z) \) into \(Z(\phi(y)) = \zeta(y) \) and the canonical equation 4.3.2 into the given 4.3.1, and conversely the inverse rational substitution \(\zeta = \psi(Z) \) converts 4.3.1 into 4.3.2. The functions \(\phi, \psi \) are subject to no other constraint, since any rational function of a \(G \)-invariant rational function is \(G \)-invariant, and so Klein deduced the elegant result that those second order linear homogeneous differential equations which are algebraically integrable are precisely those which can be obtained from the canonical ones by an arbitrary rational change of variable, so the problem is solved in principle.
Furthermore, their form is known, for if \(Z_1 = Z_1(Z) \) is any function

\[
\{\eta, Z\} = \left(\frac{dZ_1}{dZ}\right)^2 \{\eta, Z_1\} + \{Z_1, Z\},
\]

and so the conversion of \(\{\eta, Z\} = R(Z) \) by \(Z_1 = \zeta(Z) \) into \(\{\zeta, Z_1\} = f(Z_1) \) converts the canonical equation (b) into \(\{\eta, Z\} = Z_1^2 R(Z) + \{Z_1, Z\} = f(Z_1(Z)) \).

However, it must be said that the appearance of \(f(Z_1) \) in any given case is not such as to suggest immediately what substitution should be made. Klein gave a suggestive method in his [1877=1922, 307-320], which is briefly discussed in Forsyth, [1900 Vol 4, 184-187]. The problem is to determine the rational function, if any, which reduces a given Schwarzian equation to one of the canonical forms. Since a rational function is known exactly (up to a constant multiple) once its zeros and poles are known it suffices to determine these. A rational function, \(R \), say, has the form

\[
R(z) = \frac{\Pi(z - a_i)^{\alpha_i}}{\Pi(z - b_i)^{\beta_i}} = \frac{\Pi(b_i - c_i)^{\beta_i}}{\Pi(c_i - a_i)^{\alpha_i}} = \phi/\psi
\]

where it has been assumed without loss of generality that no zero or pole of \(R \) is at infinity. Now \(R \) enters into the transformed canonical equation as \(R^2, (1 - R)^2, \) and \(R(1 - R) \), so it is reasonable to consider expanding the right hand side of

\[
[\eta] = [R] + R^2 \left\{ \frac{1 - \lambda^2}{2R^2} + \frac{1 - \sigma^2}{2(1-R)^2} + \frac{\lambda^2 - \mu^2 + \sigma^2 - 1}{2R(1-R)} \right\}
\]

as a partial fraction and looking for its quadratic term. This term is

\[
\sum \frac{1 - \alpha_i \lambda^2}{2(x - a_i)^2} + \sum \frac{1 - \beta_i \mu^2}{2(x - b_i)^2} + \sum \frac{1 - \gamma_i \sigma^2}{2(x - c_i)^2} + \sum \frac{1 - \delta_i^2}{2(x - d_i)^2} (4.3.3)
\]

where the \(d_i \) are the \((\delta_2 - 1) \)-fold roots of the Jacobian of \(\phi \) and \(\psi \). But \(\lambda, \mu, \sigma \) are fractions with numerator 1, so when \(\alpha_i = 1/\lambda_i \), say, that member of the expression 4.3.3 vanishes and \(\alpha_i \) is
a singular point for the differential equation. Klein gave the example of the icosahedral case, where $\lambda = \frac{1}{3}$, $\mu = \frac{1}{5}$, $\sigma = \frac{1}{2}$.

$R(z) = \frac{\phi}{\psi}$ has then to have roots of three kinds: a_1, a_1^1, a_1'', a_1' of multiplicity α_1, α_1 not a multiple of 3; a_1' of multiplicity 3; and a_1'' of multiplicity $3\alpha_1''$, α_1'' an integer not equal to 1.

Similar conditions must hold for ψ and the integer 5, and for $\phi - \psi$ and 2. These conditions are derived from the interpretation of the invariant forms associated with the icosahedron. Then (4.3.3) yields the factors $\Pi(x - a_1)^{\alpha_1'}$ of ϕ, $\Pi(x - b_1)^{\beta_1}$ of ψ, $\Pi(x - c_1)^{\gamma_1}$ of $\phi - \psi$, and also factors $\Pi(x - a_1'')^{\alpha_1''}$ $\Pi(x - b_1'')^{\beta_1''}$ $\Pi(x - c_1'')^{\gamma_1''}$ $\Pi(x - d_1)^{\delta_1}$ (§9).

Some of these last are factors of ϕ, ψ, and $\phi - \psi$, some only appear in the functional determinant of ψ and ψ, but since ϕ and ψ both have degree n and their functional determinant has degree $2n - 2$ there are, said Klein, only a finite number number of possibilities for n and for the allocation of factors. It must be said that neither Klein nor Forsyth is explicit about how such a calculation might actually be carried out; one notes Katz' despairing remark [1976, 556]"... but even in cases when one knows the answer ahead of time, it seems hopeless ever to carry out Forsythe's (sic) test procedure."

It may be of interest to give Klein's list of the ground forms which arise in each of the five cases as they appear in the terms of the original differential equations. Starting from the Schwarzian form $[\eta] = P(x)$, where $P(x) = y_1/y_2$ is a quotient of two arbitrary particular solutions of the hypergeometric equation

$$\frac{d^2 y}{dx^2} + \frac{p}{x} \frac{dy}{dx} + qy = 0,$$

he considered

$$C e^{-\int pdx} \frac{1}{y^2},$$
C an arbitrary constant. He took for definiteness the icosahedral equation
\[1728 \frac{H^3(n)}{f^5(n)} = R(x) \]
and, observing that \(T^2 = 12f^5 - 12H^4 \) implies
\[T = C(3H'f - 5f'H), \]
deduced
\[y_2^2 = C \frac{H^2(n)T(n)}{f^6(n) R'(x)} e^{-\int pdx}. \]
So, finally, \(f(y_1, y_2) = C^6 \frac{R^4(1 - R)^3}{R'^6} e^{-\int pdx} \),
and, if \(p = 0 \), \(f \) is rational.

Klein listed the ground forms \(\ldots \), where \(C \) denotes an arbitrary constant; in the table reproduced on p. 138.

Simultaneously with Klein, the Italian mathematician Brioschi was also looking at algebraic solutions to the hypergeometric equation, and in 1877 the Mathematische Annalen carried two contributions from him. The first, [1877a], was in the form of a letter to Klein, and in it he showed how the study of forms whose fourth transvectant vanishes can be connected with a second order differential equation. In his [1877b] Brioschi obtained the precise form of the Schwarzian equation for eleven of the fifteen cases in Schwarz's list. Since Schwarz had done one case (no. I), this left three (XII, XIV, XV) outstanding for which Brioschi's method was inadequate. These were tackled by Klein. Brioschi found that the equations \([t]_x = -2p \), where \(t \) was (in the order II, III, X, XI, XIII):

\[x, \quad \frac{-4x}{1-x^2}, \quad x, \quad \frac{-(1-x)^2}{4x}, \quad x, \quad \frac{-4x}{1-x^2}, \quad \frac{-(1-x)^2}{4x}, \quad \frac{-(x-4)^3}{27x^2}, \]

\[-\frac{1}{4^3} \frac{x(x+8)^3}{(1-x)^3}, \quad \frac{4}{27}, \quad \frac{(x^2-x+1)}{x^2(1-x)^2}, \quad \frac{1}{4.27}, \quad \frac{(x^2+14x+1)^3}{x(1-x)^4}. \]

Brioschi's approach was more invariant-theoretic than Klein's, as befits a man of the previous generation. It was also more modest, for it accepted the solution to Fuchs's problem already proposed. The only man to offer a solution to that problem entirely in the terms of invariant theory was the acknowledged master of the subject, Paul Gordan.
(I)
\[y_i = C e^{-\frac{k}{R^{\alpha-1}}} \int_{\rho}^{\frac{R}{R_i}} \frac{R^{\alpha-1}}{R'} \, dR' \]
\[y_i^* = C e^{-\frac{k}{R^{\alpha-1}}} \int_{\rho}^{\frac{R}{R_i}} \frac{R^{\alpha-1}}{R'} \, dR' \]

(II)
\[y_i y_i^* = C e^{-\frac{k}{R^{\alpha-1}}} \int_{\rho}^{\frac{R}{R_i}} \frac{R^{\alpha-1}}{R'} \, dR' \]
\[y_i^* + y_i^* = 2 C e^{-\frac{k}{R^{\alpha-1}}} \int_{\rho}^{\frac{R}{R_i}} \frac{R^{\alpha-1}}{R'} \, dR' \]
\[y_i^* - y_i^* = 2 C e^{-\frac{k}{R^{\alpha-1}}} \int_{\rho}^{\frac{R}{R_i}} \frac{R^{\alpha-1}}{R'} \, dR' \]

(III)
\[y_i^* - 2 V \sqrt{3} y_i y_i^* - y_i^* = C e^{-\frac{k}{R^{\alpha-1}}} \int_{\rho}^{\frac{R}{R_i}} \frac{R^{\alpha-1}}{R'} \, dR' \]
\[y_i^* + 2 V \sqrt{3} y_i y_i^* - y_i^* = C e^{-\frac{k}{R^{\alpha-1}}} \int_{\rho}^{\frac{R}{R_i}} \frac{R^{\alpha-1}}{R'} \, dR' \]
\[2 V \sqrt{3} y_i y_i^* (y_i^* - y_i^*) = C e^{-\frac{k}{R^{\alpha-1}}} \int_{\rho}^{\frac{R}{R_i}} \frac{R^{\alpha-1}}{R'} \, dR' \]

(IV)
\[y_i^* + 14 y_i^* y_i^* + y_i^* = C e^{-\frac{k}{R^{\alpha-1}}} \int_{\rho}^{\frac{R}{R_i}} \frac{R^{\alpha-1}}{R'} \, dR' \]
\[y_i^* - 33 y_i^* y_i^* - 33 y_i^* y_i^* + y_i^* = C e^{-\frac{k}{R^{\alpha-1}}} \int_{\rho}^{\frac{R}{R_i}} \frac{R^{\alpha-1}}{R'} \, dR' \]

(V)
\[y_i^* (y_i^* + 11 y_i^* y_i^* - y_i^*) = C e^{-\frac{k}{R^{\alpha-1}}} \int_{\rho}^{\frac{R}{R_i}} \frac{R^{\alpha-1}}{R'} \, dR' \]
\[-(y_i^* + y_i^*) + 228(y_i^* y_i^* - y_i^* y_i^*) - 434 y_i^* y_i^* = C e^{-\frac{k}{R^{\alpha-1}}} \int_{\rho}^{\frac{R}{R_i}} \frac{R^{\alpha-1}}{R'} \, dR' \]
\[(y_i^* + y_i^*) - 522(y_i^* y_i^* - y_i^* y_i^*) - 10005(y_i^* y_i^* + y_i^* y_i^*) = C e^{-\frac{k}{R^{\alpha-1}}} \int_{\rho}^{\frac{R}{R_i}} \frac{R^{\alpha-1}}{R'} \, dR' \]

(VI)
\[y_i^{10} + y_i^{20} = C e^{-\frac{k}{R^{\alpha-1}}} \int_{\rho}^{\frac{R}{R_i}} \frac{R^{\alpha-1}}{R'} \, dR' \]
44. The Solutions of Gordan and Fuchs.

Gordan considered the same geometric problem as Klein from two aspects: as a question involving finite groups, and following Fuchs, as a question about binary forms with vanishing covariants and dealt with them in two papers in the Mathematische Annalen of 1877.

In the first paper [1877a] Gordan considered transformations of the form \[n' = \frac{\alpha n + \delta}{\gamma n + \delta}, \alpha \delta - \beta \gamma \neq 0, \] essentially as rotations, which he treated in the language of invariant theory. If, he said, \[n = \frac{x_1}{x_2}, \] and \[n' = \frac{y_1}{y_2}, \] then these transformations can be thought of as the vanishing of a bilinear form. As such it has two invariants, its determinant and another which he denoted \(-2 \cos \phi\), where he called \(\phi\) the argument. He showed that, if \(S\) is a transformation with argument \(\phi\), \(T\) has argument \(\psi\), and \(ST\) has an argument \(\theta\), then \(S^{-1}T\) has argument \(H\), where \(\cos \theta + \cos H = \cos(\theta + \psi) + \cos(\phi - \psi)\).

If the transformations form a finite group then each transformation has finite period, and is equivalent to one of the form \(n' = pn\), so each \(\phi\) is some submultiple of \(\pi\), and the transformations can be grouped into families according to the basic transformations of which they are powers. He reduced the problem to establishing the maximal periods, and then supposed \(S\) and \(T\) were each of this maximal period, and so had the same argument, \(\phi\). Then the arguments of \(ST\) and \(S^{-1}T\) would be \(\theta\) and \(H\), say, where \(\cos \theta + \cos H = \cos 2\phi + 1\). \(\theta\) and \(H\) must also be rational multiples of \(\pi\), so, setting \(2\phi = \phi_1, \pi - \theta = \phi_2\) and \(\pi = H = \phi_3\) he got the equation

\[1 + \cos \phi_1 + \cos \phi_2 + \cos \phi_3 = 0, \]

which is to be solved in angles which are rational multiples of \(\pi\).

He found, quoting [Kronecker 1854], that there were very few solutions, indeed just the known cases. The periods could be 2, 3, 4, or 5, giving rise to the various groups of the regular solids, whose elements be presented explicitly up to conjugacy in each case.
In his second paper [1877b] Gordan solved Fuchs's ground form problem directly, by showing, as he put it, that "the result follows immediately from the general rules which I have developed in my test

The problem Fuchs had raised was to characterize those forms, f, of least degree all of whose covariants of lower degree vanish identically and all of whose covariants of higher order which are powers of forms of lower order also vanish. Gordan's approach was to consider a second form, P, of degree $\nu + 1$, with the property that its final transvectant with f, $(f, P)^{\nu+1}$, vanished. He was able to show [1877b, 147] that P enabled him to detect when covariants of f were powers of linear forms, in which case f could not be a ground form. He was able to show that the only forms of order greater than 4 satisfying Fuchs's criteria belonged to the octahedral or icosahedral system, but his argument proceeded through seven subcases and cannot be summarized here.

The work of Gordan and Klein enabled Fuchs to return to his original list of ground forms and prune it of its spurious members. In his paper [1878a] he analyzed each item in his list, indicating new properties of the genuine ones and providing valid, ad hoc, invariant-theoretic reasons for deleting those to which Klein had objected. For the two members that remained with $N > 4$ he characterized the ground forms of each degree that can arise. For example, he showed [1878a 17 Theorems III-VI = 1906, 128] that for $N = 6$, $L = 8$ every ground form of degree 24 is of the form $\sqrt{H}(f_6)^3 + \lambda f_6^4$, where f_6 is the unique ground form of degree 6, $H(f_6)$ its Hessian (of degree 8), and ν and λ are constants no both zero and such that $\frac{\lambda}{\nu} \neq 108$.

Similarly for $N = 12$, $L = 10$, every ground form of degree 60 is of the form $\sqrt{H}(f_{12})^3 + \lambda f_{12}^5$, where f_{12} is the unique ground form of degree 12, and ν, λ are constants not both zero and such that $\frac{\lambda}{\nu} \neq 1728$.

The exceptional cases $H(f_6)^3 + 108f_6^4$ and $H(f_{12})^3 + 1728f_{12}^5$ are

\[14\]
squares of rational functions.

Fuchs obtained these theorems by considering the highest degree, \(\nu \), a ground form could have, and comparing it with the lowest degree, \(N \). If \(f \) is a form of degree \(N > 4 \) then
\[
\phi = H(f)^3 - \lambda f^2 H^2(f)
\]
cannot vanish, for ground forms only have a common factor if they are identical, and \(H(f)^3 = \lambda f^2 H^2(f) \) would imply \(H^2(f) \) divides \(H(f)^3 \) which is impossible (since the degree of \(H(f)^3 \) is greater than the degree of \(H^2(f) \)). However, \(\frac{f^2 H^2(f)}{H(f)^3} \) is not altered on substituting \(jf \) for \(f \), where \(j \) is a root of unity, and so it is not altered by any circuit of \(z \). So \(\phi \) must be a root of a rational function, and is therefore a product of ground forms. However, if \(F \) is a ground form of degree \(\mu \) having no factors in common with \(f \), \(H(f) \), or \(H^2(f) \), then for some suitable \(\lambda \), \(F \) divides \(\phi \), and so \(\mu \leq 6N - 12 \). Consequently when \(N = 6 \) the maximal degree of a ground form is 24, and when \(N = 12 \) the maximal degree is 60. These bounds are attained, as we have seen. Furthermore, \(\mu \) is related to \(m \), the degree of the algebraic equation satisfied by a solution of the differential equation, for Fuchs showed [1878a, §2 Thm. III = Werke II, 120] that \(\mu = m \) or \(m/2 \), and if \(L \) is 8 or 10 then in fact \(\mu = m/2 \). This result was implicit in one of his earlier tabulations of \(L \) and \(N \), [1876, §17 = Werke II, 39].

Fuchs also deduced that any ground form of maximal degree \(\mu \) is a rational function, and that between any three there is a linear relation with constant coefficients. But this relationship was, for him, a consequence of the theorems III-VI just quoted, and not, as it was for Klein, a means to understanding the forms.
4.5 Jordan's solution.

Camille Jordan's solution to the algebraic solutions problem, couched in terms of the finiteness of the related group of linear transformations, was put forward in a note in the *Comptes Rendus* of March 1876, [1876a]. It erred in omitting one of the possible cases, the icosahedral one, and in November of the same year he restored the missing case, [1876b], remarking: 15

"...a calculating error, which in no other way invalidates the principles of our reasoning, caused us to omit one of these groups ...", and he acknowledged that the first solution of the group-theoretic problem was due to Klein.

In a third short paper, [1877], Jordan sketched, for the first time, the answer to the problem for a third-order differential equation, and in June 1877 he submitted his long paper [1878] on the question to the *Journal für Mathematik*. It gives not only a treatment of the nth order differential equation, but a full account of Jordan's methods. It is this paper which will now be discussed.

Jordan observed that the solutions to a given linear differential equation are all algebraic if and only if the corresponding monodromy group is finite. So, in order to enumerate the different types of mth order equation with that property, it is enough to construct the different groups of finite order which can be represented as linear groups in m variables. He found five such groups when m = 2, eleven when m = 3, and was able to show in the general case that the finite groups which can arise (and hence the solutions of the differential equation) satisfied certain additional conditions. His methods, as befits the leading group theorist of the day, were those of the newly-discovered Sylow theory. Jordan first employed them in the case
of the second-order differential equation, to which he devoted Chapter I of the paper.

17) He denoted the typical linear substitution in two variables

\[S = \left| \begin{array}{cc} u_1 & u_2 \\ \alpha u_1 + \beta u_2 & \gamma u_1 + \delta u_2 \end{array} \right|. \]

After a linear change of variable \(S \) can be written either in the canonical form

\[\left| \begin{array}{cc} x, y & ax, by \end{array} \right|, \]

when he said it was of the first kind, or in the form

\[\left| \begin{array}{cc} x, y & ax, a(y + \lambda x) \end{array} \right|. \]

He said it was of the second kind if \(\lambda = 0 \), and otherwise of the third kind. In either case the roots of the characteristic equation for \(S \) coincide. If \(G \) is to be a finite group all of its elements \(S \) must be of finite order, so no element can have infinite order. \(G \) cannot then contain any element of the third kind.

Jordan next showed that the elements \(T \) which commute with an element of \(S \) of the first kind are precisely those which are also in canonical form when a basis is chosen with respect to which \(S \) is diagonalized (i.e. \(S \) and \(T \) have the same eigenspaces). Consequently the elements \(T \) which commute with an \(S \) of the first kind commute with each other (indeed, form a commutative subgroup of \(G \)). The finite groups \(G \) can now be divided into two types. Those of the first type contain sets of elements of the form

\[S = \left| \begin{array}{cc} x, y & ax by \end{array} \right| \]
with respect to a fixed basis \(\{x, y\} \), where \(a \) and \(b \) are roots of unity. Those of the second type are formed from the first by adjoining to a single set of the first type an element of the form

\[
T = \begin{vmatrix} x, y & y, kx \end{vmatrix}
\]

where \(k \) is a root of unity. For, every finite group \(H \), all of whose elements are conjugate to those of a group of the first type, and which contains an element of the first kind, belongs to the first or second type.

Jordan's problem was now to determine all finite groups of either type. He let \(G \) be such a group, \(\Omega \) its order, and \(g \) the subgroup of elements of the second kind, with order \(\omega \), and sought a formula for \(\Omega \) analogous to Schwarz's formula for the \(\lambda, \mu, \nu \) above (p 114). He let \(S \in G \) be an arbitrary element of the first kind, and defined \(F_S \) to be the elements of \(G \) which commute with \(S \). Evidently \(F_{S^g} \) and \(F_S \) has \(\mu \omega \) elements, say, with \(\mu>1 \) since \(S \in F_S, S \neq S' \). So \(G \) is a union of sets \(F_S \), and no \(S \) appears in two different sets \(F_S, F_{S'} \), as can be easily seen. If \(S \) has the form

\[
S = \begin{vmatrix} x, y & ax, by \end{vmatrix}
\]

and \(E \) is the subgroup of elements, \(g \), of \(G \) such that \(g^{-1}F_Sg = F_S \) then the elements of \(E \) have one of the forms

\[
\begin{vmatrix} x, y & ax, \delta y \end{vmatrix}, \text{ in which case they lie in } F_S,
\]

or \(\begin{vmatrix} x, y & \beta y, \gamma x \end{vmatrix} \).

Therefore \(E \) either has order \(\mu \omega = 2 \mu \omega \) or \(\mu \omega \), depending on whether or not it has an element of the form \(\begin{vmatrix} x, y & \beta y, \gamma x \end{vmatrix} \). The
number of sets F_S conjugate to F_S in G is then $\Omega/k\omega$. Each F_S contains the ω elements of g and $(\mu - 1)\omega$ elements of the first kind. The total number of elements of the first kind in the totality of sets F_S is therefore $\frac{\Omega}{k\omega}(\mu - 1)\omega = \frac{\Omega(\mu - 1)}{k\mu}$. If this argument is repeated for each F_S, not conjugate to F_S until the group is exhausted, the following formula for the order of the group G is obtained:

$$\Omega = \omega(1 - \frac{\mu - 1}{k}\mu - \frac{\mu' - 1}{k'}\mu' - \ldots) \geq 1.$$ \hspace{1cm} (4.5.1)

This is the necessary formula. It cannot contain just the one term $\frac{\mu - 1}{k\mu}$. If it has two terms $\frac{\mu - 1}{k\mu}$ and $\frac{\mu' - 1}{k'\mu'}$ then either

$k = 2$, $k' = 1$, $\mu' = 2$ and $\Omega = 2\mu\omega$, G is of the second type, or

$k = 2$, $\mu = 2$, $k' = 1$, $\mu' = 3$, and $\Omega = 12\omega$.

If there is also a term $\frac{\mu'' - 1}{k''\mu''}$ then necessarily $k = k' = k'' = 2 = \mu''$ and either $\mu' = 2$ and $\Omega = 2\mu\omega$, or $\mu' = 3$ and $\mu = 3, 4, \text{ or } 5$, in which cases $\Omega = 12\omega, 24\omega, \text{ or } 60\omega$ respectively. In short, every G of the required kind and not of the second type has order $r\omega$ where r is either 12, 24, or 60.

There is an evident representation of G as 2×2 matrices, by means of the function $z = \frac{mx + ny}{px + qy}$, which annihilates the ω elements of g. The image of G under this representation is a group Γ of order r, and Jordan studied Γ using Sylow theory. His treatment of the case $r = 60$ is typical. Γ in this case contains 6 groups of order 5 and indeed is the homomorphic image of a group of permutations of 6 letters of order 60. But then it must also be isomorphic to the alternating group on five letters, A_5. Its generators can be written down, as permutations they are
\[A^1 = (\alpha \beta \gamma \delta \epsilon) \quad , \quad B^1 = (\beta \epsilon)(\gamma \delta) \quad , \quad C^1 = (\beta \delta)(\gamma \epsilon) \]

and as linear substitutions they are

\[A = \begin{vmatrix} x, y & \theta x, \theta^{-1} y \end{vmatrix}, \quad \theta^{10} = 1, \]
\[B = \begin{vmatrix} x, y & y, -x \end{vmatrix}, \]
\[C = \begin{vmatrix} x, y & \lambda x + \mu y, \mu x - \lambda y \end{vmatrix} \text{ where } \mu^2 + \lambda^2 + 1 = 0, \]
\[\lambda = \frac{1}{\theta^2 - \theta^{-2}}. \]

\[G \text{ is obtained from } \Gamma \text{ by adjoining elements } | x, y, ax, ay | \]

where a is a primitive wth root of unity.

The five types of groups which Jordan found are, as one would expect, the cyclic and dihedral groups of arbitrary order, and the tetrahedral, octahedral, and icosahedral groups. Corresponding to each group is a particular type of solution function to the appropriate differential equation. For instance, in the case of the icosahedral group \(A_5 \), let \(z \) be an arbitrary solution to a differential equation whose monodromy group is \(A_5 \). Then \(z^\omega \) is a rational function of the roots of an equation of the fifth degree whose discriminant is a perfect square. If \(u \) is another solution then \(u^\omega \) is a rational function of \(z^\omega \) and the independant variable \(t \).

In the third and final chapter of his [1878] Jordan sought to give a complete analysis of the third order linear differential equation by extending the methods used to discuss the second order case. There are trivial extensions of the two dimensional groups to three dimensions.
whereby a finite cyclic group is added on as a direct summand and alone affects the z-variable [no. 62]. Jordan looked for non-trivial three dimensional representations as groups of matrices with determinant 1. If one such group is H his first task was to find an equation for the order of H, Ω, analogous to (4.4.1). H may well have a subgroup, K, consisting of the direct sum of a two-dimensional group, K^1, and a one-dimensional group. He let ϕ be the cyclic group of order 3 represented by $|x, y, z \quad ax, ay, az|$, $a^3 = 1$; it may or may not occur as a subgroup of H. If it does, he let $\phi = 3$, otherwise $\phi = 1$. Let F consist of the diagonal elements in the given representation of H $|x, y, z \quad ax, by, cz|$. A lengthy consideration of the various cases that can arise depending on the presence of ϕ in H, and on the choice of K^1 [nos. 71-96], with consequent implications for the order of F, finally yielded the sought for equality [no. 96, equation 63]

$$\Omega = \frac{\phi}{1 - \Sigma}$$

where Σ is a sum of terms from the following list:

$$1 - \frac{1}{120\lambda} , 1 - \frac{1}{48\lambda} , 65, 48, 33, 1 - \frac{1}{24\lambda} , 15, \frac{m - 1}{24} , \frac{1}{k} , \frac{1}{4} , \frac{1}{8} .$$

Here $k = 1, 2, 3$ or 6, m is subject to certain restrictions, and λ is arbitrary.

Jordan's next task was to extract from this formula a list of the possible groups it could refer to. He made certain general observations, e.g. that if M is the denominator of any term in Σ then Ω will be divisible by $M\phi$. Then he considered the fourteen different summations that Σ could be, and came up with a table of 47 associated orders for groups [no. 124], with, in each case, an indication of the kinds of subgroups that would be present. To get some control over the proliferating chaos Jordan next observed that the groups he sought were either simple
groups from the table, which could be added to the list in no. 62, or had a group in the new list as a normal subgroup - let them be added to the list - or had a group in the extended list as a normal subgroup, and so on [no. 125].

It turned out that there were very few simple groups in the table. Relatively simple considerations involving Sylow theory eliminated all but seven of them [nos. 127-149], and six of those in fact correspond to no group at all [nos. 150-186]. The outstanding case, XXXII of order 60 ϕ, corresponds to the icosahedral group, and an extension of it to a group of order $60 \cdot 3 = 180$ [nos. 187-193].

The construction of a group whose elements normalized a simple group in the list could be carried out in three distinct ways, yielding a group of order $27 \cdot 2 \cdot 12$ and two of its subgroups, of orders $27 \cdot 2 \cdot 4$, $27 \cdot 2 \cdot 2$ [no. 202]. No new group had the icosahedral group as a normal subgroup. So finally Jordan produced six groups (in addition to the five trivial types of no. 62). They are as follows, where Jordan's notation for a typical element has been replaced by matrix notation:

1: Groups generated by

\[
\begin{pmatrix}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c \\
\end{pmatrix}
\quad \text{and} \quad
\begin{pmatrix}
0 & a' & 0 \\
0 & 0 & b' \\
0 & 0 & c' \\
\end{pmatrix}
\]

all roots of unity, and their subgroups [no. 198].

2: Extensions of such groups by the group generated by

\[
\begin{pmatrix}
0 & a'' & 0 \\
b'' & 0 & 0 \\
0 & 0 & c'' \\
\end{pmatrix}
\]

\quad, a'', b'', c'' roots of unity [no. 204].
3: A group generated by mI,
\[
\begin{pmatrix}
\tau & 0 & 0 \\
0 & \tau^{-1} & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & -1
\end{pmatrix}
\]

$C = \begin{pmatrix}
a & -(1 + a) & -2a^2 \\
-(1 + a) & a & 2a^2 \\
1 & -1 & -(1 + 2a)
\end{pmatrix}$, where m is a root of unity,
$\tau^5 = 1$, and a is defined by $a(\tau + \tau^{-1} - 2) = 1$. If $m = 1$ this group reduces to the group of proper motions of an icosahedron [no. 208].

4: A group generated by mI,
\[
A = \begin{pmatrix}
1 & 0 & 0 \\
0 & \theta & 0 \\
0 & 0 & \theta^2
\end{pmatrix}, \quad B = \begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{pmatrix}
\]

$rD = \begin{pmatrix}
\rho & 0 & 0 \\
0 & \rho \theta & 0 \\
0 & 0 & \rho
\end{pmatrix}$, and $r^2E = r^2 \begin{pmatrix}
1 & 1 & \theta \\
1 & \theta & 1 \\
1 & \theta^2 & \theta^2
\end{pmatrix}$, where
$\theta^3 = 1$, $j^3 = \theta$, $a^3 = \frac{1}{3(1 - \theta^2)}$, $m^3 \rho = 1$, $r^3 = m^\mu$.

(ρ arbitrary, $\mu = 0, 1, \text{ or } 2$). If $r = 1 = \rho$ this group has order 27.24 [nos. 201-3, 209].

5: A subgroup of the previous one of order 27.2.2 generated by mI, A, B, and sDE, where $s^4 = 1$, m, m^2, or m^3.

6: A subgroup of order 27.2.4 generated by mI, A, B, sDE, and tED where $t^2 = s^2$ or ms^2, which Jordan called Kesse's group18.

18)
As has been remarked, this list is incomplete, since it lacks the simple group of order 168. When Jordan revised his *Journal für Mathematik* paper for the *Atti della Reale Accademia* in 1880, he rectified this omission, which had been brought to light by Klein\(^{19}\). It had derived from a too-hasty interpretation of his equation 63 [no. 96]. Correctly interpreted it led directly to a group of order 24.7 containing 8 cyclic groups of order 7, which necessarily must be isomorphic to the group of transformations

\[
\begin{vmatrix}
\tau & \alpha \tau + \beta \\
\gamma \tau + b & 1
\end{vmatrix}
\]

\(\tau = \infty, 0, 1, \ldots, 6 \pmod{7}\) and \(\alpha \delta - \beta \gamma\) a quadratic residue \(\pmod{7}\), i.e. the simple group \(G_{168}\). Jordan showed this group had generators

\[
A = \begin{pmatrix}
\tau & 0 & 0 \\
0 & \tau^2 & 0 \\
0 & 0 & \tau^4
\end{pmatrix}
\]

\(\tau^7 = 1\), of order 7,

\[
B = \begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{pmatrix}
\]

of order 3, and

\[
C = \begin{pmatrix}
a & c'' & b' \\
b'' & b' & a
\end{pmatrix}
\]

of order 2, where \(a\tau + b' \tau^2 + c'' \tau^4 = 0\)

\(a\tau^{-1} + b' \tau^{-2} + c'' \tau^{-4} = 0\)

\(a + b' + c'' = -1\)

in which form it precisely matched Klein's description of it in Klein [1878/79, §4], discussed in Chapter VI. Jordan was lazy about such matters and mentioned Klein but did not give the reference\(^{20}\).

Jordan also showed that \(G_{168}\) was the only group which had been omitted of order 24.7. q, the case under discussion.
Jordan had also shown in his [1878] that in some sense only finitely many linear differential equations of order n have finite monodromy groups\(^1\). He showed that the finite subgroups of \(\text{GL}(n ; \mathbb{C})\) could be classified into types, in such a way that the situation for arbitrary n resembled that for n = 2, when there are five types: two infinite families and three other groups. This result, for general n, is of independent interest in the study of groups, and is known as Jordan's finiteness theorem. He found his proof of 1878 imperfect and re-worked it for a second publication in 1880. This proof, which amplifies and clarifies the earlier one, will now be discussed [1880, = Oeuvres, II, 177-217]. References are to his numbered paragraphs.

He took G to be a fixed finite subgroup of the linear group in n variables (7) and F to be an abelian subgroup (faisceau). F can be simultaneously diagonalized, and when this is done its elements may be written in the form

\[(a_{1i}, a_{2i}, \ldots, a_{ni})\] for some index \(i, 1 \leq i \leq |F|\)

(modifying his notation slightly). Jordan defined F to be irreducible with respect to an integer \(\lambda\) if each ratio

\[a_{\ell i}/a_{ki}\]

took more than \(\lambda\) values as \(i\) went from 1 to \(|F|\), provided \(a_{\ell i} \neq a_{ki}(4)\). He said F was maximal (complet, 7) if it was the largest abelian subgroup in G whose elements had the same form, say, for example

\[(a_{1i}, a_{2i}, \ldots, a_{ni}), \quad a_{1i} = a_{2i}\]

His precise result is (8):
Theorem There are integers λ_n and μ_n depending only on n, such that G has a maximal abelian normal subgroup F irreducible with respect to λ_n and of index μ_n in G, and F contains every other abelian subgroup irreducible with respect to λ_n.

His proof was by induction on n; $n = 1$ is trivial, and $\lambda_1 = \mu_1 = 1$. To prove the theorem for n when it was known for $1, 2, \ldots, n - 1$ he considered two cases. He said G was decomposable (9) if ϕ^n can be decomposed into proper subspaces such that each element of G either preserves the subspaces or permutes them. In this case, Jordan showed that G contained a subgroup G' which preserved the subspaces, and the inductive hypotheses readily supplied a subgroup F of G' and integers λ_n and μ_n satisfying the theorem with respect to $G'(14)$. Jordan then showed that F also satisfied the theorem with respect to G (15-20).

If a group is not decomposable Jordan called it indecomposable; the modern word is 'primitive'. In this case Jordan considered what he called the singular faisceau Φ, whose elements are all of the form (a, a, \ldots, a) and then the other faisceaux, which he called ordinary. He supposed all faisceaux were irreducible with respect to the maximum of $\lambda_1, \ldots, \lambda_{n-1}$. A lemma (24) established that the ordinary faisceaux containing a given ordinary faisceau f are themselves all contained in a maximal faisceau F, called a general faisceau, for one is here in the decomposable case. In particular, he considered the centralizer I_s of an element s, which must contain a maximal faisceau, the largest faisceau in G commuting with s. Conversely given an ordinary faisceau f, those elements of G which commute only with the elements of faisceaux containing f and no others he called 'afferent' (afferent) to f. He then
counted the elements of G by considering the effect of conjugating various \textit{faisceaux} and looking at their afferent elements.

A general \textit{faisceau} F must contain the singular one ϕ, of order ϕ. So the centralizer of F will have $p\phi$ elements and the normalizer $k\phi$, say. Conjugation produces \(\frac{\Omega}{k\phi} \) other F, and \((p - 1)\phi\) elements of the centralizer of F are not in ϕ, so there are \((p - 1)\phi \frac{\Omega}{k\phi} = \frac{p - 1}{k} \Omega\) elements afferent to F. Summing over all general \textit{faisceaux} produces

$$\sum \frac{p - 1}{k} \Omega$$ such elements (30).

Each ordinary but not general \textit{faisceau} f has $r\phi$ afferent elements, where $p\phi$ is the order of the centralizer of the general \textit{faisceau} F containing f and r is an integer which may be zero (there might be no afferent elements of f). If δ is the order of the normalizer of F, then the same argument as before produces

$$\sum \frac{r\phi\Omega}{\delta} = \sum \frac{\Omega}{k}$$
elements afferent to ordinary non-general \textit{faisceaux}, where l is an integer and $k\phi$ the order of the normalizer of F (31-32).

Finally there are the elements s afferent to the singular \textit{faisceau} ϕ. Similar considerations of normalizers and centralizers of each $s\phi$ produced a total of \(\sum \frac{\Omega}{\nu} \) elements afferent to ϕ, where $\nu \leq \mu_n$, and μ_n is the maximum value of the μ's obtained from the decomposable case (33-36).

So Jordan had established the equality (37, eq 5)

$$\Omega = \phi + \Omega\left(\sum \frac{p - 1}{k} + \sum \frac{l}{k} + \sum \frac{1}{\nu}\right)$$ (4.5.2)
which he was able to show implied that $\frac{\Omega}{\Phi}$ was bounded, say by L, where
L depends only on n and not on G.

The theorem then followed on taking $\lambda_n = \mu_n = L$ and F to be Φ, for, Jordan showed, every *faisceau* is reducible with respect to L.

The preface to his [1880] is interesting for the light it sheds on
Jordan's approach to mathematics. Speaking of the problem of determining
the finite groups of linear transformations in two variables, he remarked
that it was first solved by Klein [1875/76] and then confirmed by Fuchs
[1876] and Gordan[1877a, b] using entirely different methods. Then he
went on:

"In spite of the considerable interest which attaches to the work
of these eminent geometers, one could want a more direct method for
solving this question. The determination of the sought-for groups is
only in effect a problem of substitutions, which must be capable of
being treated by the sole resources of that theory without recoursing
as M. Klein, to non-Euclidean geometry or, as MM Fuchs and Gordan, to
the theory of Forms. Besides, the new method which is to be found must,
in order to be entirely satisfactory, be capable of being extended to
groups in more than 2 variables."

Jordan as a mathematician believed in propaganda by deeds rather
than words, but he was here asserting that the proper approach to the
question originally raised by Fuchs is group theory, and proposing
that the test for all methods must be their capability to deal with
the higher order cases, for which methods were currently the only ones.

By his example Jordan established group
theory as a subject in its own right, and as one capable of many
applications. It became increasingly regarded as the 'natural'
abstract structure underlying many mathematical problems and,
following Jordan's example, French mathematicians came to prefer
group theory to the theory of invariants. So, although Hermite had
been strongly attracted to invariant theory, the next generation in
France were not, and the subject developed much more strongly in
Germany. On the other hand, Halphen's successful treatment of the
algebraic solutions problem for differential equations of higher
order did depend essentially on invariant theory, as will be seen.
But it was eclipsed almost at once by the group-theoretic methods
of Poincaré, so once again invariants seemed to be less powerful
than the newer techniques.

Frobenius had observed [1875a] that if \(P = 0 \) is a homogeneous linear
differential equation of order \(\lambda \) all of whose solutions are algebraic,
then the solutions satisfy an irreducible algebraic equation of order
\(\nu \geq \lambda \), all the roots of which, \(y_1, \ldots, y_\nu \) also satisfy the differential
equation. Only \(\lambda \) of these roots will be linearly independent, so constants
\(c_1, \ldots, c_\nu \) can be found such that

\[
y = c_1 y_1 + \ldots + c_\nu y_\nu
\]
takes \(\nu! \) distinct values as the \(\nu \) roots are permuted in all possible ways.
By theorems of Abel and Galois, \(y_1, \ldots, y_\nu \) are therefore expressible as
rational functions of \(y \) and \(x \). Frobenius investigated the converse, and
found that if an irreducible linear differential equation of order greater
than 2 has a solution in terms of which all the other solutions can be
written rationally, then all the solutions are algebraic functions. He
argued as follows. If the differential equation has a solution y and all
the other solutions can be expressed rationally in terms of y but y is
transcendental, then under continuation y can only transform as $y \rightarrow \frac{ay+b}{cy+d}$,
where a, b, c, and d are rational functions. Straightforward monodromy
considerations produce a transformation $y \rightarrow ky + r$, where k is a constant,
so the rational function r satisfies the differential equation. Any
rational function satisfies a first order linear differential equation,
and so the original equation is reducible. It might happen that r was zero,
but then the original equation can only be of first or second order. The
reverse of this conclusion is that, if the given differential equation
is irreducible and of order greater than 2 then y, if it exists, is algebraic,
and Frobenius's conclusion is established.

Not much else was done with the differential equations of order greater
than 2 all of whose solutions were algebraic, for Jordan's work indicated
how technically complicated it could become. In [1882a,b] Fuchs showed that
if y_1, y_2, and y_3 are a basis of solutions to a third order differential
equation of the Fuchsian class which furthermore satisfy a homogeneous
polynomial $f(y_1, y_2, y_3) = 0$, of order $n > 2$, then the equation is
algebraically integrable. When $n = 2$ the equation is satisfied by the
square of the solutions of a certain second-order differential equation.
Such equations had been studied earlier and in a different way by Brioschi
[1879]. The polynomial f is a projective embedding of a Riemann surface,
and Fuchs showed that the genus, p, of the surface has a strong effect on
the number, n, of reduced roots of any algebraic equation satisfied by any
solution of the differential equation: $p > 1$ implied $n \leq 4$; $p = 1$ implied
$n = 2, 3, 4$ or 6; and $p = 0$ reduced to the case of an algebraically integrable
second order differential equation. Fuchs's method involved the p^{th} order
differential equation satisfied by the ϕ's which appear in the homogeneous
form of the integrands of the first kind on the Riemann surface

\[\frac{\phi(y_1, y_2, y_3) \sum \pm c_1 y_2 dy_3}{\sum c_1 \frac{\partial f}{\partial f_1}} \]

(see Chapter VI), and, when \(p = 1 \), the earlier results of Briot and Bouquet [1856a]. It would be too long an excursion to show more precisely how Fuchs obtained this result, but the simpler result that the differential equation is algebraic if the curve \(f(y_1, y_2, y_3) \) is, was somewhat simplified by Forsyth [1902, IV, 214-216], and can be presented. It rests on the observation that, \(n \) being greater than 2, the Hessian of \(f \) is a single-valued non-constant function of \(z \), and in fact a rational function (since the differential equation is of the Fuchsian class). Consequently every other covariant of \(f \) is a rational function of \(z \) (or a constant). Let \(k = \psi \) be a non-constant covariant other than \(H \), then \(f = 0, H = \phi \) (a rational function) and \(K = \psi \) provide three algebraic equations from which \(y_1, y_2, \) and \(y_3 \) can be found, and the result is proved.

Halphen devoted most of his paper [1884] to the relationships which exist between a linear differential equation of order \(q \) and the curve defined projectively by a basis of solutions \((y_1 : \ldots : y_q) \). He was particularly interested in the differential invariants which survive the transition from the equation

\[\frac{d^q Y}{dx^q} + q^2 \frac{d^{q-1} Y}{dx^{q-1}} + \frac{q(q-1)}{2!} \frac{d^{q-2} Y}{dx^{q-2}} + \ldots + q^2 \frac{d^{q-p} Y}{dx^{q-p}} + p^2 Y = 0 \]

to the equation

\[\frac{d^q Y}{dx^q} + q^2 \frac{d^{q-1} Y}{dx^{q-1}} + \frac{q(q-1)}{2!} \frac{d^{q-2} Y}{dx^{q-2}} + \ldots + q^2 \frac{d^{q-p} Y}{dx^{q-p}} + p^2 Y = 0 \quad (4.5.3) \]

under the arbitrary changes of variable \(\frac{dx}{u(x)} = u(X) \), \(Y = y u(x) \), where \(u(X) \) and \(u(x) \) are indeterminate functions. He defined an absolute invariant as a
function ϕ of the P_i and their derivatives such that

$$\phi(P_1, P_2, \ldots, \frac{dP_1}{dx}, \ldots) = \phi(p_1, p_2, \ldots, \frac{dp_1}{dx}, \ldots).$$

Such an invariant is

$$V = -P'' + 3(P_2' - 2P_1P_1') - 2(P_3 - 3P_1P_2' + 2P_1^3),$$

where $P_i' = \frac{dP_i}{dx}$, etc. [1884, 112] and he noted that, surprisingly, this invariant does not depend on the order of the differential equation.

He found a sequence of $q-1$ invariants for equations of order more than three which enabled him to prove quite general results about differential equations of arbitrary order $q > 3$. He observed that if the coefficients are algebraic they have a genus, which he termed the genus of the equation. A reduction of (4.5.3) to an equation with constant coefficients, or rational coefficients (genus zero), or doubly periodic coefficients (genus 1) or to an equation of genus p being sought, Halphen could express necessary and sufficient conditions for this to be possible. The first task is possible if and only if the absolute invariants are all constants, the others if and only if the $q-2$ relations between $q-1$ absolute invariants are of genus p [1884, 126-130]. For a third-order equation he showed that V vanished identically if and only if the curve defined by $(Y_1: Y_2: Y_3)$ was a conic.

In awarding this essay the Grand Prix in 1881, Hermite that it 23
".... showed a talent of the highest order. Nothing is more interesting than to see the introduction of the algebraic notions of invariants into this research into the integral calculus, which have originated in the theory of forms, and these new combinations make the hidden elements appear on which, in its various analytic guises, the integration of a given equation depends.... They are here joined to a consideration which equally plays an essential role in these researches: that of the genus of an algebraic equation between two variables, introduced into analysis by Riemann and which is so often employed in the works of our time."
The study of the algebraic-solutions problem for a second-order linear ordinary differential equation had brought to light the conceptual importance of considering groups of motions of the sphere, and, in particular, finite groups. Klein connected this study with that of the quintic equation, and so with the theory of transformations of elliptic functions and modular equations as considered by Hermite, Brioschi, and Kronecker around 1858. Klein's approach to the modular equations was first to obtain a better understanding of the moduli, and this led him to the study of the upper half plane under the action of the group of two by two matrices with integer entries and determinant one; his great achievement was the production of a unified theory of modular functions. Independently of him, Dedekind also investigated these questions from the same standpoint, in response to a paper of Fuchs. So this chapter looks first at Fuchs's study of elliptic integrals as a function of a parameter, and then at the work of Dedekind. The algebraic study of the modular equation is then discussed, and the chapter concludes with Klein's unification of these ideas.

5.1 Fuchs and Hermite.

Fuchs's interest in the elliptic integrals K and K', J and J', had been reawakened by a letter he received from Hermite written on 1st July 1876 (Fuchs,[1906, 113]). Hermite wrote: "You should without doubt be able to show, by means of the principles at your command, that on setting \(\frac{K'}{K} = \omega \) and \(k = f(\omega) \), \(k \) is a single-valued function of \(\omega = x + yi \) for all positive \(x \), but what I cannot work out, and it interests me very much, is how to see clearly that on setting \(\frac{J'}{J} = x + yi \) one ceases to have a single-valued function. Your methods, I don't doubt, should immediately give the reason for the difference in nature of the functions defined by the two equations".
Fuchs replied in November 1876 and a lengthy extract was published [1877a = Fuchs 1906, 85-114]. As before, Fuchs studied K and K' as functions of k^2, the modulus, by means of the differential equation which they satisfy. Analytic continuation around closed circuits in the k^2-plane transform K and K' to $a_1 K + b_1 K'$, $a_2 K + b_2 K'$ where a_1, b_1, a_2, b_2 are independent of the start and finish point. Fuchs found these numbers and so was able to show that the real part of

$$H = \frac{a_2 K + b_2 K'}{a_1 K + b_1 K'}$$

(5.1.1)

is always positive or zero. When $q = e^{-\pi H}$ is considered as the independent variable k^2, as a function of q, is holomorphic inside the unit circle in the q-plane, but cannot be continued analytically onto or beyond the circle. On the other hand, whilst J and J', the integrals of the second kind, permit the definition of a function

$$Z = \frac{\alpha_1 J + \beta_1 J'}{\alpha_2 J + \beta_2 J'}$$

(5.1.2)

and the introduction of a new independent variable $s = e^{-\pi Z}$, when $\frac{1-k^2}{k^2}$ is considered as a function of s it can be extended analytically to a holomorphic function in the whole finite s-plane.

In more detail, Fuchs argued that K and K' are functions of k^2, which, on setting $k^2 = 1/u$, yield two functions η_1 and η_2 of u,

$$K = \frac{1}{2} \sqrt{u}, \eta_1, K' = \frac{1}{2} \sqrt{u}, \eta_2.$$ These satisfy Legendre's equation,

$$2u(u-1)\frac{d^2 \eta}{du^2} + 2(2u-1)\frac{d \eta}{du} + \frac{1}{2} \eta = 0.$$ (5.1.3)

η_1 and η_2 can be given power series expansions in a neighbourhood of the singular points 0, 1 and ∞, of this equation, and they transform upon analytic continuation around closed circuits of each singular point according to the following monodromy matrices:
around \(u = 1 \): \(S_1 = \begin{pmatrix} 1 & -2i \\ 0 & 1 \end{pmatrix} \),

around \(u = \infty \): \(S_\infty = \begin{pmatrix} -1 & 0 \\ 2i & -1 \end{pmatrix} \),

and, since \(S_0 = S_1^{-1}S_\infty^{-1} \),

around \(u = 0 \): \(S_0 = \begin{pmatrix} 3 & -2i \\ -2i & -1 \end{pmatrix} \).

The monodromy relation for any closed circuit is therefore given by some product of the form \(S_0^k S_1^l S_0^k S_1^l \ldots \), and this, like all the separate powers of \(S_0 \) and \(S_1 \), has the form

\[
\sigma = \begin{pmatrix} \lambda & \mu i \\ v i & \rho \end{pmatrix}
\]

where \(\lambda, \mu, v, \rho \) are real integers, and \(\lambda \rho + \mu v = 1 \).

To specify all the values of \(H = \eta_2/\eta_1 = K'/K \) at a given point \(u \), he let \(H_0 \) be an arbitrary value, then all values are then necessarily of the form

\[
\frac{vi + \rho H_0}{\lambda + \mu i H_0} = \frac{i}{\mu} \frac{1}{\lambda + \mu i H_0} - \frac{\rho i}{\mu}.
\]

He specified a single branch of \(H \) by the conditions

\[
H_0 = \begin{cases}
-i & \text{at } u = 0 \\
0 & \text{at } u = 1 \\
\frac{4 \log 2}{\pi} + \frac{1}{\pi} \lim_{u \to \infty} \log u & \text{at } u = \infty.
\end{cases}
\]

Accordingly \(H \) could take the values

\[
\begin{cases}
\frac{v - \rho}{\lambda + \mu} i & \text{at } u = 0 \\
v i/\lambda & \text{at } u = 1
\end{cases}
\]

or, as \(u \to \infty \), \(H \rho i/\mu \) or to a number with real part equal to \(+\infty \).
Near \(u=0,1,\infty \), \(H \) is likewise a transform of \(H_0 \) in that neighbourhood, and \(H_0 \) can be written down explicitly from the solutions to (5.1.3). But now \(H_0 \) and \(H \) always have real part greater than or equal to zero, and so \(|q| < 1 \), as was to be shown. It remained to show that \(u \) is holomorphic inside the unit \(q \)-disc, but cannot be analytically continued beyond it. The representation of \(\eta_1 \) and \(\eta_2 \) as solutions to (5.1.3) establishes that \(u \) is holomorphic inside the unit \(q \)-disk, but in establishing that the circle \(|q|=1 \) is a natural boundary for \(u \), Fuchs made a slight mistake. Although the boundary values are \(u=0,1,\infty \), and \(\infty \) distributed in everywhere dense sets along the circle, Fuchs failed to notice the value \(\infty \), perhaps sharing the widespread contemporary lack of awareness of 'bad' point sets, as Schlesinger suggests [Fuchs, 1908, 113]. His mistake was detected by Dedekind and will be discussed more fully below (p. 175). In any case the conclusion that \(|q|=1 \) is a natural boundary for \(u \) remains valid.

As for \(J \) and \(J' \) as functions of the modulus \(k^2 \), Fuchs again preferred to work with \(u=1/k^2 \), and so he introduced

\[
\zeta_1 = 2\sqrt{u} J, \quad \text{and} \quad \zeta_2 = 2\sqrt{u} J',
\]

which satisfy the differential equation

\[
2u(u-1) \frac{d^2 \zeta}{du^2} + 2u \frac{d \zeta}{du} - \frac{1}{2} \zeta = 0.
\]

Fuchs found that \(Z = \zeta_1/\zeta_2 \) transformed under analytic continuation around different circuits in the \(n \)-plane into expressions of the form \(\lambda + \mu i z_0 \sqrt{1+\rho^2 z_0} \), and introducing \(s = e^{-\pi Z} \) he found \(u \) as a function of \(s \) was holomorphic inside the unit \(s \)-disc. But now \(s \) as a function of \(u \) is well behaved near \(|s|=1 \) and so he showed that the inverse function \(u = u(s) \) can be extended analytically to the whole \(s \)-plane.
Hermite replied to Fuchs's letter on November 27th 1876. He was, he said, delighted with it. Not only had it explained the difference between $\frac{K'}{K}$ and $\frac{J'}{J}$ but it had done so in a way "which I judge to be of the greatest importance for the theory of elliptic functions. The truly fundamental point that the real part of H is essentially positive I had sought in vain to establish by elementary methods, in order not to be obliged to turn to the new methods discovered by Riemann." He commented particularly on one aspect of Fuchs's work, the elementary derivation of a famous equation of Jacobi

$$4\sqrt{k} = 2q^{1/8} \frac{(1 + q^2)(1 + q^4)\ldots}{(1 + q)(1 + q^3)\ldots}$$

as follows: Fuchs, [1906, 103]. "Is there not some point in observing that on setting $x = f(H)$, it follows from your analysis that all solutions of $f(H) = f(H_0)$ are given by the formula

$$H = \frac{\nu i + \rho H_0}{\lambda + \mu i H_0},$$

and insisting on the extreme importance of this result for the determination of the singular moduli of M. Kronecker, and on remarking that the beautiful discoveries of that illustrious geometer concerning the applications of the theory of elliptic functions to arithmetic seem to rest essentially on this proposition, of which a proof has not been given before?" It is interesting to observe that it was Hermite, and not Fuchs, who preferred to emphasize the inverse function to the quotient of the solutions of the differential equation which has the more readily comprehensible property

$$f(H_0) = f\left(\frac{\nu i + \rho H_0}{\lambda + \mu i H_0}\right).$$

Two profound ideas emerged during this exchange between Hermite and Fuchs:
(i) the study of the function inverse to the quotient of two independent solutions to a differential equation, which had earlier been broached by Schwarz [Schwarz, 1872] and

(ii) the invariance of such functions under a certain group of transformations, although the group concept was not yet made explicit in this context.

Hermite himself had published a short but crucial paper [1858] on the transformation of modular functions. The paper was chiefly devoted to the solution of quintic equations by modular functions, and for that reason it is described in section 5.4, but it contained a mysterious table of transformations. He defined \(q := e^{-\pi K'/K} = e^{i\pi \omega} \), denoted \(k' \) by \(\phi(\omega) \) and the complementary modulus \(k' \) by \(\psi(\omega) \), so

\[
\begin{align*}
\phi^8(\omega) + \psi^8(\omega) &= 1, \\
\phi(-1/\omega) &= \psi(\omega), \\
\phi(\omega + 1) &= e^{-\pi/8} \frac{\phi(\omega)}{\psi(\omega)}, \\
\psi(\omega + 1) &= \frac{1}{\psi(\omega)}.
\end{align*}
\]

The values of \(\phi \left(\frac{c + d\omega}{a + b\omega} \right) \) and \(\psi \left(\frac{c + d\omega}{a + b\omega} \right) \) can be deduced easily from these formulae, where \(a, b, c, \) and \(d \) are integers and \(ad - bc = 1 \). Hermite found the value depended only on the conjugacy class of \(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mod 2 \). There are six such classes, and the corresponding transformations were, he said:
Many years later, in 1900 Hermite [1908, 13-21] wrote to J. Tannery to explain how he had come by such formulae. His method rested on a formula for transforming θ-functions due to Jacobi, but, he said, it "... does not please me at all: it is long, above all, indirect; it rests entirely on the accident of a formula of Jacobi, forgotten and as lost among all the discoveries due to that genius".

5) By then proofs had been provided several times for the transformations. The first to prove them was Schläfli (Schläfli [1870]). Schläfli used the approach later employed by Fuchs (above) and considered the monodromy relations of K and iK' under analytic continuation around their poles at 0 and 1. The monodromy matrix at 0 is \(\begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \), and at 1 the monodromy matrix is \(\begin{pmatrix} 1 & -2 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \). Schläfli observed that a method due to Gauss [Disq. Arith. §27] enables one to write any matrix \(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \), in which \(ad-bc = 1 \), \(a \equiv d \equiv 1 \) (mod 4) and b and c are even, as a product

\[
\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdots \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}
\]
where each a_i and b_i is even. The expressions for a, b, c, and d involve continued fractions. When the calculations are done,

$$\psi(\frac{c+dz}{a+dz}) = \left(\frac{e^{i\pi}}{\gamma}\right)^{\sum a_i} \phi(z)$$

$$\psi(\frac{c+dz}{a+dz}) = \left(\frac{e^{i\pi}}{\gamma}\right)^{-\sum b_i} \psi(z),$$

where $\sum a_i \equiv ac + a^2 - 1 \pmod{16}$ and $-\sum b_i \equiv -ab + a^2 - 1 \pmod{16}$, so Hermite's results are obtained. Schläfli also gave transformations for the function $\tilde{\psi}(z)$ defined by $\tilde{\psi}^2(z) = \psi z$, for which ([Jacobi, Fund Nova p. 89]) $\psi(z) = \frac{1}{16} e^{i \pi z/24}$, and for K independently in the 6 cases distinguished by Hermite.

Independently of Schläfli, Koenigsberger also solved the problem (Koenigsberger [1871]). He analyzed the matrices $\left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$ as Schläfli had done, using continued fractions, but found the transformations

$$\phi(-\frac{1}{\tau}) = \psi(\tau), \quad \phi(\tau + 1) = e^{i\pi} \frac{\psi(\tau)}{\psi(\tau)},$$

and $\psi(\tau + 1) = \frac{1}{\psi(\tau)}$ via the expressions for ϕ and ψ as quotients of infinite products. He made no mention of monodromy.

Schläfli's and Koenigsberger's works suggest strongly that the transformations which must be understood are $z+1$ and $z-1/z$. Although they did not say so explicitly, when taken mod 2 these transformations generate the six-element group of matrices $\left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$ for which $ad - bc \equiv 1 \pmod{2}$ and each entry is 0 or 1, which, as a set had been distinguished by Hermite.

The passage from integer elements to integers modulo 2 is not exactly explained in either case, but for example $z = K(x)$ is an infinitely many-valued function of x for which the values for a common x are of the form z and its transforms $\frac{cz+d}{az+b}$, where $\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \equiv \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) \pmod{2}$, so x is invariant as a function of z under such transformations $z \mapsto \frac{cz+d}{az+b}$. That the transformations $z+1$ and z^{-1} generate a group was a commonplace by that time, for it occurs in the calculation of cross-ratios. However, the connection between that group and the group $\{\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \equiv \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) \pmod{2}\}$ seems not to have called for any explanation in the minds of Schläfli or
Koenigsberger, nor need it have done so unless it would be worthwhile to place this reasoning in a larger context. The man who saw the need for that was Dedekind, but first one other mathematician must be considered before Dedekind's work can be described.

The group of matrices \(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \pmod{2} \) was connected with modular equations at arbitrary \(N \), not merely the primes, by H.J.S. Smith [1877], in a paper much admired by Klein. Smith wanted to connect the theory of binary quadratic forms \(ax^2 + 2bx + cy^2, \ N = b^2 - 4ac > 0 \), with the modular equation at \(N \). Results of Hermite and Kronecker concerning the case when \(N \) is negative were well known, he said, but the positive case was more difficult and little had been done beyond Kronecker [1863] which discussed the solution of Pell's equation by elliptic functions.

Smith's paper dealt with the study of the reduced forms equivalent to a given form \(Q(x,y) = ax^2 + 2bxy + cy^2 \), \(a, b, \) and \(c \) integers. Reduced forms are those \(a'x^2 + 2b'xy + c'y^2 \) for which the quadratic equation \(a' + 2b't + c't^2 = 0 \) has real roots of opposite sign such that the absolute values of one root is greater, and the other less, than unity. They are equivalent to \(Q(x,y) \) if there is \(\gamma = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in \text{SL}(2; \mathbb{Z}) \) such that \(Q(\alpha x + \beta y, \gamma x + \delta y) = a'x^2 + 2b'xy + c'y^2 \). They are associated with the continued fraction expansion of \(\sqrt{N} \) in a way first described by Dirichlet [1854] (for the history of this matter see Smith [1861, III, §93]). Smith found it convenient to work with the weaker notion of equivalence where \(g \) satisfies \(\gamma = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \pmod{2} \), \(a \equiv \delta \equiv 1 \pmod{4} \), presumably to avoid the fixed points \(i, \rho \) of the \(\Gamma \)-action. He only remarked of his restriction that "c'est uniquement pour abréger le discours que nous l'admettons ici". This group acts on the upper half plane and a set of inequivalent points.
is obtained by taking the region bounded by \(P = x - 1 = 0 \), \(P^{-1} = x + 1 = 0 \), and the two semicircles \(Q = x^2 + y^2 - x = 0, \) \(Q^{-1} = x^2 + y^2 + x = 0 \), including \(P \) and \(Q \) but not \(P^{-1} \) and \(Q^{-1} \). To each quadratic form \([a, b, c] := ax^2 + 2bxy + cy^2 \) he associated a circle \((a, b, c) := a + 2bx + c(x^2+y^2) = 0 \), and he studied the image of this circle reduced mod \(\Gamma(2) \), a set of arcs in \(\sum \) "en apparence sera brisée, mais dont on mettra en evidence la continuité". The way in which these arcs went from one boundary of \(\sum \) to another was, he showed, described by the periodic continued fraction expansion of \(\sqrt{N} \), and thus to the production of the reduced forms equivalent to \((a, b, c) \) (see Smith [1861, Part IV, §93]).

The connection with the modular equation was established by introducing Hermite's functions \(\phi^8(\omega) = k^2 = \frac{1}{2} + X + iY, \) \(\psi^8(\omega) = k'^2 = \frac{1}{2} + X - iY \) and mapping from the upper half \(\omega \)-plane to the \(X, Y \) plane. Under this map \(\omega = i \) goes to \(X = 0, Y = 0 \), the imaginary axis of \(\sum \) is mapped onto the \(X \)-axis (Smith incorrectly said the real points of \(\sum \) are sent to points with \(Y = 0 \)) and the map is conformal even at \(\omega = 0, \omega = 1 \equiv -1, \) and \(\omega = i \infty \). Each circle \((a, b, c) \) is sent to an algebraic curve in the \(X, Y \) plane whose equation is \(F(\phi^8(\omega), \psi^8(\omega)) = 0 \), where \(F = 0 \) is the modular equation at \(N \) between \(k^2 \) and \(\lambda^2 \). If \(k^2 = \phi^8(\omega) \) then \(\lambda^2 = \phi^8(\frac{\gamma \omega + 2\delta}{1 - \gamma}) \), where \(\gamma \nu' = N, \delta \equiv 0, 1, \ldots, \nu'-1 \mod \gamma \) and \((\gamma, \nu', \delta) = 1 \). \(F \) is symmetric with respect to \(k^2 \) and \(\lambda^2 \) and is invariant under the six permutations of \(k^2 \)(and \(\lambda^2 \)) which form the cross-ratio group \((k^2, 1-k^2, \frac{1}{k^2}, \text{etc.}) \), so there are 6 modular curves \(F(k^2, \lambda^2) = 0, F(k^2, 1-\lambda^2) = 0 \), etc. These curves spiral around the images \(A_1 = (+ \frac{1}{2}, 0) \) of \(\omega = 0 \) and \(A_2 = (- \frac{1}{2}, 0) \) of \(\omega = i \infty \) like interlacing lemniscates symmetrically situated about the \(X \) axis. If the \(XY \) plane is cut along the \(X \) axis from \(A_1 \) to \(+ \infty \) and \(A_2 \) to \(- \infty \) the spirals are cut into whorls ('spires') which correspond to the individual arcs of the reduced image of \((a, b, c) \) in \(\sum \), and consequently to the continued fraction expansion of \(N \).
5.2 Dedekind.

The first person to emphasize the 'invariance' interpretation of this analysis of functions of the modulus, k^2, was Richard Dedekind, in his justly celebrated paper of 1877. It was published in the same issue of Borchardt's *Journal für Mathematik* as Fuchs's paper, and like it is a letter, addressed in this case to Borchardt. Since Dedekind's reputation does not even now reflect his true worth it may not be out of place to comment on his career at this point. Dedekind contributed much more to mathematics than his constructive definition of the real numbers ('Dedekind cuts', discovered in 1858 but only published in *Stetigkeit und irrationale Zahlen* [1872]). The modern esteem in which this work is held is entirely justified, but Dedekind's other achievements are generally known only to specialists, not just because of their difficulty but, I fear, from an exaggerated attention paid by historians and popularizers to the foundations of mathematics. Dedekind did much more for mathematics than just arithmetizing elementary analysis. He was a profound unifier of mathematics and one of the creators of modern algebraic number theory; the concepts of ring, module, ideal, field, and vector space are as much his contributions as anyone else's. He was a great problem solver, particularly in his favourite subject of algebraic number theory. He was a gifted expositor and
dedicated editor of the work of others, chiefly his mentors Gauss, Dirichlet, and Riemann, all of whom he had known personally. The sensitive and illuminating article on him by K.R. Biermann [1272] will perhaps restore the balance and help to make his reputation more truly reflect his many achievements.

Dedekind's first work, done under Gauss, had been on Eulerian integrals. In the 1860's he edited Gauss's manuscripts on number theory Gauss, [Werke, 1st ed., vol. II, 1863] and in the same year brought out the first of four influential editions of Dirichlet's Vorlesungen über Zahlentheorie. His interest in algebraic number theory led him to most of his own original work in this period, but in 1876 he edited Riemann's papers with his lifelong friend Heinrich Weber. This paid a debt Dedekind felt to Riemann, and marked an intellectual return to Göttingen where he had been a student and instructor in the 1850's. In 1880, in a joint paper with Weber, he laid the foundations of the arithmetic theory of algebraic functions and Riemann surfaces. Biermann [op cit, 2] tells us that Dedekind was perhaps the first person ever to lecture on Galois theory, (these lectures are discussed in Section 3) but only two students were present to hear him replace the permutation group concept by that of the abstract group (see Purkert, [1976] and below, p186). As we shall see, this immersion in the work of another man had its customary effect of deepening and broadening Dedekind's own understanding of mathematics.

Dedekind began his letter to Borchardt more or less where Hermite's comments ended. He observed that he had already been engaged for several years on the determination of the ideal-class number of cubic fields, which was connected with Kronecker's work on singular moduli and complex multiplication. In seeking a simpler route to the 'exceptionally beautiful' but difficult results of Kronecker he found he had been led to appreciate the fundamental importance of Hermite's
point (quoted above), that $k = k(\omega)$ is invariant under transformations

$$\omega_1 = \frac{\gamma + \delta \omega}{\alpha + \beta \omega}, \quad \alpha, \beta, \gamma, \delta \text{ rational integers satisfying } \alpha \delta - \beta \gamma = 1$$

and β, γ even. He remarked that this observation enables one to derive the usual theory of elliptic functions without difficulty, but set as his main task the elaboration of the theory of modular functions independently of elliptic functions.

Almost all of the usual introductory material on elliptic modular functions appears for the first time in this paper. The upper half of the complex plane, which Dedekind denoted \mathbb{S}, is divided into equivalence classes by the action of the group of matrices of the form

$$\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \quad \alpha \delta - \beta \gamma = 1, \quad \alpha, \beta, \gamma, \delta \text{ integers.}$$

Those equivalent to 0 are the rationals on the real line, together with the point $i\omega$; Dedekind denoted this set \mathbb{R} and called it the boundary of \mathbb{S}. As a complete system of representatives (of the equivalence classes) he chose the domain defined by the three conditions:

$$|\omega_0 - 1| \geq |\omega_0|,$$

$$|\omega_0 + 1| \geq |\omega_0|,$$

$$|\omega_0| \geq 1,$$

which is symmetrically situated with respect to the y-axis, and remarked that the proof that this is a complete system follows the lines of the analogous theorem for binary quadratic forms of negative determinant. This domain he called the principal field (Hauptfeld, denoted here by F), and he added that it is bounded by the lines $x_0 = \pm \frac{1}{2}$ and the arc $x_0^2 + y_0^2 = 1$ ($\omega_0 = x_0 + y_0 i$), each point on the boundary being equivalent to one other point. The effect of
\[
\begin{pmatrix} \alpha \\
\beta \\
\gamma
\end{pmatrix}
\text{is to move the circular-arc triangle bounded by}
\rho = \frac{-1 + i\sqrt{3}}{2}, \quad \rho^2, \quad \infty,
\text{to the triangle with vertices}
\frac{-\gamma + \alpha \rho}{\delta - \beta \rho}, \quad \frac{-\gamma - \alpha \rho^2}{\delta + \beta \rho^2}, \quad \frac{-\alpha}{\beta}.
\]

Dedekind then sought a complex-valued function \(v \) on \(S \) which took the same value at all equivalent points in such a way that, conversely, each value of the unbounded variable \(v \) there corresponded a unique equivalence class. To obtain such a function he followed the principles laid down by Riemann in his inaugural dissertation (§21). Each half of \(F \) can be mapped onto one half of the complex plane by the Riemann mapping principle, so that the y-axis is mapped onto the real axis, and corresponding points on the boundary are given conjugate complex values under the map. The map is extended to the whole of \(S \) by the reflection principle, and made unique by insisting that
\(v(\rho) = 0, \quad v(i) = 1, \quad v(\infty) = \infty. \) This function \(v \) Dedekind denoted \(\text{val}(\omega) \) and called the valency (Valenz); it is nowadays known as Klein's J-function. Klein studied it the next year, making due acknowledgement to Dedekind. The inverse function to the valency function Dedekind described as a covering of the complex sphere, branched over 0,1, and \(\infty. \) The point 0 is of order 2, 1 is of order 1, and \(\infty \) is a logarithmic branch point.
To study functions like \(\text{val}(\omega) \) Dedekind introduced the differential expression

\[
[v, u] = \frac{-4}{\sqrt{\left(\frac{dv}{du} \right)^2}} \frac{d}{du} \left(\frac{dv}{du} \right)^{\frac{1}{2}},
\]

which is twice the Schwarzian derivative, and therefore satisfies such identities as

\[
[v, u] = \frac{C + Du}{A + Bu} \quad A, B, C, D \text{ constants.}
\]

The function \(v = \text{val}(\omega) \) itself has the Schwarzian derivative

\[
[v, \omega] = f(\omega)
\]

which has a single valued inverse \([v, \omega] = f(\omega), \text{ and } f(\omega) \text{ is finite except at } v = 1, 0, \infty, \text{ where, respectively, the products}

\[
(1-v)^{-\frac{1}{2}} \frac{dv}{d\omega}, \quad v^{-\frac{2}{3}} \frac{dv}{d\omega}, \quad v^{-1} \frac{dv}{d\omega}
\]

are finite and non-zero, and it is soon clear that

\[
F(v) = \frac{36v^2 - 41v + 32}{36v^2(1 - v^2)}.
\]

Otherwise put, \(v = \text{val}(\omega) \) is a solution of the third order differential equation \([v', \omega] = F(v')\) and the general solution to that equation has the form \(\text{val} \left(\frac{C + Du}{A + Du} \right) \).

Dedekind was now ready (§6) to introduce the elliptic modular functions themselves. \(\left(\frac{dv}{du} \right)^{1/2} \) satisfies a second order linear differential equation with respect to \(v \), and \(u = \text{const.} \quad v^{-1/3}(1-v)^{-1/4} \left(\frac{dv}{du} \right)^{1/2} \)

satisfies the hypergeometric equation

\[
v(1-v) \frac{d^2 u}{dv^2} + \left(\frac{2}{3} - \frac{7v}{6} \right) \frac{du}{dv} - \frac{u}{144} = 0,
\]

whose general solution in terms of the Gaussian hypergeometric series \(F \) is const. \(F \left(\frac{1}{12}, \frac{1}{12}, \frac{2}{3}, v \right) + \text{const.} \quad F \left(\frac{1}{12}, \frac{1}{12}, \frac{1}{2}, 1-v \right) \), which may also be expressed as a Riemannian \(\Gamma \)-function. Dedekind found the
square root of \(u \) of special interest; it is the function

\[\eta(\omega) = \text{const.} \sqrt{\frac{1}{6}} (1-v)^{-1/8} \frac{dv}{d\omega} \]

nowadays called the Dedekind \(\eta \)-function.

It is a single valued function on \(S \), finite and non-zero on the interior of \(S \) and, as \(\omega \to \infty \), \(\eta \to 0 \) like \(\omega^{-1/24} \) and thus like \(\omega^{-1/24} = e^{2\pi i \omega/24} \). He chose the constant so that \(\eta(\omega) = \omega/24 \) at \(\omega = \infty \).

\[\eta\left(\frac{\gamma + \delta \omega}{\alpha + \beta \omega}\right) = c. (\alpha + \beta \omega)^{1/2} \eta(\omega) \] where \(c^{24} = 1 \), in particular

\[\eta(1 + \omega) = 1^{1/24} \eta(\omega), \quad \eta\left(\frac{-1}{\omega}\right) = 1^{-1/8} \omega^{1/2} \eta(\omega) \] where \(\omega^{1/2} = i^{1/8} \) when \(\omega = 1^{1/4} = i \). Now \(\eta \) is completely determined, for if \(f(\omega) \) is another function with these properties then \(f(\omega)/\eta(\omega) \) is an everywhere finite single-valued function of \(v = \text{val}(\omega) \) i.e. a constant, which takes the value 1 at \(v = \infty \), and so the constant necessarily equals 1.

Dedekind could now make clear the relationship between \(\eta(\omega) \) and the modulus of an elliptic integral or its square root \(k \). He introduced three auxiliary functions corresponding to the three transformations of order 2

\[\eta_1(\omega) = \eta(2\omega), \quad \eta_2(\omega) = \eta\left(\frac{\omega}{2}\right), \quad \eta_3(\omega) = \eta\left(\frac{1+\omega}{2}\right), \]

for which the following identity holds:

\[\eta_1(\omega) \eta_2(\omega) \eta_3(\omega) = 1^{1/48} \eta(\omega)^3. \]

In terms of these functions it turns out that

\[k^{1/8} = 1^{1/48} \sqrt{2}, \quad \frac{\eta_1(\omega)}{\eta_3(\omega)} = \phi(\omega), \text{ say} \]

\[k'^{1/8} = 1^{1/48} \eta_2(\omega)/\eta_3(\omega) = \psi(\omega), \text{ say} \]

where \(\phi \) and \(\psi \) are the functions introduced by Hermite [1858] (see above, p164), and \(K \) and \(K' \) can be defined by the equations

\[\int \frac{2\mathrm{d}k}{\pi} = 1^{-1/24} \eta_3(\omega)^2/\eta(\omega) \text{ and } K'i = K\omega. \]
Finally, calculating $\phi(1 + \omega)^8 = \frac{k}{k-1}$ and $\phi(\frac{-1}{\omega}) = 1 - k$ led Dedekind to the conclusion

$$v = \text{val}(\omega) = \frac{4}{27} \frac{(k+p)^3 (k+p^2)^3}{k^2 (1-k)^2}.$$\[\text{The function } k = \phi(\omega)^8 \text{ can be completely determined from this information, just as } \eta \text{ was. It satisfies } [k, \omega] = \frac{(k+p)(k+p^2)}{k^2 (1-k)^2}, \text{ which reduces to}\]

$$\frac{d}{dk} (k(1-k)) \frac{dK}{dk} = \frac{1}{4} K, \text{ which, Dedekind noted, was Fuchs's starting point, and } k \text{ has therefore the same properties as the quotient of theta-functions}\]$$

$$\theta_2(0,\omega)^4 \theta_3(0,\omega)^4,$$

from which it follows that

$$\eta(\omega) = (\omega/2)^{1/24} \prod_{n=1}^{\infty} (1 - q^n) = q^{1/12} \prod_{n=1}^{\infty} (1 - q^{2n}),$$

where $q = \omega^2/2$. Dedekind regretted that he could not represent η explicitly as a function of ω without invoking the theory of elliptic functions, a task later to be accomplished by Hurwitz using Eisenstein series. Dedekind had defined η as an infinite product in his earlier discussion of a fragment of Riemann's (see Riemann Werke, 466-478 and Dedekind's Werke XIII) where he also introduced the Dedekind symbol to elucidate the transformation properties of $\eta(\frac{\gamma + \delta \omega}{\alpha + \beta \omega})$.

At this point Dedekind drew upon this work in editing Riemann's papers to correct the mistake of Fuchs mentioned earlier. Riemann had considered the boundary values of elliptic modular functions [Riemann Werke XXVIII] and found that as $x + yi \mapsto \frac{m}{n}$ along the vertical line $x = \frac{m}{n}$:

- $k \to \infty$ if $m \equiv n \equiv 0 \text{ mod 2},$
- $k \to 1$ if $m \equiv 0 \text{ mod 2, } n \equiv 1 \text{ mod 2},$
- $k \to 0$ if $m \equiv 1 \text{ mod 2, } n \equiv 0 \text{ mod 2}.$

Fuchs's mistake had been, as Schlesinger observed, not to distinguish sharply between a set which continuously fills out a curve from one which is merely everywhere dense in a given curve.
of considering \(k^2 \) via its inverse function is, of course, less direct and informative than the Riemann-Dedekind one.

Dedekind concluded his remarkable paper with a thorough discussion of the modular equation from his point of view. For an integer matrix
\[
\begin{pmatrix} A & B \\ C & D \end{pmatrix}
\]
of determinant \(n \), he set \(\nu_n = \text{val} \frac{C + D\omega}{A + B\omega} \) and asked how many different functions \(\nu_n \) there can be. There are, he showed, with the now customary proof,
\[
\psi(n) = n \prod_{p | n} \left(1 + \frac{1}{p} \right)
\]
such functions, \(\nu_1, \ldots, \nu_{\psi(n)} \), say. Then the function
\[
F = \prod_{r=1}^{\psi(n)} (\sigma - \nu_r) = f(\sigma, \nu)
\]
is a single-valued function of \(\sigma \) and \(\omega \) which is a polynomial in \(\sigma \) of degree \(\psi(n) \) with coefficients single-valued functions of \(\nu = \text{val}(\omega) \). The \(\psi(n) \) roots of this equation are the \(\nu_n \)'s, which are therefore algebraic functions of \(\nu \). He also showed that the polynomial \(F \) is irreducible and symmetric, and conjectured correctly that its coefficients are rational integers. In conclusion, he pointed out that a study of \(F \) would illuminate the theory of singular moduli and complex multiplication, but that further developments in which the composition of quadratic forms would play an essential role would have to wait for another opportunity.

One is struck by the modernity of this paper. The concept of a function invariant under a certain group is clearly grasped, although to be sure the matrices \(\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \) are not explicitly said to form a group. Even so Dedekind casually uses the fact, which he stated, that the matrices \(\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \) are all expressible as products of \(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \) and \(\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \). The idea that any single-valued function defined on \(F \) or, equivalently, automorphic under
the matrices \(\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \) and single-valued on \(S \), is a rational function of \(\text{val}(\omega) \) is clearly stated in the paper (§6) and underlies the discussion of \(\text{val}(\omega) \) in §3 and of \(\eta(\omega) \) in §6. Many of the arguments given by Dedekind occur virtually unchanged in modern presentations of this material, all his arguments have a conceptual clarity and depth seldom found in Fuchs, for example. To what extent are they novel?

The most crucial novelty is the presentation of the theory of modular functions and the relationship between different moduli almost entirely divorced from the theory of elliptic functions. What had previously been derived by astute use of the multitude of equations concerning infinite sums and products in Jacobi's theory was here rederived with a new lucidity and economy of ideas. Only the formula for \(\eta \) as an infinite product eluded Dedekind's reformulation. The theory of modular functions could now be studied independently of elliptic functions, a natural task which had been in the air for some time. In a passage quoted by Dedekind at the end of §1 Hermite had observed \(^{10}\) [1862 = 1908 II, 163n] "..... no other way for reaching the modular equations has yet offered itself than that which has been given by the founders of the theory of elliptic functions" and Klein in his [1878/79] sought to emphasize the implications these new ideas might have for the study of elliptic functions.

The new theory gave a geometric interpretation of modular functions. They were now obtained by an invariance principle from their definition on a fundamental region, and could be seen to be constrained naturally to the upper half-plane. Dedekind's study of Legendre's equations and the transformations of order two \((\eta_1 := \eta(2\omega), \eta_2(\omega) := \eta(\omega/2), \eta_3 := (1+\omega)/(2) \) and of order \(N \), suggested that the existence of a rich theory of modular transformations could be obtained by extending the invariance idea, and that
this should shed light on the hard-won but obscure results in the theory of moduli. Dedekind did not explicitly stress the concept of a group—that was Klein's decisive contribution—so a certain vagueness of terminology is in order.

The point of departure for Dedekind was the lattice of periods of an elliptic function. Parallelogram lattices had been studied in connection with quadratic forms by Gauss [1840 = Werke 1862, I, 154] and Dirichlet [1850 = Werke II, 1863, 194] whence Dedekind surely came to hear of them. He may well not have known of Kronecker's study "Über bilineare Formen mit vier Variabeln" presented to the Berlin Academy in 1866 but not published until 1883 [= Werke II, 425-495]. In §2 of that work Kronecker discussed the six cosets (as they would be called today) of $\text{SL}(2; \mathbb{Z})$ when the entries are reduced mod 2, and applies his results to the reduction of quadratic forms $ax^2 + 2bxy + cy^2$. The stripping-down of elliptic function theory to the lattice idea allowed Dedekind (and Klein) to introduce modular functions as functions on lattices. A lattice has a basis ω_1, ω_2 such that $\omega_1/\omega_2 = \tau \in \mathbb{H}$, the upper half plane, and any other basis ω_1, ω_2 is obtained from ω_1 and ω_2 by an element of $\text{SL}(2; \mathbb{Z})$. The ratio of the periods, τ, is thus determined only up to the action of this group, and the inverse function (eg. k^2) is invariant under the action. It is this realization of the importance for modular functions of a well-known result about lattices and quadratic forms that was Dedekind's starting point. He cited Dirichlet Zahlentheorie, 2nd ed., §65, which discusses quadratic forms of negative determinant.

The invariance of elliptic functions under transformations of the variable, e.g. $\mathcal{P}(\omega) = \mathcal{P}(\omega + \mu_1 \omega_1 + \mu_2 \omega_2) = z$ was, of course, a very well-known idea. But it had always been regarded as a generalization of the periodicity of the trigonometric functions; ω_1 and ω_2 were periods,
corresponding to closed loops in the z-domain. Fuchs's presentation of the invariance of k^2 followed this approach exactly. Dedekind broke with it and took invariance under a group or family of transformations as his starting point. Ultimately the two approaches are not all that different; their unification via the theory of Riemann surfaces was the achievement of Klein, but the group-theoretic approach is at least as natural as the topological one, and was to prove to be the way historically towards the 'right' generalization of elliptic functions. In this work of Dedekind one can detect also an attempt to prefigure what a Riemannian theory of functions for arbitrary closed domains might be like, and what the role of the 'universal covering surface' might be. The elaboration of these ideas was due, however, to Klein and his students. To understand it, we must look first at the Galois theory of the modular equation as it had been developed in the 1850's; this will be the theme of the next two sections.
5.3 Galois theory, groups and fields.

On 29 May 1832, the evening before his fatal injury in a duel, Galois wrote the now-famous letter to his friend Auguste Chevalier. It begins

"My dear friend,

I have done several new things in analysis.
Some concerning the theory of equations; others integral functions".

In the theory of equations he described how the solvability of an equation by radicals is connected to the solvability of the group of permutations of its roots. If G is such a group (Galois did not define a group, but this is the first use of the word in this sense) and H a subgroup, then one has two (coset) decompositions

\[G = H + HS + HS' + \ldots \]

\[G = H + TH + T'H + \ldots \]

The decompositions were said by Galois to be proper ("propre") if they coincide, i.e. if H is what is nowadays called a normal subgroup. If the group of the equation is successively decomposed until no further proper decomposition is possible, then Galois said of the indecomposable groups which result that:

"If these groups each have a prime number of permutations the equations will be solvable by radicals; otherwise not."

Galois' proof of this theorem was found amongst his papers after his death, and published for the first time by Liouville in his Journal de Mathématiques for 1846. It will not be described here. In his letter, Galois went on to apply his theory of equations to the
modular equations of elliptic functions, studied earlier by Abel and Jacobi.

"One knows that the group of the equation which has as its roots the sine of the amplitude of the p^2-1 divisions of a period is this:

$$x, x + b, c + d$$

in consequence the corresponding modular equation will have as its group

$$x, x + b, c$$

in which k/ℓ can have the $p+1$ values

$$\infty, 0, 1, \ldots, p-1$$

He remarked that this group, let us call it G, has $(p+1) p(p-1)$ elements, and a normal subgroup, G' of size $\frac{1}{2}(p+1) p(p-1)$, consisting of the substitutions $x, x + b, c$ where $ad - bc$ is a quadratic residue mod p, but that G' has no proper decomposition $p \neq 2, 3$. Furthermore, the degree of the modular equation can sometimes be reduced. It cannot be reduced below p, because then the prime p would not appear in the size of the group of the equation, but it can be reduced from $p+1$ to p. This can occur only if the group G has a (non-normal) subgroup H of size $(p+1) \frac{p-1}{2}$. For example, if $p = 7$, pair the symbols ∞ and 0, 1 and 3, 2 and 6, 4 and 5. The group of substitutions

$$x, x - b, c$$

where b and c are pairs and a and c are either both residues or both non-residues mod p, is a subgroup of order $(p+1) \frac{p-1}{2} = 24$. A similar reduction is possible when $p = 5$ or 11, and, Galois concluded,
"Thus, for the case of \(p = 5, 7, 11 \), the modular equation reduces to degree \(p \).

"With complete rigour, this reduction is not possible in the higher cases."

The modern notation for these elements \(\left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \) \(a, b, c, d \in \mathbb{Z}/p\mathbb{Z} = \mathbb{F}_p \) the field of \(p \) elements is quite irresistible. The action \(k \mapsto \frac{ak+b}{ck+d} \) permutes the lines in the plane over this field, which have the \(p + 1 \) possible slopes \(0, 1, \ldots, p-1, \infty \). The substitutions of \(H k \mapsto \frac{a(k-b)}{k-c} \) when \(p=7 \), say, permute the pairs of lines with slopes \(0 \) and \(\infty \), \(1 \) and \(3 \), \(2 \) and \(6 \), \(4 \) and \(5 \) and so fill out an octahedral subgroup of \(G' \) of index 7. Because it is not normal in the whole group, conjugation represents the group \(G \) as acting on 7 elements.\(^{12}\)

Galois concluded his letter with a staggering summary of the theory of Abelian integrals which so remarkably foreshadows Riemann's work.\(^{13}\)

The publication of Galois' work in Liouville's Journal stimulated the emerging generation of mathematicians to try to understand and apply it. This process has been described recently by Wussing, and may be summarized as follows (deferring details of the modular equation to the next section). There was an initial period in which several authors, notably Betti, Kronecker, Cayley, and Serret, filled in holes in Galois' presentation of the idea of a group. These commentaries on Galois presented the connection between group theory and the solvability of equations by radicals, and went on to explore the solution of equations by other means, to be described below. The group idea was elaborated in terms of permutations of a finite set of objects, thus following Cauchy's presentation of the theory of permutation groups in 1844–6, and Wussing refers to the formulation as that of permutation groups. The elements are often
called substitutions or operations, they come with a set of objects which they permute. The crucial presentations of permutation groups were made by Jordan in his "Commentaire sur Galois" [1869] and his Traité des substitutions et des équations algébriques [1870].

Jordan presented a systematic theory of permutation groups, in terms of abstract properties such as commutativity, conjugacy, centralizers, transitivity, normal subgroups and quotient groups, group homomorphisms and isomorphism. It seems to me that Jordan came close to possessing the idea of an abstract group. He remarked "One will say that a system of substitutions forms a group (or a faisceau) if the product of two arbitrary substitutions of the system belong to the system itself." (Traité, 22, quoted in Wussing, 104) and he spoke of isomorphisms (= "isomorphisme holédrique") between groups as one to one correspondences between their substitutions which respect products (Traité, 56, Wussing 105). One might well regard the use of words like "substitution" and the permutation notation (\(|x, x' \ldots ax + bx' + \ldots, a'x + b'x' + \ldots|\), for example) as well-adapted to their purpose, but not to be taken too literally. On the one hand Jordan presented an extensive battery of technical concepts of increasing power - we have already seen his use of Sylow theory in the treatment of monodromy groups - on the other hand he analysed in the Traité a wide range of situations in which groups could be found, permuting lines (the 27 lines on a cubic surface, the 28 bitangents to a quartic) and appearing as symmetry groups of the configuration of the nine inflection points on a cubic and of Kummer's quartic with sixteen nodal points. Jordan's capacity to articulate a powerful theory of finite groups and to recognize them 'in nature' surely argues for an implicit understanding of the group idea presented for
convenience only in the more familiar garb (to his audiences) of permutation groups. This is not to deny the role of permutation theoretic ideas in Jordan's work, indicated by the emphasis on transitivity and degree (= the number of elements in the set being permuted), but rather to indicate that ideas of composition and action (as for example change of basis in linear problems) were prominent, and could be seized upon by other mathematicians.

Nonetheless, Wussing can point to a valid distinction in the degree of abstraction between Jordan's work and the less well known treatments of Kronecker and Dedekind. Wussing shows clearly that Kronecker, who learned the new theory of solvability of polynomial equations from Hermite and others during his stay in Paris in 1853, was chiefly concerned to further the study of solvable equations. He sought to construct all the equations which are solvable by radicals, as for instance, the cyclotomic equations $x^p - 1 = 0$, p a prime. Those equations in particular he called Abelian [Werke, IV, 6] and it seems that this is the origin of the designation Abelian for a commutative group; the Galois group of a cyclotomic equation permutes the roots cyclically. In a later work [1870], also relating to number theory, Kronecker gave this abstract definition of a finite commutative group\(^{14}\) (quoted in Wussing, 47):

"Let θ', θ'', θ''' be a finite number of elements so constituted that from any two of them a third can be derived by means of a definite operation. By this, if the result of this operation is denoted by f, for two arbitrary elements θ' and θ'', which can be identical to one another, a θ''' shall exist which equals $f(\theta', \theta'')$. Moreover, it will be the case that
and also, whenever \(\theta'' \) and \(\theta''' \) are different from one another, \(f(\theta', \theta'') \) is not identical with \(f(\theta', \theta''') \).

"This assumed, the operation denoted by \(f(\theta', \theta'') \) can be replaced by the multiplication of the elements \(\theta' \theta'' \), if one thereby introduces in place of complete equality a pure equivalence. If one makes use of the usual sign for equivalence: \(\sim \), then the equivalence \(\theta'. \theta'' \sim \theta''' \) is defined by the equation \(f(\theta', \theta'') = \theta''' \)."

Here the elements are abstract and not necessarily presented as permutations, but Kronecker was always concerned to use the group-idea to advance other domains of mathematics, chiefly number theory. He concentrated therefore more on the study of the roots of equations, regarding them as given by some construction, and so increasingly elaborated his theory of the "Rationalitätsbereich", which may be regarded as a constructive presentation of field extensions of certain ground fields (usually the rationals, \(\mathbb{Q} \)). In this he resembles his contemporary, Dedekind, and indeed the resemblance seems to have been uncomfortable to Kronecker, who on occasion claimed priority for his theory of algebraic numbers over Dedekind's, and suggested that his ideas may have influenced Dedekind. Kronecker also delayed the publication of the important paper of Dedekind and Weber [1882] in the *Journal für Mathematik* for well over a year\(^{15} \). It seems likely that Dedekind was gradually discovering and publishing ideas which Kronecker had had earlier but had not brought forward to his (Kronecker's) own satisfaction. Kronecker often referred to ideas he had had in the 1850's when finally writing some of them down in the 1880's. In view of the probable destruction of the Kronecker Nachlass (Edwards [1979]) the matter of priority is unlikely ever to be settled.
As Purkert has shown [1976], Dedekind also developed the idea of an abstract group in the context of Galois theory. He lectured on Galois theory at Göttingen in 1856-1858, although he published nothing on it until 1894, in the famous eleventh supplement to Dirichlet's lectures on number theory (4th edition). Purkert presents an undated manuscript of Dedekind, now in Niedersächsischer Staats und Universitätsbibliothek zu Göttingen, which he dates entirely plausibly at around 1857-1858. It goes far beyond the limited ideas about groups published in his Werke, II, paper LXI. In brief, the manuscript describes the following: the idea of permutations of a finite set of objects is generalized to that of a finite abstract group. For permutations, Dedekind showed \(^{16}\)

Theorem 1 If \(\phi\theta' = \phi', \theta'^n = \psi\), then \(\phi\theta'' = \theta\psi\), or, more briefly,
\[
(\theta\theta')\theta'' = \theta(\theta'\theta'')
\]

Theorem 2 From any two of the three equations \(\phi = \theta, \phi' = \theta', \phi\phi' = \theta\theta'\) the third always follows.

The subsequent mathematical arguments, however, are to be considered valid for any finite domain of elements, things, ideas \(\theta, \theta', \theta'', \ldots\), having a composition \(\theta\theta'\) of \(\theta\) and \(\theta'\) defined in any way, so that \(\theta\theta'\) is again a member of the domain and the manner of the composition corresponds to that described in the two fundamental theorems. [Purkert, 1976, 4].

The ideas of subgroup (Divisor) and coset decomposition of a group \(G\) are defined, and a normal subgroup (eigentlicher Divisor) is defined as one, \(K\), satisfying

\[
K = \theta_{-1}, K\theta = \theta_{-1}K\theta = \ldots = \theta_{-1}K\theta_h
\]

where the \(\theta\)'s are coset representatives for \(K\) (cf. Galois: "propre").
Dedekind showed the cosets of a normal subgroup themselves formed a group, in which \(K \) played the role of the identity element.

He went to apply this theory to the study of polynomials; unhappily, it is clear that the manuscript is incomplete, and a "field-theoretic" part is missing. However, a considerable amount of the theory of polynomial equations survives, and is analysed by Purkert.

One may reasonably assume that Riemann was in the audience for Dedekind's lectures, which lends a certain irony to Klein's description of his own work as a "Verschmelzung Galois mit Riemann". It seems as if little of what Dedekind presented caught Riemann's attention, just as earlier Riemann had not responded to Eisenstein's mathematics. One may perhaps detect a hint of it in Riemann's study of the permutations of the branches of a complex function on analytic continuation around its branch points in e.g. [1857a], but this could as easily have come from reading Puiseux and Hermite, or have occurred to Riemann independently. Weil has remarked [1974, 110] that Riemann's lack of interest in number theory and algebra is really striking, saying that "there is not the slightest indication that he ever gave any serious thought to such matters". Reciprocally, Dedekind found the task of editing Riemann's work difficult when it took him down geometrical paths he found hard to follow.

He wrote to his friend Jacob Henle on the 18th July 1867 that he had at first hoped to supply proofs of the assertion in Riemann's Habilitationsvortrag on geometry, using the hints supplied by Riemann, but that this had proved too difficult and he hoped instead to do that in a separate paper which perhaps will be completed before the
end of the semester".

He went on "I am often in despair, I get to the point so slowly" and he felt a little better being able to send off his transcriptions of the paper, together with the one on trigonometric series, to Weber for publication. The work, he said, alone occupied his thoughts night and day. (Quoted in Dugac [1976], p 171).

To return to the theme of the development of group theory in the period up to the 1870's, there is one final source, the work of Felix Klein. Klein learned about group theory from Jordan in 1870, when he and Sophus Lie went jointly to Paris, a sojourn interrupted in Klein's case by the outbreak of the Franco-Prussian war. It came to represent the third part of his characteristic style of mathematics throughout the 1870's, the others being the invariant theory he had learned the previous year from Clebsch, and the geometric impetus which had marked him from his earliest studies with Plücker in Bonn. It is well-known that one of the earliest fruits of Klein's visit to Paris was the successful study of non-Euclidean geometry from the projective point of view, described in the two papers called "Über die sogenannte Nicht-Euklidische Geometrie"[1871, 1873], and the use of groups to classify geometries as described in the so-called Erlanger Programm. As for Klein's interest in group theory per se, Freudenthal [1970, 226] has written with his characteristic vigour that

"... Klein's interest in groups was always restricted to those which came from well-known geometries, regular polyhedra or the non-Euclidean plane. His point of departure was never a group to which he associated a geometry - an operation of which the exploitation will be reserved for É. Cartan... More and more, Klein's activity
concerning groups recalls that of a painter of still life."

It is indeed true that Klein never considered group theory abstractly (to have done so would have been to run counter to his geometric and pedagogic inclinations) but Klein would surely have regarded his attitude to group theory as the very opposite of a painter of still life; one thinks of his disagreements with Gordan quoted in Chapter IV. As to Freudenthal's passing reference to the non-Euclidean plane, I shall suggest in the final chapter how this might be otherwise expressed, the better to capture a weakness of Klein's thought.

It might be supposed that birational transformations of projective algebraic curves would be another source of group theoretic ideas, as for instance in a study of the group of birational automorphisms of a given curve. Birational transformations had been brought to the fore by Riemann in his study of algebraic functions [1857c], but it seems that they retained their original significance of changes in the equation of a given curve for some time. The study of their group theoretic implications will therefore be deferred until the next chapter on chronological grounds, and I shall turn from this synopsis of the history of group theory 1850-1870 to look at particular problems deriving from Galois' ideas as they were considered before Klein.
5.4 The Galois Theory of modular equations c. 1858.

The first to consider Galois' work on the reduction of the degree of the modular equation was Betti, [1853]. He showed that the roots of the equation for \(\frac{\omega}{p} \), where \(p \) is prime, were invariant under the substitutions

\[
\begin{cases}
 x_{m,n} \\
 x_{b'm+a'n, bm+an}
\end{cases}
\]

in his notation, which he said formed the group \(G \) of the equation. \(G \) was a product of a group \(H \) whose elements were \(y_{q,i} \) and \(K \), the group of an equation of degree \(p+1 \), consisting of substitutions

\[
\begin{cases}
 y_{q,i} \\
 y_{p,q,i}
\end{cases}
\]

of which there are \(p(p-1)(p+1) \). \(K \) consists of the substitutions of order 2 and one of order \(\frac{1}{2} p(p-1)(p+1) \), consisting of the elements for which \(ab' - ba' \) is a square mod \(p \), which in turn has \(p \) subgroups of order \(\frac{1}{2}(p-1)(p+1) \). Betti listed them explicitly when \(p = 5 \), defining them by stating what permutating each element did to the six objects

\(0, 1, \ldots, p-1, \infty \). Betti then showed that when \(p = 5, 7, \) or 11 it is possible to pair off the objects \(0, 1, \ldots, p-1, \infty \) as Galois had done, but that this is not possible for \(p > 11 \), and so was led to claim, as his Theorems I and II: that the modular equation was not solvable by radicals but could be reduced from degree \(p+1 \) to \(p \) when \(p = 5, 7, 11 \); and that the equation for \(\frac{\omega}{p} \) decomposed into \(p+1 \) factors of degree \(p-1 \) which were solvable by radicals when the root of an equation of degree \(p+1 \) was adjoined, but that the equation was not solvable by radicals. Its degree could come down from \(p+1 \) to \(p \) when \(p = 5, 7, 11 \).
Hermite published a decisive paper [1858], on the connection between modular functions and quintic equations. He began by observing that the general cubic equation can be put in the form
\[x^3 - 3x + 2a = 0, \quad a = \sin \alpha, \]
when it has the three solutions
\[2\sin \alpha/3, \quad 2\sin \frac{\alpha + 2\pi}{3}, \quad 2\sin \frac{\alpha + 4\pi}{3}. \]
The general quintic equation can likewise be reduced by root-extraction to
\[x^5 - x - a = 0. \]
a reduction Hermite called "the most important step...since Abel" and attributed to Jerrard (Klein, in Vorlesungen über das Ikosaeder argues convincingly that this reduction is originally due to the Swedish mathematician E.S. Bring [1786]). In the reduced form the quintic equation is readily solvable by modular functions, as follows. As usual, let
\[
K = \int_0^{\pi/2} \frac{d\theta}{(1 - k^2 \sin^2 \theta)^{1/2}}, \quad K' = \int_0^{\pi/2} \frac{d\theta}{(1 - k'^2 \sin^2 \theta)^{1/2}}, \quad k^2 + k'^2 = 1
\]
and introduce \(\omega \) by \(e^{i\pi \omega} = e^{-\pi \mathbb{K}/K'} = q \). Let \(\lambda \) be a modulus related to \(k \) by a 5th order transformation, then, as Jacobi [1829] and Sohnke [1834] had shown, \(\sqrt{k} = u \) and \(\sqrt{\lambda} = v \) are related by the modular equation
\[
u^6 - v^6 + 5u^2v^2 (u^2 - v^2) + 4uv (1 - u^4v^4) = 0,
\]
which is to be regarded as an equation for \(v \) containing a fixed but arbitrary parameter \(u \). If, then, \(u = \phi(\omega) \) and \(v = \phi(\lambda) \), the solutions of the equation are
\[-\phi(5^m \omega), \quad \phi(\frac{\omega + 16m}{5}), \quad m = 0, 1, 2, 3, 4, \]
which may be denoted \(v_\infty, v_0, v_1, \ldots, v_4 \).
Hermite then defined

\[\phi(w) := (\phi(5w) + \phi(\frac{w}{5})) (\phi(\frac{w+16}{5}) - \phi(\frac{w+4}{5}) + \phi(\frac{w+2+16}{5}) - \phi(\frac{w+3+16}{5})) \]

\[= - (v_m - v_0) (v_1 - v_4) (v_2 - v_3). \]

and found that \(\phi(w + r\cdot 16), r = 0, 1, \ldots, 4 \) were the roots of a quintic equation for \(y \):

\[y^5 - 2^{4.5^3} y^4 (1 - u^8)^2 - 2^{6/5} 5^5 u^3 (1 - u^8)^2 (1 + u^8) = 0, \]

which can be further reduced, by means of the transformation

\[y = 2^{4/5^3} u (1 - u^{8^4}) \cdot t, \]

\[t^5 - t = \frac{2}{u^{8^4}} \frac{1 + u^8}{u^2 (1 - u^8)^4}, \]

thus exhibiting the quintic as a typical one in Bring-Jerrard form.

The solution of a given quintic equation \(y^5 - y - a = 0 \) is then known once \(u \) is found such that

\[\frac{2}{u^{8^4}} \left(\frac{1 + u^8}{u^2 (1 - u^8)^4} \right) = a, \]

which happily reduces to solving a quartic equation.

In Hermite's paper the crucial idea is to use the possibility of reducing the modular equation at the prime 5, whose solutions can be assumed to be known, to a quintic, whose solutions are thus obtained, and to show that any quintic equation can be obtained in this way. The impossibility of performing that reduction when \(p > 11 \) is not explained (Hermite admitted to this lacuna in the argument). Referring
to Betti in a footnote, he said that Betti had published on the subject after his own first work had been done and the results announced in Jacobi's *Werke* (first edition II, 249 [= 2nd edition, 1969, II, 87-114]), while the present paper remained unpublished.

Other mathematicians who concerned themselves with the modular equations were Kronecker and Brioschi. Kronecker's work [1858a] on the modular equation of order 7 was presented to the Berlin Akademie der Wissenschaften by his friend Kummer on 22nd April 1858, shortly after Hermite's work on the quintic was presented to the Paris Academy. It contains a polynomial function of degree 7 in 7 variables, which takes only 30 different values under permutations of the variables, and which is in Kronecker's terminology eight-fold cyclic, i.e. unaltered by 8 cyclic permutations. It is clearly left invariant by a group of order $7!/30 = 168$. In general if the seven variables are the seven roots of a seventh degree polynomial equation then that equation has a property "which is more general than its solvability". This property Kronecker called its affect ('Affecte') but did not define, beyond remarking that one property of an affected equation is that all of its roots are rational functions of any three roots. He remarked that all polynomial equations of degree 7 which can be obtained by reducing the modular equation of degree 8 had this affect, and conjectured that conversely all equations of degree 7 with the affect could be solved in this way by equations derived from the theory of elliptic functions. But, he went on, "To prove this last seems indeed to be difficult; at least, I have not brought my researches, which I started for this purpose two years ago, and are concerned with the object of the present note, to conclusion." He had, he said, been able to make a direct connection between the quintic and its corresponding modular equation just as had Hermite, but he could not see that if offered any application to equations of degree 7.
On the 6th June 1858 Kronecker wrote to Hermite [1856b], enclosing a copy of his note on the equation of degree 7, remarking that it was already two years old but he had hoped to obtain more general results before publishing. However, he felt certain only that methods such as Jerrard’s would not lead to the solution of equation of higher degree, and so he had sought instead to get a better grasp of the solution of the quintic by means of modular functions. In this case he felt the crucial element was the existence of functions of 6 variables which are 6 fold cyclic, of which he gave examples leading to the solution of the quintic.

Independently of these two, Brioschi had joined in the chase, also giving in his [1858] a solution of the quintic, derived from his study of the multiplier equation rather than the modular equation. So one may say that the quintic equation was by then solved, but that the generalization to higher degrees remained obscure. It is likely that Brioschi also wrote to Hermite about this, at all events Hermite’s reply of 17 December 1858 was published in the Annali di Matematica (1859, vol II = Oeuvres, II, 83-86). Hermite considered the reduction of the modular equation from the eighth degree to the seventh, and gave two explicit forms for the solutions of the seventh degree equation that arise. He expressed the group of the equation in this way. For x an integer modulo 7, he let \(\theta(x) \equiv 2x^2 - x^5 \) (mod 7) and considered the group of substitutions (generated by)

\[
Z_x, \quad Z_{ax+b}, \quad Z_{a\theta(x+b)+c}
\]

in his notation, where a is a quadratic residue mod 7 and b and c are arbitrary. The group has \(3.7 + 3.7^2 = 168\) elements. It gave one function of 7 letters having only 30 values, and the other explicit form of the solution gave another, where in this case \(\theta(x) \equiv -2x^2 - x^5 \) (mod 7). He showed the two systems of substitutions were conjugate.
same issue of the *Annali di Matematica* carried Kronecker's observation, also in the form of a letter to Brioschi [Werke IV, 51, 52]: that the two systems of functions of 7 letters were really the same, being obtainable the one from the other by relabelling the letters.

Betti also wrote to Hermite (24 March 1859), and Hermite included the letter in one of his *Comptes Rendus* notes on modular equations for that year [Hermite Oeuvres II, 73-75]. He was led to consider the subgroup of substitutions \(\theta(K) = \frac{aK + b}{cK + d} \), \(a, b, c, d \) integers mod 7, consisting of \(K - 3b \), \(3b - aK - b \), \(aK - a \) where \(a \) and \(b \) are residues mod 7 (a group of order 24) with analogous results for the prime 11. Again he claimed that, for number-theoretic reasons, such subgroups could not be found for \(p > 11 \). The existence of these subgroups corresponded to the reducibility of the modular equation.

So one may conclude by saying that by 1859 Betti, Brioschi, Hermite, Kronecker at least had caught up with Galois. The modular equations at the primes 5, 7, and 11 were connected to groups of order \(p(p-1)(p+1) = 60, 168, 660 \) respectively. The reducibility of those equations was connected to the existence of 'large' subgroups of these groups, of index \(p \) in each case. Hermite had also shown that the general quintic was solvable by modular functions, Kronecker had conjectured that the general polynomial equation of degree 7 was not, and Betti had a proof that reducibility stopped at \(p = 11 \). Finally Jordan in his [1868] and the *Traité* (348) gave a short proof of this result of Galois and Betti 22.
5.5. *Klein*.

The previous chapter (§3) discussed how Felix Klein approached the question of solving the algebraic-solutions problem from a group-theoretic point of view. The largest group which presented itself there, the group of the icosahedron, has a significance which derives from a mysterious unity between several problems.

First, there is the striking fact that the modular equation at the prime \(p = 5 \), can be reduced from degree six to degree five.

Second, there is Hermite's solution of the general quintic equation by means of modular functions. The occurrence of modular functions, while not unexpected, seemed to Klein to require a more profound explanation than the mere analogy with the trigonometric functions offered by Hermite. Equally, as Klein said, the studies of Kronecker and Brioschi "gave no general ground why the Jacobi resolvents of degree six are the simplest rational resolvents of the equations of the fifth degree". [1879a=1922, 391].

Third, there is the invariance of certain binary forms under the appropriate groups of linear substitutions discussed in Chapter IV.

It seemed to Klein that a deeper study of the icosahedron would not only illuminate the underlying unity of these problems in elliptic function theory, the theory of equations, and invariant theory, but also suggest generalizations to modular equations of higher degree, to ternary and higher forms and to the study of function on general Riemann surfaces. He discussed the connection between the icosahedron and the quintic equation in [1875/76] and again in [1877a]. In the first paper he proceeded from the classification of the finite groups of linear
substitutions in two variables to an analysis of the covariants of the binary forms corresponding to the regular solids. In the second paper he reversed the process, at Gordan's instigation, deriving the theory of equations of the fifth degree from a study of the icosahedron. If \(\mu_1 \) and \(\mu_2 \) are projective coordinates on the Riemann sphere, then the twelve vertices of an icosahedron are specified by a binary form, \(f \), in \(\mu_1 \) and \(\mu_2 \) of degree twelve. Klein took as the fundamental problem: given \(f \) and its covariants \(H \) (the Hessian of \(f \)) and \(T \) (the Jacobian of \(f \) and \(H \)) as functions of \(\mu_1 \) and \(\mu_2 \), find \(\mu_1 \) and \(\mu_2 \) as functions of \(f \), \(H \) and \(T \). This problem will not be pursued here, beyond noticing that an inverse question is raised, and solved by Klein.

He raised the connection between the icosahedron and transformations of elliptic functions in a third paper [1878/79a] which, as he admitted overlaps considerably with Dedekind's paper discussed above. This paper began the series of papers and books on elliptic modular functions which form Klein's greatest contribution to mathematics, and in which he and his students pioneered a geometric approach to function theory allied to a 'field theoretic' treatment of the classes of analytic functions which were brought to light. The central element in this work is the geometric role of certain Galois groups, which generalize the group of the icosahedron, and are connected to appropriate Riemann surfaces (no longer necessarily the Riemann sphere). The nature of this connection was to occupy Klein deeply for several years. Klein's analysis for the role of the icosahedron in the theory of transformations of elliptic functions and modular equations will now be presented. The nature of the generalizations he made to further problems described in the next chapter.
In Section I of his [1878/79a] he drew together certain observations on elliptic functions which, he said, were not strictly new but seemed to be little known in their totality. The elliptic integral
\[I = \int \frac{dx}{\sqrt{f(x)}}, \quad f(x) = a_0 x^4 + \ldots + a_4 \]
possesses two invariants which, following Weierstrass25 he called
\[g_2 = a_0 a_4 - 4a_1 a_2 + 3a_2^2, \quad \text{and} \quad g_3 = \begin{vmatrix} a_0 & a_1 & a_2 \\ a_1 & a_2 & a_3 \\ a_2 & a_3 & a_4 \end{vmatrix} \]
The discriminant of \(g_2 \) and \(g_3 \) he denoted \(\Delta = g_2^3 - 27 g_3^2 \). For the absolute invariant he chose \(\frac{g_2^3}{g_3^2} \) and denoted it \(J \), rather than the more usual \(g_2^3 / g_3^2 \). The reason for Klein's choice was presumably that \(J \) has slightly simpler mapping properties than \(g_2^3 / g_3^2 = \frac{1}{27} \left(\frac{J-1}{J} \right) \).

\(J \) can be written in terms of the cross-ratio \(\sigma \), of the four roots of \(f(x) \), taken in some order; Klein gave
\[J = \frac{4}{27} \left(\frac{(1-\sigma+\sigma^2)^3}{\sigma^2 (1-\sigma)^2} \right), \]
observing that it is not altered by the substitution of any other value of the cross-ratio \(\sigma, \frac{1}{\sigma}, 1-\sigma, \frac{1-\sigma}{\sigma}, \frac{\sigma-1}{\sigma}, \frac{\sigma}{\sigma-1} \). It is therefore, in the terminology of Schwarz and himself, of the double pyramid type, the double pyramid in this case having 6 faces.

Klein also gave expressions for \(g_2, g_3, \Delta, \) and \(J \) in terms of the ratio, \(\omega \), of the periods \(\omega_1 \) and \(\omega_2 \), of the elliptic integral \(I \), based on some of the formulae in Jacobi's \textit{Fundamenta Nova}. In particular, setting \(q = e^{-\pi i \omega} \),
\[\omega_2^{12 \sqrt{\Delta}} = 2\pi q^{1/6} \prod (1-q^{2v})^2, \]
and in a footnote (§5n.8) Klein observed that $q^{1/6} \prod_{\nu} (1-q^{2\nu})$ was the square of Dedekind's function $\eta(\omega)$. Furthermore

$$g_2(\frac{\omega}{2\pi})^4 = \frac{1}{12} + 20 \sum \frac{n^3 q^{2n}}{1-q^{2n}},$$

and so as q tends to zero J behaves like $\frac{1}{1728q^2}$.

To describe the mapping properties of J, Klein considered it as a function of ω, itself a function of the modulus k^2 of the integral. Indeed ω maps a half plane of k^2 onto a circular arc triangle and so the whole k^2-plane onto two adjacent triangles with all angles zero in the ω plane as in Figure 2. Klein has here unknowingly rediscovered Riemann's observation on k^2 as a function of ω (Chapter II, p59) but not published until 1902; Klein refers only to Schwarz [1872, 241, 2]. Further analytic continuation of ω extends its image by successive reflections in the sides of the triangles until the whole of the upper half plane is reached. In this way the logarithmic branching of ω as a function of k^2 is displayed, the branch points being $k^2 = 0, 1, \infty$.

Now J can be described as a function of ω as follows. Each image of a k^2 half plane in the ω plane can be divided into six congruent triangles having angles $\frac{\pi}{2}, \frac{\pi}{3}, 0$ as shown (fig 3) and Klein said, each such small triangle is mapped by J onto a half plane. He called such a triangle elementary, and the corresponding domain, mapped by J onto the complex J-plane, an elementary quadrilateral (fig 4) and observed that exactly this quadrilateral figure had been introduced by Dedekind on purely arithmetic grounds (as a fundamental domain for the group $SL(2, Z)$), although he, Klein, preferred to use the well known results of elliptic
function theory. In terms of the effect of substitutions
\[\omega' = \frac{a\omega + \beta}{\gamma\omega + \delta} \]
on the figure, Klein showed there are elliptic substitutions, which he defined as those having fixed points. There are fixed points of period 3 at \(\rho = \frac{-1 + \sqrt{-3}}{2} \) and all equivalent points in \(\mathbb{H} \), where \(J \) is zero, and others of period two with a fixed point at \(i \), and all other equivalent points, where \(J = 1 \). There are parabolic substitutions, whose fixed points are by definition \(i^\infty \) and all real, rational points, where \(I \) is infinite. Finally, he called all other substitutions hyperbolic (they have two distinct fixed points on the real axis). It follows from Schwarz's general considerations of the mapping of triangular regions onto a half plane or plane that \(\omega \), as a function of \(J \), satisfies the hypergeometric equation with
\[a = \frac{1}{12}, \beta = \frac{2}{3}, \gamma = \frac{2}{3}, \]
\[J(1-J) \frac{d^2 z}{dJ^2} + \left(\frac{2}{3} - \frac{7J}{6} \right) \frac{dz}{dJ} - \frac{z}{144} = 0, \]
and Klein gave various forms for the solution of this equation and for the separate periods \(\omega_1 \) and \(\omega_2 \) as functions of \(J \). This concluded the first section of his paper.

In the second section he investigated the polynomial equations which arise from transformations of elliptic functions. For a prime \(p \), a \(p \)th order transformation between two elliptic functions is a transformation between a lattice of periods and one of its \(p+1 \) sublattices of order \(p \), and it gives rise accordingly to a polynomial equation of degree \(p+1 \) between the associated absolute invariants (\(J \) and \(J' \) in Klein's notation),
\[\phi(J, J') = 0 \]
Klein observed that these equations, first obtained by F. Müller [1867, 1872], are much simpler than the ones connecting the moduli directly, and he proposed to study them geometrically, interpreting \(J \) and \(J' \) as variables on two Riemann surfaces. He took \(J' \) so that at the value of \(\omega = \omega(J) \) the corresponding \(\omega' = \omega'(J) \) took the values
\(\omega^t = \frac{\omega}{p}, \frac{\omega+1}{p}, \ldots, \frac{\omega+(p-1)}{p}, \frac{-1}{p^0} \) (\(p > 3 \)).

\(J' \) is branched over \(J = 0, 1, \) and \(\infty \), and Klein showed that

(i) at \(J = 0 \), if \(p = 6m + 5 \) the \(p+1 \) leaves are arranged in cycles of threes, but if \(p = 6m + 1 \), \(p-1 \) leaves are arranged in cycles of three with two leaves left isolated;

(ii) at \(J = 1 \), if \(p = 4m + 3 \) the leaves are joined in pairs but if \(p = 4m + 1 \) there are two isolated leaves;

(iii) at \(J = \infty, J' = \infty \), \(p \) leaves are joined in a cycle but one leaf is isolated.

The genus of the transformation equation \(\phi \) was calculated from the formula

\[
\gamma = -p + \sum \frac{\sigma - 1}{2}
\]

where \(\sigma \) is the number of leaves cyclically interchanged at a branch point and the sum is taken over all branch points. It depends crucially on the value of \(p \text{ mod } 12 \), because of the branching behaviour, and Klein noted that for \(p = 5, 7, 13 \), \(g = 0 \);

and \(\text{ for } p = 11, 17, 19, g = 1 \); etc.

He added that separate considerations showed that \(g \) was also zero when \(p \) was 2 or 3(§8-13).

The map from \(J' \) to \(J \) given by \(\phi \) associates \(p+1 \) fundamental quadrilaterals in the \(\omega \) plane to each fundamental quadrilateral in the \(\omega' \) plane. The boundary of the new fundamental polygon is mapped onto itself, yielding a closed Riemann surface, by means of the substitutions

\(\omega' = \frac{\omega \omega' + \beta}{\omega \omega' + \delta} \) which identify points in the \(\omega \)-plane having the same \(J \) and \(J' \) values. In particular \(\omega \) and \(\omega / p \) must be equivalent, which forces \(\beta \) to be divisible by \(p \), so Klein considered those substitutions

\[
\left(\begin{array}{cc} \alpha & \beta \\ \gamma & \delta \end{array} \right) \beta \approx 0 \text{ mod } p.
\]

Two are parabolic \(\omega' = \omega + p \)

\[
\omega' = \frac{\omega}{\omega + 1}
\]

two are elliptic, and the rest hyperbolic. When these identifications
are made, the genus g of the Riemann surface so obtained can be calculated from Euler's formula $v + f - e = 2 - 2g$, and the results agree with the earlier calculation. This method also applies directly to the cases $p = 2, 3$, and even 4, as Klein showed.

When the genus is zero, J can be expressed as a rational function of a parameter τ. Klein discussed the case $p = 7$ in detail (§14) $J = \frac{\phi(\tau)}{\psi(\tau)}$, where ϕ and ψ are polynomials of degree 8. When $J = 7$ leaves are joined in a cycle and one is isolated, so ψ factorises into a simple and a sevenfold term. Let τ be so chosen that the sevenfold term vanishes at $\tau = 0$, the simple term at $\tau = \infty$, i.e., $\psi = c\tau$ for some constant c. Similarly ϕ has the form

$$(\tau^2 + a\tau + b)(\tau^2 + A\tau + B)^3$$

β is an arbitrary non-zero constant, Klein chose $\beta = 29$. (\beta cannot be zero, for then ϕ and ψ would have a common factor) Now $J - 1 = \frac{\phi - \psi}{\psi}$ should have four double zeros, arising from the nature of the branch point 1, so $\phi - \psi$ is the square of a quartic expression.

This quartic must, furthermore, be a simple factor of the functional determinant $\left| \begin{array}{cc} \phi & \psi \\ \frac{d\phi}{d\tau} & \frac{d\psi}{d\tau} \end{array} \right|$. After a little work this leads to equations

for $a, A,$, and B, and Klein concluded that

$\phi = (\tau^2 + 13\tau + 49)(\tau^2 + 5\tau + 1)^3$

$\phi - \psi = (\tau^4 + 14\tau^3 + 63\tau^2 + 70\tau - 7)^2$

$\psi = 1728\tau$.

J' is likewise $\frac{\phi(\tau')}{\psi(\tau')}$ for some τ', and Klein asked for the relation between τ and τ'. It must, he said, be linear, $\tau' = \frac{a\tau + b}{c\tau + d}$, since τ and τ' are single-valued functions on the sphere, and of period 2 since repeating the transformation takes one from J' to J and τ' to τ.

Indeed $\tau\tau' = C$ for some constant C, since $\tau = 0$ or ∞ at the two points
where $J = \infty$ but these points are interchanged in the interchange of J and J'. Finally in fact $\tau \tau' = 49$ for, at the zeros of $\tau^2 + 13\tau + 49$, both J and J' are zero so $\tau^2 \tau' + 13\tau' + 49 = 0$. So $\tau \tau' = 49$.

When $p = 5$ Klein found (§15) that:

$$J: J - 1: 1 = (\tau^2 - 10\tau + 5): (\tau^2 - 22\tau + 125)(\tau^2 - 4\tau + 1)^2: -1728\tau,$$

with J' being a similar function of τ, and $\tau \tau' = 125$.

These considerations formed the basis of Klein's general approach to the question of modular equations. In sections III and IV of the paper he turned to consider the significance of the icosahedral equation. In his terminology the Galois resolvent of an algebraic equation is a polynomial in the roots which is altered by every element of the group of the equation. It seemed to Klein to be a remarkable fact that all Galois resolvents containing a parameter and of genus zero could not only be determined a priori but indeed had also been determined, and were precisely those equations which possessed a group of linear self-transformations. The resolvents were, in short, either of the cyclic, dihedral, tetrahedral, octahedral or icosahedral type. If the parameter is J, then the way the resolvent equation branched and the requirement that the genus be zero restricts the resolvents which can be connected to modular functions to be only of the tetrahedral, octahedral, or icosahedral types. On the other hand the Galois group of the modular (transformation) equation at the prime $n(> 2)$ is of order $\frac{1}{2}n(n^2 - 1)$. J' is branched over $J = 0, 1, \infty$ in 3's, 2's, and n's respectively, so the genus is $p = \frac{(n-3)(n-5)(n+2)}{24}$ which is zero only when $n = 3$ or 5. It is also zero for a similar reason when $n = 2$ or 4, but for no other values.

Klein said (§4): "At $n = 3, 4, 5$ we have the same branching
which the tetrahedral, octahedral, and icosahedral equations display... These equations are thus the simplest forms which one can give the Galois resolvents of the transformations for \(n = 3, 4, 5\). In this way the significance which above all the icosahedral equation, to which my attention in this work is particularly directed, possesses for the theory of transformations, is made as sharply recognisable as one can." (emphasis in original).

In this spirit, Klein observed, the equation for the cross ratio \(\sigma = k^2\) of the roots of \((1 - x^2)(1 - k^2x^2)\) appears as the first of a series of equations, for \(J = \frac{4}{27}\frac{(1-\sigma+\sigma^2)^3}{\sigma^2(1-\sigma^2)}\) is obtained from the equation \(\mu^3 + \mu^{-3} = \frac{2J-4}{J}\) by the linear substitution \(\mu = \frac{\sigma + \alpha}{\sigma + \alpha^2}, \alpha = e^{2\pi i/3}\).

Since the genus of \(J'\) over \(J\) is zero the Riemann surface for \(J'\) is a sphere branched over the complex \(J\)-sphere. The domains mapping onto a hemisphere are triangles (since there are three branch points) forming the familiar nets of the regular solids.

So in Klein's interpretation the modular equation at the prime 5 is naturally connected with the quintic, since in this case the Riemann surface of \(J'\) over \(J\) is a sphere in which the faces of a naturally inscribed icosahedron are mapped onto the upper and lower half planes.

In the fourth and final section of the paper Klein explained the connection with the solution of the quintic equation by modular functions. He did not regard the occurrence of \(A_5\) in the Galois group of the equations as the complete answer but sought to illuminate
the question geometrically in a way which will not be discussed here except to say that it studied conditions on the roots \(\alpha_1, \ldots, \alpha_5 \) of a quintic such as \(\sum \alpha_i = 0, \sum \alpha_i \alpha_j = 0 \) in terms of line geometry.

Klein devoted a short second paper in the *Mathematische Annalen* [1879] to the question of the reduction of the modular equation. In the cases \(p = 5, 7, 11 \) the genus of the reduced equation is zero so \(J \) is a rational function of degree 5, 7 or 11 which Klein proceeded to calculate. Of interest here is the geometric and group theoretic approach Klein took to these problems.

He began, following Betti [1853], with the group which I shall denote as \(\Gamma(p) \) of all 2 \(\times \) 2 integer transformations \(\omega' = \frac{c \omega + B}{\gamma \omega + \delta} \) of determinant +1 reduced \(\bmod p \) (\(p = 5, 7, \text{ or } 11 \)), which has order 60, 168, or 660 respectively, and sought subgroups \(H_p \) of index \(p \). These he listed explicitly. The (coset) representatives for each equivalence class of elements he took as

\[
\omega, \omega + 1, \ldots, \omega + (p - 1).
\]

He then let \(y \) be a function of \(\omega \) invariant under \(H_p \) but not \(G \), so \(y \) takes \(p \) different values for each value of \(J \), the absolute invariant \(y(\omega), y(\omega + 1), \ldots, y(\omega + p - 1) \), and he regarded \(y \) as a \(p \)-leaved Riemann surface over the \(J \)-plane. The branching of \(y \) over \(J \) was obtained as in the previous paper, but the fundamental polygon is now made up of \(p \) elementary quadrilaterals, not \(p + 1 \). The explicit form of \(J \) as a rational function was only calculated for \(p = 5 \) and 7. For example, when \(p = 5 \), the branch point \(J = \infty \) is a cycle of all 5 leaves, \(J = 1 \) 2 cycles of 3, \(J = 0 \) a cycle of 3, so the genus is 0.
Accordingly \(J \) is a rational function of \(y \), \(J = \frac{\phi(y)}{\psi(y)} \), \(\phi \) and \(\psi \) will be a degree 5 and from the branching behaviour \(\phi(y) \) contains a term \((y - 3)^3 \), \(\phi(y) - 1 \) a square of a quadratic term, and so indeed one is lead to an explicit relationship between \(y \) and \(J \).

Klein did not show that it is only in these cases that the modular equation is reducible by showing that it is only then that subgroups of \(\Gamma(p) \) exist of index \(p \). Rather, he showed that in these cases it is quite easy to produce equations of degree 5 and 7 of the kind already studied by Brioschi and Hermite.

In the next chapter it will be seen that when Klein was able to extend his methods to deal with the case of higher genera, he was able to show that the modular equation of degree 8 had a certain Galois group of order 168, but when reduced to an equation of degree 7 it was only a special case of such equations. So he solved Kronecker's conjecture affirmatively: equations of degree 7 with this Galois group are solvable by means of elliptic functions; and he showed that other equations of degree 7 are not.
CHAPTER VI. SOME ALGEBRAIC CURVES.

This chapter discusses a topic which was studied from various points of view throughout the nineteenth century and which presented itself in such different guises as: the 28 bi-tangents to a quartic curve, the study of a Riemann surface of genus 3 and its group of automorphisms, and the reduction of the modular equation of degree 8. These studies, which began separately, were drawn together by Klein in 1878 and proved crucial to his discovery of automorphic functions.

It is only possible to sketch the early developments of each part of this topic in the space available; I hope to return to the matter more fully elsewhere. This treatment is divided schematically into three parts: the first on algebraic curves, particularly quartics; the second on Riemann surfaces; the third on the modular equation.

6.1 Algebraic curves, particularly quartics.

1) An algebraic plane curve is, by definition, the locus in the plane corresponding to a polynomial equation of some degree, \(n: f(x, y) = 0 \). For example \(f(x, y) = x^3y + y^3 + x = 0 \) represents a quartic. The equation may be written in homogeneous coordinates \((x; y; z)\) by defining \(F(x; y; z) = z^nf(z, z) \), when the curve is considered to lie in the projective plane. The example above becomes \(F(x; y; z) = x^3y + y^3z + z^3x = 0 \) in homogeneous form. In nineteenth century usage an algebraic curve of degree \(n \) was often called a \(C_n \).

The study of higher plane curves, as \(C_n \)'s were called when \(n > 2 \), goes back at least as far as Newton, who in 1667-68 made a thorough study of cubics Newton(\[M. P. II, 10-89\], but for present purposes a start can be made with Plücker, in his System der analytischen Geometrie [1834,
showed that every C_n in the projective plane has in general $3n(n-2)$ inflection points. By 'in general' he meant that the C_n has no multiple points or cusps. His argument was that at the inflection points of a curve $f(x, y) = 0$, a line $x = Ky + y$ has three-fold intersection with the curve. So $\frac{d^2}{dy^2} f(Ky + y, y) = 0$, ie $\frac{2^2 f}{\partial y^2} K^2 + 2x \frac{\partial^2 f}{\partial x \partial y} + \frac{2^2 f}{\partial x^2} = 0,$ where K is homogeneous of order $n-1$, since it satisfies $\frac{\partial f}{\partial y} K + \frac{\partial f}{\partial x} = 0$ (any three-fold intersection is automatically two-fold). Accordingly the finite inflection points lie at the intersection of $f(x, y) = 0$, of degree n, and $\frac{d^2 f}{dy^2} = 0$ of degree $3n-4$. There are, he showed, a further $2n$ inflection points at infinity, so there are $3n(n-2)$ inflection points altogether. He also showed (p. 283) that the 9 inflection points of a cubic curve lie on four systems of three lines, each line containing three points, and pointed out that, as a result, only three of the inflection points can be real.

Some of these theorems were subsequently proved again in Hesse [1844] in a way which enables the geometric significance of the Hessian to be explained; it was in this context indeed that Hesse introduced it. Adjacent normals to a curve will meet at the appropriate centre of curvature, and Hesse argued, as had Plücker, that at a point of inflection the adjacent normals will be parallel, and the corresponding radius of curvature infinite. Its reciprocal, the mean curvature, is therefore zero, but this just is $\frac{\partial^2 f}{\partial x^2} \frac{\partial^2 f}{\partial y^2} - \left(\frac{\partial^2 f}{\partial x \partial y}\right)^2$. Hesse introduced homogeneous coordinates x_1, x_2, x_3 to simplify the treatment of the points "at infinity" (p. 131), and so found that the Hessian $|\frac{\partial^2 f}{\partial x_i \partial x_j}|$ was of degree $3(n-2)$, if f is of degree n, and the Hessian of f meets f in its $3n(n-2)$ inflection points.

Poncelet had suggested in his [1832] that a C_n could have only finitely many bitangents (lines which touch the curve in two distinct places). It seems that this theorem was first proved by Jacobi [1850] and the number found to be $\frac{1}{2} n(n-2)(n^2-9)$ in general. This calculation solved an intriguing problem raised by Plücker in his Theorie der algebraischen Curven [1839, Ch 4],
as Jacobi explained. If \(F(x;y;z) = 0 \) is the equation of a curve, \(C_n \), of degree \(n \), and \((x_0;y_0;z_0) = p \) is a point on the curve, then the tangent to the curve at that point has the equation

\[
\frac{\partial F}{\partial x}(p) + y \frac{\partial F}{\partial y}(p) + z \frac{\partial F}{\partial z}(p) = 0.
\]

Conversely, a tangent through the point \((x_1;y_1;z_1)\) touches the curve at a point \(p \) which satisfies the same equation, \(x_1 \frac{\partial F}{\partial x}(p) + y_1 \frac{\partial F}{\partial y}(p) + z_1 \frac{\partial F}{\partial z}(p) = 0 \).

Given \(F \) and \((x_1;y_1;z_1)\), the locus of points \(p \) satisfying this equation is called the first polar of \(F \) with respect to the given point; it is a curve of degree \(n-1 \). As such it meets \(C_n \) in \(n(n-1) \) points, so one immediately obtains the result that through any given point there are in general \(n(n-1) \) tangents to a given curve. Following Möbius and Poncelet, nineteenth century geometers invoked a principle of duality, so that the tangents were regarded as points in a dual projective space. Algebraically this can be done by regarding projective space as made up of lines and interpreting each equation as determining an envelope. Geometrically this can be done by picking a circle in the plane and replacing each line by its polar with respect to the circle. Either way, the \(n(n-1) \) tangents become \(n(n-1) \) points on the dual curve, to be defined, and because the tangents all passed through the point \((x_1;y_1;z_1)\) the \(n(n-1) \) points lie on a line (the dual of \(x_1;y_1;z_1 \)). So the dual curve will have degree \(n(n-1) \). To obtain it one makes the original point \((x_1;y_1;z_1)\) run along the curve, and considers the tangents at each point; their polars define the dual curve. Plücker's paradox is this: plainly the dual curve of the dual curve is the original curve. Yet the degree of the dual to a \(C_n \) is \(n(n-1) \), so the degree of the dual of the dual is \(n(n-1)[(n(n-1)-1)] \), which is not \(n \) unless \(n=2 \).

Plücker's solution rested on two observations. First, a tangent to a curve is simply a line meeting it in two coincident points, so any line through a double point is a tangent, and the first polar therefore passes through the double point. Consequently, the number of lines through a given point which are truly tangent to a curve is diminished by 2 for each double point, for if the curve is regarded as:

\[\text{Fig. 6.1} \]
there are two spurious tangents: and Second, if the original curve has a cusp then the first polar not only passes through the cusp but is tangent there. So each inflection point reduces the degree of the dual by 3. Plücker argued accordingly that the dual curve should have α double points and β cusps, where

$$2\alpha + 3\beta = n(n-1)[n(n-1)-1] - n = n^2 - 2.$$

Since the dual of a double point is a bitangent and of a cusp is an inflection point, Plücker could also speak of the α bitangent points and β inflection points of the original curve. He then stated that

$$\alpha = \frac{1}{2}n(n-2)(n^2 - 9),$$

$$\beta = 3n(n-2),$$

arguing that β was already known to be $3n(n-2)$. These formulae connecting the degree of the dual curve with the degree of the old curve and the number of its double points and cusps are nowadays known as Plücker's formulae.

Jacobi regarded the formula for α as more of a conjecture in need of a proof, and proved it directly using the condition that the equation which a line must satisfy in order to be a tangent (to the given C_n) has a repeated root when the line is a bitangent. This condition yields an equation of degree $(n-2)(n^2 - 9)$ and hence a curve meeting the original C_n in $n(n-2)(n^2 - 9)$ points, the points of contact of $\binom{n(n-2)(n^2 - 9)}{4}$ bitangents. So, for example, there are 28 bitangents to a quartic curve, a result obtained earlier by Hesse [1848, §3].

Plücker had made a study of the bitangents to a quartic in his [1839, Chapter V]. If two of the bitangents are chosen as axes the equation of the curve may be written in the form $pqrs - \mu n_2^2 = 0$, where p, q, r, s are linear terms, Ω_2 is a quadratic term, and μ is a constant. Plücker claimed that this reduction may be performed in $28 \cdot 27 \cdot 26 = 819$ ways, but went on to deduce incorrectly the number of conics meeting the quartic at the eight bitangent points associated to p, q, r, s. He correctly established that all 28 bitangents may be real [1839, §115] by considering deformations of the curve

$$\Omega_4 = (y^2 - x^2)(x - 1)(x - \frac{3}{2}) - 2(y^2 - x(x - 2))^2 = 0$$

to $\Omega_4 \neq 0$.
The curve made up of the 4 meniscas has 28 real bitangents. He also showed that quartics may be found having 16 or 8 real bitangents but no other values (greater than 8) (§122).

Jacob Steiner took up the study of quartics in 1848. He was an enthusiast for synthetic methods; Kline [1972, 836] records that he threatened to stop submitting articles to Crelle's Journal if his friend Crelle continued to publish Plücker's analytic papers. He also preferred to withhold the proofs of his theorems, leaving them as challenges for his colleagues. On this account, Cremona, who responded particularly to Steiner's work on cubic surfaces, called him "this Celebrated Sphinx".

In his papers [1848] and [1852] Steiner considered the interrelationships of the 28 bitangents, and stated several conclusions. These include the following two:

The $\frac{1}{2}(28.27) = 378$ pairs of bitangents may be grouped into 63 groupings ("Gruppen") of 6 distinct pairs so that the 6 intersection points of each pair lie on a conic; and

The eight contact points of any two pairs of bitangents in the same grouping lie on a conic, so there are $\frac{1}{2} \cdot 6.5 = 15$ conics associated to each grouping. There are $\frac{1}{3} \cdot 63.15 = 315$ such conics altogether, since each is counted 3 times. (4 bitangents yield 3 sets of two pairs.)
The geometry of plane curves is very rich. They may be touched not only by lines but also by curves of various degrees. Hesse took up the crucial notion of systems of curves touching a given \(C_n \) in his paper \[1855a\].

He defined two \(C_{n-1} \)'s which touch a given \(C_n \) to be in the same system if their contact points lay on a common \(C_{n-1} \). To study them he showed, by counting constants, that the equation for a \(C_n \) can always be written as an \(n \times n \) symmetric determinant

\[
\Delta = \left| u_{ij} \right| = 0,
\]

where \(u_{ij} = ax_i + by_j + c_{ij} \). In this form it satisfies an equation

\[
\Delta U = ac - b^2,
\]

where \(a, b, \) and \(c \) are the \((n+1) \times (n+1)\) determinants

\[
a = \begin{pmatrix} \Delta & a^T \\ a & 0 \end{pmatrix}, \quad b = \begin{pmatrix} \Delta & y^T \\ y & 0 \end{pmatrix}, \quad c = \begin{pmatrix} \Delta & a \\ y & 0 \end{pmatrix},
\]

\(\alpha = (\alpha_1, \ldots, \alpha_n), \quad \gamma = (\gamma_1, \ldots, \gamma_n) \), and \(U \) is a homogeneous quadratic in the \(\alpha \)'s and \(\gamma \)'s and of degree \(n-2 \) in the \(u \)'s.

The separate equations \(U = 0, a = 0, b = 0, \) and \(c = 0 \) represent plane curves of degrees \(n-2, n-1, n-1, \) and \(n-1 \) respectively. Hesse showed that this implied that the curves \(a = 0 \) and \(c = 0 \) in fact touch \(\Delta = 0 \). For, when \(\Delta = 0 \) and \(a = 0 \), \(b \) must equal \(0 \), so \(b \) passes through the intersection points of \(\Delta = 0 \) and \(a = 0 \). Now the equation for the curve \(b = 0 \) will contain \(\frac{1}{2}n(n+1) \) constants, since the curve is of degree \(n-1 \), and of these \(\frac{1}{2}n(n-1) \) will be determined by insisting \(b \) passes through half of the intersection points of \(\Delta = 0 \) and \(a = 0 \). This only leaves \(n \) constants, and \(b \) contains \(n \) arbitrary constants \(\gamma_1, \ldots, \gamma_n \) which appear neither in \(\Delta \) nor \(a \). So \(b \) cannot pass through all the intersection points of \(\Delta = 0 \) and \(a = 0 \), unless they coincide in pairs. So in fact \(a = 0 \) is a \(C_{n-1} \) touching the \(C_n \) given by \(\Delta = 0 \). Likewise, \(c = 0 \) touches \(\Delta = 0 \), and the curves \(a = 0 \) and \(c = 0 \) are therefore \(C_{n-1} \)'s in the same system.
The curve \(a = 0 \) represents a system of \(C_{n-1} \)'s which depends on \(n-1 \) parameters (the ratios \(a_1 : a_2 : \ldots : a_n \)). Essentially different systems are obtained if the equation of the \(C_n \) is replaced by a different vanishing determinant, not obtained from \(\Delta \) by a linear change of variables. Hesse claims (§8) there were 36 such determinants when \(n = 4 \), so 36 systems of cubics touching the quartic in 6 different points, but deferred the proof until a later paper (see below, p. 220).

For these curves the six points of contact do not lie on a conic, but Hesse was able to show that the equation \(\Delta = ac - b^2 \) can be interpreted in 28 essentially different ways in which \(\Delta = 0 \) represents a quartic, \(a = 0 \) a bitangent, \(b = 0 \) a conic, and \(c = 0 \) a cubic, and so he found 28 systems of cubics whose contact points do lie in 6's on conics (§9), and showed that any conic through two bitangent points meets the \(C_4 \) again in 6 points which can be taken as the contact points of the \(C_4 \) and a \(C_3 \). He also found there are 63 systems of conics which touch a given \(C_4 \) (§10).

To discuss the bitangents themselves Hesse, in his [1855b], passed to the consideration of figures in space, observing that eight points in general position in space give rise to \(\frac{1}{2} \cdot 8 \cdot 7 = 28 \) lines. He gave a thorough treatment of the geometry of a plane quartic in terms of the geometry of a related sextic curve in space, which it will be interesting to summarize.

He began by giving a generalization due to Chasles of the following theorem about a family of conics in the plane:

Given a line, and the family of conics through four given points, the locus of the pole of the line with respect to the conics is itself a conic section, and it passes through the three diagonal points of the
given quadrilateral.

The last observation follows immediately from the observation that each diagonal point is the vertex of a line pair through the given four points, and the pole of a line with respect to a line pair is the vertex of the line pair.

Chasles' generalization of this theorem to space is [Apercu historique, note 33]: given a plane, and the (one parameter) family of quadric surfaces through eight given points, the locus of the pole of the plane with respect to the quadrics is a space curve of the third order. The curve is not the complete intersection of two surfaces; but there is a line meeting it in two points such that the curve and line together are the complete intersection of two quadrics. The curve itself passes through the vertices of the four cones of the system of quadrics through the eight given points.

However, as Hesse observed, another generalization of the theorem is possible, to the family of quadrics through only seven points. The locus of the poles of a given plane is now a cubic surface in space. It will be helpful to introduce some notation: let σ denote the space cubic, Σ the cubic surface. There is a system of cones through the seven given points whose vertices are the poles of the given plane with respect to the cones; the locus of vertices of these cones ("die Curve der Kegelspitzen") is a space sextic which is independent of the choice of plane and will be denoted by κ. Consequently any two Σ's meet in κ and a (variable) cubic curve in space. The curve κ corresponds to a general plane quartic, for, let F_1, F_2, F_3 be any three quadrics through the seven given points, then any other quadric through those points is of the form
\[\lambda_1 F_1 + \lambda_2 F_2 + \lambda_3 F_3. \]

Let \(2F = 0 \) be the equation of a cone\(^6\) with its vertex at \((x_1; x_2; x_3; x_4)\), then
\[
2F = \Psi_1 x_1^2 + \Psi_2 x_2^2 + \Psi_3 x_3^2 + \Psi_4 x_4^2 + 2\lambda_{12} x_1 x_2 + 2\lambda_{13} x_1 x_3 + 2\lambda_{14} x_1 x_4 + 2\lambda_{23} x_2 x_3 + 2\lambda_{24} x_2 x_4 + 2\lambda_{34} x_3 x_4,
\]
in which the \(\Psi \)’s are linear, homogeneous terms in \(\lambda_1, \lambda_2, \lambda_3 \).

Eliminating the \(x_i \) from this expression gives the equation which must be satisfied by \(\lambda_1, \lambda_2, \lambda_3 \) if \(2F = \lambda_1 F_1 + \lambda_2 F_2 + \lambda_3 F_3 \):

\[\Delta = \det (u_{ij}) = 0, \quad u_{ij} = \frac{\partial^2 F}{\partial x_i \partial x_j} \quad [1855b \text{ eq. 10}]. \]

\(\Delta \) is a quartic in \(\lambda_1, \lambda_2, \lambda_3 \), and to any point \((\lambda_1, \lambda_2, \lambda_3)\) on it there corresponds a point on \(\kappa \), namely the vertex of the cone \(2F = 0 \), and vice versa. By counting coefficients one sees the \(\Delta \) can represent an arbitrary quartic.

Hesse next considered the elementary relationships between \(\kappa \) and \(\Delta \). The crucial result is that a line meets the quartic, \(\Delta \), in four points, that correspond to four points on \(\kappa \) which are the vertices of 4 cones meeting in a common curve. The converse is also true: the four vertices of four cones which meet in a common curve give rise to four collinear points on \(\Delta \). So, given two lines and eight points on \(\Delta \) he obtained eight points on \(\kappa \) which, he showed, could be taken as the eight intersection points of three quadrics (§3). This is an early indication of the intimate connection between sets of seven and sets of eight objects which forms an important unifying thread in the topics discussed in this chapter\(^7\). A set of twelve points on \(\kappa \) is obtained by letting it meet a quadric \(F \). These
correspond to the twelve intersection points of Δ and a cubic curve, and the converse also holds 8 ($\S 4$). Furthermore, three quadrics meet in pairs in four space curves, through each of which pass three cones. The 12 vertices so obtained lie on a quadric surface ($\S 4$). The 8 vertices obtained earlier can be more generally regarded as the intersection of Δ with a conic, and the eight corresponding points on κ still form a system of eight points common to three quadric surfaces ($\S 5$).

In the next three sections Hesse considered systems of plane cubics with respect to the plane quartic Δ. A cubic can be found touching Δ in six points. For, if the quadric surface mentioned above (in $\S 4$) is a plane counted twice (i.e. its equation is a perfect square) it gives rise to a cubic curve meeting Δ in 6 points each counted twice, i.e. a tangent cubic. The family of such surfaces depends on the three ratios of the coefficients of x_1, x_2, x_3, x_4, so three of the six contact points can be chosen arbitrarily and these determine the rest. Furthermore, these six points do not lie on a conic ($\S 6$), for if they did the conic would meet Δ in two more points, and the eight corresponding points on κ would be the intersection points of three quadrics. But six of them lie in a plane by construction, which is impossible.

Let C_3 be a cubic tangent to Δ at 6 points. Any other cubic through those 6 points meets Δ in 6 more points, which can be taken as the 6 points in which another cubic of the same system as C_3 touches Δ. So 12 points on Δ which are the points of tangency of Δ and two cubics of the same system lie on a cubic.
As for the set of 12 points on K in which K meets a given quadric, F, they correspond to the 12 points on Λ which are the points at which the tangents from a point P_F to Λ touch Λ, where P_F is the point determined by F. (Recall that $F = \lambda_1 F_1 + \lambda_2 F_2 + \lambda_3 F_3$; P_F is $(\lambda_1, \lambda_2, \lambda_3)$.)

Hesse was now able to introduce the bitangents to Λ. Starting from the eight intersection points of three quadrics in space $\{a_1, \ldots, a_8\}$, he showed that a line joining any two of these points cuts K in two points which correspond to bitangent points on Λ. So the 28 bitangents correspond to 28 lines in space. These 28 lines through 8 points have various pleasing inter-relationships which formed the subject to section 9-12 and 15-16 of Hesse's paper, and which it will be convenient to list.

Three bitangent pairs give rise to 6 lines in space. If these three pairs of lines are the opposite edges of a tetrahedron then the four contact points of one pair and the four intersection points of the remaining two pairs lie on a conic ($\S9$).

Four bitangents give rise to 8 points on Λ, which lie on a conic if the four corresponding lines in space either form a quadrilateral ($\S9$) or join the eight points a_1, \ldots, a_8 in pairs ($\S12$).

If four points on Λ are the points at which a conic, C_2, touches Λ then any other conic through those points meets Λ in four more points which may also be taken as the points in which Λ touches a conic, C_2', say. C_2 and C_2' belong to the same system of conics touching Λ ($\S10$).

Three bitangents to Λ whose corresponding lines in space form a triangle or meet in a common point give rise to 6 bitangent points ($\S10, 12$).
The 12 contact points of 6 bitangents lie on a cubic if the corresponding lines in space form either two disjoint triangles or two triangles with at most a point in common (§10).

In sections 15 and 16 Hesse counted the configurations of each kind which can arise, and found:

i) There are 2016 triples of bitangents whose 6 points do not lie on a conic, and 1260 triples whose 6 points do.

ii) There are 315 quadruples of bitangents whose 8 points lie on a conic.

iii) There are 1008 + 5040 sextuples of bitangents whose 12 points lie on a cubic, of which the 1008 arrangements contain no tuples whose 6 points lie on a conic. These occur when the corresponding lines in space form one of the following configurations:

\[
\begin{align*}
\triangle & \quad \triangle \\
(280 \text{ ways}) & \\
\end{align*}
\]

\[
\begin{align*}
\triangle & \quad / \\
(168) & \\
\end{align*}
\]

\[
\begin{align*}
\leftarrow & \quad \rightarrow \\
(560) & \\
\end{align*}
\]

Figs 6.3

The 5040 (= 7!) arrangements each yield 12 points lying on 4 conics, each pair of conics cutting Δ in 2 more bitangent pairs, so producing 4 more bitangents and 8 points lying on a conic. The corresponding arrangements of lines in space are

\[
\begin{align*}
\triangle & \quad \left\{ \begin{array}{c} \triangle \\
(840) & \\
\end{array} \right. \\
\end{align*}
\]

\[
\begin{align*}
\sum & \quad / \\
(1680) & \\
\end{align*}
\]

\[
\begin{align*}
\left(\begin{array}{c} \triangle \\
(2520) & \end{array} \right. \\
\end{align*}
\]

Figs 6.4

There remains the question of how many different quadric surfaces F can be used to represent a given quartic curve. The equation for F can be altered by a linear change of variable, but this is uninteresting.
Hesse showed that there are 36 different \(F \) (i.e. unrelated by linear transformations) for which \(\Delta = 0 \) represents the same quartic \(\Delta \).

These are obtained by dividing the eight points \(a_1, \ldots, a_8 \) up into two sets of 4, which can be done in \(\frac{8 \cdot 7 \cdot 6 \cdot 5}{4! \cdot 2!} = 35 \) ways; since each division will produce a new \(F \) there are \(35 + 1 = 36 \) \(F \)'s in all. To produce a new \(F \), Hesse observed that the equation for \(F \) can always be written in the form

\[F = a_{12}x_1x_2 + a_{13}x_1x_3 + a_{14}x_1x_4 + a_{23}a_{24}a_3 + a_{24}x_2x_4 + a_{34}x_3x_4 \]

when the determinant of \(F \) is

\[\nabla = a_{12}^2a_{34}^2 + a_{23}^2a_{14}^2 + a_{13}^2a_{24}^2 - 2a_{23}a_{14}a_{13}a_{24} - 2a_{13}a_{24}a_{12}a_{34} - a_{12}a_{34}a_{23}a_{14}. \]

\(\nabla = 0 \) precisely when \(\Delta = 0 \), of course, but \(\nabla \) is symmetric: writing 12 for 34, 13 for 24, and 14 for 23 simultaneously leaves \(\nabla \) unchanged, but produces a new \(F \), say \(F' = a_{34}x_1x_2 + a_{24}x_1x_3 + a_{23}x_1x_4 + a_{14}x_2x_3 + a_{13}x_2x_4 + a_{12}x_3x_4 \) which is not a linear transformation of \(F \).

Just as \(F \) passes through the eight intersection points of the quadric surfaces

\[\frac{\partial F}{\partial \lambda_1} = 0, \quad \frac{\partial F}{\partial \lambda_2} = 0, \quad \frac{\partial F}{\partial \lambda_3} = 0, \]

so \(F' \) passes through the intersections of

\[\frac{\partial F'}{\partial \lambda_1} = 0, \quad \frac{\partial F'}{\partial \lambda_2} = 0, \quad \frac{\partial F'}{\partial \lambda_3} = 0, \]

which may be denoted \(a_1', \ldots, a_8' \).

It is necessary that the lines joining \(a_1', \ldots, a_4' \) be some permutation of the lines joining \(a_1, \ldots, a_4 \), since the bitangents of the curve \(\Delta = 0 \) correspond to lines joining the \(a_i' \)'s, and \(\nabla = 0 \) is the same curve as \(\Delta = 0 \). In this way 6 of the lines in the system joining the \(a_i' \)'s are mapped onto 6 of the \(a_i \)' system, in such a way as to
map a tetrahedron onto another tetrahedron. Indeed, the assignment

\[
\begin{bmatrix}
12 & 13 & 14 & 23 & 24 & 34 \\
3'4' & 2'4' & 2'3' & 1'4' & 1'3' & 1'2'
\end{bmatrix}
\]

The 16 lines joining the vertices of the tetrahedron \{1,2,3,4\} to the tetrahedron \{5,6,7,8\} give rise to 16 bitangents to the curve \(\Pi\) which, Hesse showed, have the same equations whether they are derived from \(F\) or \(F'\), so the 16 edges \(a_i a_j\), \(i \leq i \leq 4, 5 \leq j \leq 8\) are transformed into \(a_i'a_j'\). Finally he showed that, as for the tetrahedron \{5,6,7,8\}, its edges are likewise mapped onto those of \{5',6',7',8'\} according to the assignment

\[
\begin{bmatrix}
56 & 57 & 58 & 67 & 68 & 78 \\
7'8' & 6'8' & 6'7' & 5'8' & 5'7' & 5'6'
\end{bmatrix}
\]

Since each division of the eight points into two sets of four produces exactly one new \(F\) there are therefore 36 quadric surfaces through 8 given points which give rise to the same quartic curve. Hesse listed the corresponding arrangement of bitangents in a table at the end of §114. There are therefore 36 systems of cubics associated to a given quartic, whose contact points do not lie on a conic, as Hesse had claimed in the earlier paper.

The study of the 28 bitangents brought to light a great deal of rich mathematics which even the complexity of this survey can scarcely suggest. Their intimate connection with the 27 lines on a cubic surface was first made plain by Geiser \(^{10}\) [1869], and the group-theoretic aspects of this connection were explored by Jordan in his \textit{Traité} [1870, 329-333]. These configurations of special points on a plane quartic were of much interest in the 1850's and 1860's, and it was possible to look forward to a rewarding study of higher plane curves if only suitably powerful enough techniques could be developed. The next crucial development was to
come from Riemannian function theory, with the introduction of the generalization of elliptic functions (which are appropriate to cubic equations) to Abelian functions.

The studies of Hesse and Steiner showed how intricate the geometry of plane curves could be. At about the same time, Riemann was developing the function theory of such curves along the lines of his Inaugural dissertation. The basic problem in the subject was to understand the integral of a rational function \(R(x, y) \),

\[
\int_{0}^{z} R(x, y) \, dx,
\]
on an algebraic curve \(F(x, y) = 0 \). Jacobi had shown [1834] that if \(F \) is a non-singular curve of degree greater than three then there will be more than 2 periods to such an integral, and so it does not define an analytic function of its upper end-point. In the simplest case, where \(F(x, y) = y^2 - f(x) \), and \(f \) is of degree 5 or 6, he had suggested taking pairs of integrals and pairs of end-points together. This approach was successfully carried out by Göpel [1847] and Rosenhain [1851] independently and was then generalized magnificently by Weierstrass [1853, 1856] to the case \(F(x, y) = y^2 - R(x) = 0 \), \(R = (a_0 - x) \ldots (a_{2n} - x) \) being of degree \(2n+1 \), and the \(a_i \)'s being constant. By analogy with the elliptic integrals \(\int \frac{dx}{\sqrt{\text{cubic}}} \), this case was called hyperelliptic; Weierstrass's analysis of it did much to secure his invitation to Berlin. His method was quite novel: he used Abel's theorem and a system of simultaneous differential equations to study \(n \) functions each of \(n \) variables obtained by inverting sums of \(n \) integrals, ie

\[
U_i = \int_{a_1}^{x_1} \phi_1(x) \, dx + \int_{a_3}^{x_3} \phi_3(x) \, dx + \ldots + \int_{a_{2n-1}}^{x_{2n-1}} \phi_{2n-1}(x) \, dx,
\]

where

\[
\phi_i(x) = \frac{(x-a_1)(x-a_2)\ldots(x-a_i)}{2(x-a_{2i+1})^{2n}/R(x)} \quad , \quad 1 \leq i \leq n
\]

The integrands only vary from row to row. As Weierstrass showed, the special case of elliptic functions looks like this in
his approach. The integral

\[u = \int_{0}^{x} \frac{dx}{\sqrt{(1 - x^2)(1 - k^2 x^2)}} \]

defines the function \(x = \text{sn}(u) \), which satisfies the differential equation

\[\frac{d^2 \log x}{du^2} = k^2 x^2 - \frac{1}{x^2}. \]

Conversely, starting from the differential equation, the substitution \(x = \frac{P_1}{P} \) results in the equation

\[\frac{d^2 \log P_1}{du^2} - \frac{d^2 \log P}{du^2} = k^2 \frac{P^2}{P_1^2} - \frac{p^2}{p_1^2}, \]

which he factorized to give two equivalent equations

\[\frac{d^2 \log P_1}{du^2} = -\frac{p^2}{P_1^2}, \quad \frac{d^2 \log P}{du^2} = -\frac{k^2 p^2}{p^2}. \]

These equations, Weierstrass showed, can be solved to yield uniformly convergent power series expansions of \(P \) and \(P_1 \) on some suitable domain, and if one fixes the initial conditions at \(u = 0 \):

\[P = 1, \quad \frac{dp}{du} = 0, \quad P_1 = 0, \quad \frac{dp_1}{du} = 1, \]

then indeed \(\text{sn}(u) = \frac{P_1}{P} \). [Weierstrass 1856 = Werke, I, 297]

When \(R \) is of degree \(2n+1 \) the differential equations gave Weierstrass uniformly convergent power series in \(n \) variables for \(n \) functions which he called \(\text{Ai}_i(x_1, \ldots, x_n), 1 \leq i \leq n \), in honour of Abel. The mathematical world was greatly excited by Weierstrass's work, which went a long way to solve a problem that had been outstanding for a generation. In only the next year, Riemann was able to solve the problem completely, but his methods were so novel that they did not command general assent. Until the work of Hilbert and Weyl other methods were preferred to those of Riemann for dealing with the new functions. Riemann, his students, and Clebsch, also sought to use the new functions to understand the geometry of algebraic curves.

Riemann divided his paper [1857c] into two halves. In the first part, as he said, he discussed algebraic functions and their integrals without using theta-series. In §§1-5 he used his version of Dirichlet's
principle to define algebraic functions in terms of their branching
behaviour and their poles; in §§6-10 he expressed algebraic functions and
their integrals as rational functions on a (Riemann) surfaces in §§11-13
he looked at equivalent ways of expressing a given function (introducing
the ideas of birational equivalence and moduli) and at the simplest
expressions for a given function. In §14-16 he discussed Abel's addition
theorem as a solution to a system of differential equations. In the
second half of the paper he used 6-functions to solve the general Jacobi
inversion problem, thus generalizing Weierstrass's treatment of the
hyper-elliptic case.

Section 1-5 contain Riemann's part of the illustrious Riemann-Roch
theorem. To analyse an algebraic function \(\tilde{s} \) of \(z \), say \(F(\tilde{s}, z) = 0 \) of
degree \(n \) in \(\tilde{s} \) and \(m \) in \(z \), Riemann considered \(z \) as parameterizing the sphere
(the plane of complex numbers with \(z = \infty \) added) and the \(n \) values of \(\tilde{s} \) which
correspond to a given value of \(z \) as lying on a surface \(T \) spread out over
the \(z \)-domain. (For brevity I shall use the expressions zero of order \(\mu \),
infinity of order \(\mu \), branch point of order \(\mu \), for concepts referred to
by Riemann with more cumbersome names\(^{11} \).) A function with an infinity at
\(z = a \) is, he said, locally of the form of a continuous function plus a
finite series

\[
A \log r + B r^{-1} + C r^{-2} + \ldots,
\]

where \(r \) is a local parameter about \(a \). He let \(T \) be rendered into a simply
connected surface \(T' \) by 2\(p \) boundary cuts, let \(\epsilon_1, \ldots, \epsilon_m \) be \(m \) arbitrary
points of \(T \), and let \(a + \beta \epsilon \) be a function on \(T \) having poles at the
\(\epsilon_v \)'s, so the principal part of \(a + \beta \epsilon \) at \(\epsilon_v \) is

\[
A_v \log r_v + B_v r_v^{-1} + C_v r_v^{-2} + \ldots.
\]

Each \(\epsilon_v \) was joined by a line \(l_v \) to a fixed but arbitrary point \(\epsilon \) in such a way that no \(l_v \) intersected
either a boundary cut or any other \(l_v \). The multiply-valued function
\(\alpha + \beta i \) on \(T \) is a single-valued function on \(T' \) which jumps in value by constants as it crosses the cuts: crossing from positive to negative side of the \(2p \) boundary cuts it decreases by \(h(1), h(2), \ldots, h(2p) \) respectively, which Riemann called the moduli; on crossing \(\ell_v \) it decreases by \(2\pi i A_v \).

Dirichlet's principle guarantees the existence of such a function provided

\[
\left(\int_T \left(\frac{\partial \phi}{\partial x} \frac{\partial \phi}{\partial y} \right)^2 + \left(\frac{\partial \phi}{\partial y} \frac{\partial \phi}{\partial x} \right)^2 \right) dT
\]

is finite, which it is provided \(\sum_v \ell_v = \mathcal{C} \), for then and only then does \(\alpha + \beta i \) return to its former value on crossing all the \(\ell_v \). Furthermore \(\alpha + \beta i \) then determines \(\mu_p \) to an additive constant, a function \(\omega \) for which the real parts of the moduli \(h(1), \ldots, h(2p) \) and its principal parts are prescribed. Riemann now claimed that every rational function and every function obtained by integrating a rational function on \(T \) can be obtained in this way.

The simplest way to obtain a function on \(T \) is to integrate a holomorphic integrand (called an integral of the first kind). Riemann showed that there are \(p \) linearly independent such integrands, so the function that arises is of the general form

\[
\omega = \alpha_1 \omega_1 + \alpha_2 \omega_2 + \ldots + \alpha_p \omega_p + \text{constant},
\]

where \(\alpha_1, \ldots, \alpha_p \) are arbitrary constants. For, if the modulus of \(\omega_1 \) on the \(v \)th cut is \(k_1^{(v)} \) then \(\omega \) has modulus \(\sum_i k_i^{(v)} = k^{(v)} \) on the \(v \)th cut, and the real parts of the \(2p \) quantities \(k^{(v)} \) are linear functions of the \(2p \) quantities \(\text{Re}(\alpha_1), \text{Im}(\alpha_1), \ldots, \text{Re}(\alpha_p), \text{Im}(\alpha_p) \). The converse is also true, since the \(\omega_i \) are linearly independent, so the \(2p \) cuts determine exactly \(p \) holomorphic integrands.

Integrands of the form \(\frac{dx}{r^2} \) which integrate to give a function with principal part \(Br^{-1} \), Riemann called integrals of the second kind. They are determined by the real part of their moduli and by the value of \(B \), and the most general expression for such a function is generally
The third and final case (integrals of the third kind) contain logarithmic singularities, so the integrands have at least two poles, \(\varepsilon_1 \) and \(\varepsilon_2 \), say, at which \(A_2 = -A_1 \).

In what followed, Riemann considered only the case of functions having simple poles at \(\varepsilon_1, \ldots, \varepsilon_m \), none of which is a branch point. The general expression for such a function will be

\[
s = \beta_1 t_1 + \beta_2 t_2 + \ldots + \beta_m t_m + \alpha_1 \omega_1 + \alpha_2 \omega_2 + \ldots + \alpha_p \omega_p + \text{constant},
\]

where \(t_i \) is an arbitrary function \(t(r_i) \) and the \(\alpha \)'s and \(\beta \)'s are arbitrary constants. The function \(s \) has \(2p \) moduli which are linear functions of the \(m + p + 1 \) constants it contains. Thus the general function \(s \) having specified moduli and simple infinities contains \(m + p + 1 - 2p = m - p + 1 \) constants, provided \(m \geq p + 1 \). If in particular \(m = p + 1 \) then \(s \) is completely determined by the positions of the points \(\varepsilon_1, \ldots, \varepsilon_{p+1} \), unless some \(\varepsilon \)'s are so positioned that \(m - \mu \), say, of the \(\beta \)'s vanish. Then \(s \) has only \(\mu \) first order poles, which must be so positioned that \(p + 1 - \mu \) of the \(2p \) equations connecting the \(p + \mu \) quantities \(\alpha \) and \(\beta \) follow identically from the rest. Accordingly \(p + 1 - \mu \leq \mu - 1 \), i.e. \(\mu \geq \frac{1}{2}p + 1 \). As Roch observed, even in general some of the \(\beta \)'s may vanish, so Riemann has established that the general function having simple poles precisely at \(\varepsilon_1, \ldots, \varepsilon_m \) depends linearly on at least \(m - p + 1 \) constants; this result is nowadays called Riemann's inequality. Roch's contribution to the Riemann-Roch theorem is discussed below, p. 240.

Riemann next established that \(s \) is an algebraic function of \(z \) of degree \(n \) in \(s \) and \(m \) in \(z \). But, for the \(\omega \) above,
\[\frac{dw}{dz} \] takes the same value on either side of each cut, so it defines a function on \(T \) which can only be infinite at the points \(\varepsilon \), where \(w \) is infinite, and at the branch points of \(T \). Therefore \(\frac{dw}{dz} \) is an algebraic function of \(z \), and \(w \) is the integral of such a function, as Riemann had claimed.

Conversely, Riemann next showed how to determine the topological nature of a given algebraic function \(F(s, z) = 0 \). The branch points are amongst the points \(s \) which are coincident roots of \(F(x, z) = 0 \) for some \(z \). To determine the connectivity of \(T \), he first considered the simple branch points of \(f \), i.e. where two leaves are interchanged. These are amongst the simple zeros of \(Q(s) \), the discriminant of \(F \), which, as a function of \(s \), is of degree \(2m(n - 1) \). However, some zeros of \(Q \) do not give rise to branch points of \(F \), for, as he put it, branch points may cancel out in pairs, i.e. be double points on the curve. If there are \(w \) true branch points and \(r \) pairs cancel, then

\[w + 2r = 2m(n - 1). \]

The simply connected surface \(T' \), obtained from \(T \), is, by Riemann's mapping theorem, equivalent to the unit disc, by some function \(\log \zeta \) of \(z \). The sum of the values where \(\frac{dz}{d\zeta} \) is 0 or \(\infty \) is

\[\frac{1}{2\pi i} \int d \log \frac{dz}{d\zeta} = w - 2n = 2p - 2, \]

since the total branch point order in a simply connected region spread out over a finite part of the \(z \)-plane is one less than the number of circuits the boundary makes. Accordingly the genus \(p \) is equal to \((n - 1)(m - 1) - r \).

To determine a function \(s' \) having \(m' \) given first order infinities, Riemann wrote it as

\[s' = \frac{\psi(s, z)}{\chi(s, z)}, \]

where \(\psi(s, z) \) and \(\chi(s, z) \) must both be of the same degree, \(\nu \) in \(s \), and \(\mu \) in \(z (\nu \geq n - 1, \mu \geq m - 1) \) if \(s' \) is to be finite when \(s = \infty \) or \(z = \infty \). Riemann continued to consider only the case where possible branch points cancelled in pairs, and at those \(r \) points
\((s, z) = (\gamma , \delta)\), \(\psi\) and \(\chi\) must both vanish, so \(\chi\) has indeed \(i = mv + nu - 2r\) zeros on \(T\). Since furthermore \(\chi(s, z)\) and
\[\chi(s, z) + (v - n, \mu - m) F(s, z)\]
agree on \(T\) for any function \(\rho\),
\((v - n + 1)(\mu - m + 1)\) of the constants \(\chi\) can be chosen arbitrarily. So
\(\chi\) depends linearly on only
\[\varepsilon = (\mu + 1)(\nu + 1) - (v - n + 1)(\mu - m + 1) - r\]
constants, and \(i - \varepsilon = p - 1\) \((\varepsilon = i - p + 1)\).

Choosing \(\mu, \nu\) so that \(\varepsilon > m' > p\) allows \(\chi\) to be found with
m' given first-order zeros and \(\psi\) to be such that \(\psi/\chi\) is finite
everywhere else. Indeed, if \(\psi\) likewise depends linearly on \(\varepsilon\)
constants and \(\varepsilon - i + m' > 1\), then \(i - m'\) of these constants can
be determined as linear functions of the rest so as to ensure
\(\psi\) vanishes at the \(i - m'\) other zeros of \(\chi\). \(\psi\) therefore contains
\(\varepsilon - i + m' = m' - p + 1\) arbitrary constants and \(\psi/\chi\) can therefore
represent \(s'\).

In the same way \(w\), a function obtained by integrating a
typical integrand of the first kind, must be of the form
\[w = \int \frac{\phi(s, z)}{\partial F} \, dz,\]
\[= - \int \frac{\phi(s, z)}{\partial z} ds,\]
\[\phi(s, z) = \phi(s^{-2}, z^{-2}) ,\]
where \(\phi\) vanishes at the \(r\) points \((\gamma, \delta)\). Again, \(p = (n - 1)(m - 1) - r;\)
and \(\phi\) has \(2p - 2 = m(n - 2) + n(m - 2) - 2r\) zeros on \(F\).

A birational transformation of \(T\) changes the equation for
\(T\) from, say, \(F(s, z) = 0\) to \(F_1(s, z) = 0\) where \(s\) and \(z\) are rational
functions of \(s_1, z_1\) and vice versa. But if \(\zeta\) is a function on \(T\)
having \(\mu\) first order poles, then it has \(2(\mu + p - 1)\) branch points
(since \(w - 2n = 2p - 2\)) and contains \(2\mu - p + 1\) arbitrary constants;
\(\mu - p + 1\) by Riemann's inequality + \(\mu\) since the positions of the
branch points have not been specified. Accordingly each birational
equivalence class of surfaces depends on $2(p + p - 1) - (2p - p + 1) = 3p - 3$ parameters ($p > 1$). Riemann did not discuss the nature of this $3p - 3$ dimensional moduli space. The equation of least degree which is capable of representing a surface of genus p is, say, $F(\frac{n}{2}, \frac{m}{2}) = 0$, where $(m - 1)(n - 1) - r = p$, so for example if $p = 1$, the equation is of the form $F(\frac{2}{2}, \frac{2}{2}) = 0$ (with $r = 0$), and if $p = 3$, $F(\frac{3}{2}, \frac{3}{2})$ and $r = 1$.

Riemann concluded the first part of the paper by using Abel's addition theorem to solve a system of differential equations, an approach which, he observed, had been taken earlier by Jacobi. This argument will be clearer if one first recalls the modern formulation of Abel's Theorem, which asserts, in part, that if f is a rational function on T, with m poles P_1, \ldots, P_m and m zeros q_1, \ldots, q_m then $\Sigma \int_{C_i} \omega = 0$, for any holomorphic 1-form as on T, and for a suitable set of paths C_i from P_i to q_i. This can be proved as follows. Let the given function f be branched at a_1, \ldots, a_r as a covering of \mathbb{P}^1, i.e. $f: T \to \mathbb{P}^1$, is branched over each $f(a_i)$. In $Y = \mathbb{P}^1 - \{f(a_1), \ldots, f(a_r)\}$ every point y sits in a neighbourhood V such that $f^{-1}(V)$ is m open sets U_1, \ldots, U_m, and $f|_{U_i}: U_i \to V$ has holomorphic inverse ϕ_i. Denote the restriction of ω to U_i by ω_i, and pull back ω_i onto V by ϕ_i, to obtain $\phi_i \ast \omega_i$. The local 1-form $\Sigma \phi_i \ast \omega_i$ is independent of the choice of the neighbourhood V of y, and so one obtains in this way a holomorphic 1-form on Y. Furthermore $\Sigma \phi_i \ast \omega_i$ is invariant under all permutations of the U_i's. So the 1-form defined on Y can be extended to define a 1-form $\phi \ast \omega$ on \mathbb{P}, but there is only the trivial vanishing 1-form on \mathbb{P}. So the integral $\Sigma \int_{C_i} \omega = \int_{\gamma} \phi \ast \omega = 0$, where γ is any path from 0 to 0 in \mathbb{P}, and $c_i = \phi^{-1}(\gamma)$.

This much of the theorem was proved by Riemann, who argued as follows. Let \(\zeta = f(s, z) \) be a rational function on \(T \), having \(m \) poles. Let \(w = \int \omega \) be an integral of the first kind, then \(\frac{dw}{dz} \) is an \(m \)-valued function of \(\zeta \), as is \(w \). Denote their \(m \) values \(\frac{dw(\mu)}{dz}, w(\mu), 1 \leq \mu \leq m \). Then \(\sum_{\mu} \frac{dw(\mu)}{d\zeta} \) is single-valued and finite everywhere, and so \(\sum_{\mu} \int_{\omega(\mu)} \) is constant.

It is clearly an elementary matter to express Riemann's conclusion in the modern form: if \(p_1, \ldots, p_m \) are the \(m \) values of \(f^{-1}(\infty) \), and \(q_1, \ldots, q_m \) the values of \(f^{-1}(0) \), then \(\sum_{0}^{p} \int_{0}^{q} \frac{dw(\mu)}{\mu} = \sum_{0}^{q} \int_{p}^{q} \frac{dw(\mu)}{\mu} = \) constant for some fixed arbitrary initial value 0, so taking their difference

\[
\sum_{p}^{q} \int_{p}^{q} \frac{dw(\mu)}{\mu} = 0.
\]

Riemann then observed that if \(w \) is the integral of any rational function on \(T \) (generally therefore of the third kind), essentially the same argument shows that \(\sum_{\mu} \int_{\omega(\mu)} \) depends on the discontinuities of \(\omega \) and is indeed a rational function plus the logarithm of a rational function of \(\zeta \) with constant coefficients. In considering this generalization Riemann was following Abel, who had been the first to draw this conclusion about the integral of an algebraic function.

Nowadays Abel's theorem also contains the harder sufficient condition for all integrals \(\int_{C_{\mu}}^{C_{\mu}} \omega \) to vanish: namely that the \(q_1 \) be the zeros and the \(p_\mu \) the poles of a rational function on \(T \). This is sometimes proved in two stages as follows: If \(\eta \) is an integrand of the third kind, with poles at \(p_\mu \) having residues \(m_\mu \) and at \(q_\mu \) with residues \(n_\mu \) then \(f(t) = \exp(2\pi i \int_{t}^{c} \eta) \) is the required function. For \(f \) has poles of order \(m_\mu \) at \(p_\mu \) and zeros of order \(n_\mu \) at \(q_\mu \). So it remains to find such an \(\eta \) and (this is the second stage) this can be done.
Riemann did not prove quite this result. Instead he observed that, if the $\omega_{\pi} \leq \pi \leq \rho$, form a basis for the holomorphic integrands on T, then the p simultaneous differential equations

$$\omega_{\pi}(t_1) + \ldots + \omega_{\pi}(t_{p+1}) = 0$$

can be integrated, in the sense that there is a rational function on T which takes the same value at t_1, \ldots, t_{p+1}. On integrating $\sum_{\mu=1}^{p+1} \omega_{\pi}(t_{\mu})$ from an arbitrary starting point one would thus get a constant. So integrating it between the poles and the zeros of the rational function one gets zero, modulo periods in each case.

Before proving such a function existed he observed that in general a set of $p+1$ points t_1^0, \ldots, t_{p+1}^0 can be picked as the initial values, say as the poles of a rational function $\frac{1}{\zeta}$. There is at least a single infinity of such functions (by Riemann's inequality); in general the space of non-constant functions has dimension exactly one, in which case they are all of the form $\lambda_0(\frac{1}{\zeta}) + \lambda_1$. A choice of one zero of $\frac{1}{\zeta}$ corresponds to a ratio $\lambda_0: \lambda_1$, so one zero of $\frac{1}{\zeta}$ fixes the function exactly (the poles do not vary with the ratio $\lambda_0: \lambda_1$). Since every rational function on T has as many zeros as poles a choice of one t_{μ} determines the rest, they are the other pre-images of $\lambda_0(\frac{1}{\lambda(t_{\mu})}) + \lambda_1$.

Riemann's proof that such a function satisfies the differential equations is not entirely clear. It consists of remarking that one takes a rational function ζ which is zero at t_1^0, \ldots, t_{p+1}^0 and then the $p+1$ branches of ζ satisfy the equation unless, setting

$$\zeta = \sum_{\mu=1}^{p+1} \beta_{\mu} \tau(t_{\mu}) + \sum_{\pi=1}^{p} \alpha_{\pi} \omega_{\pi} + \text{constant},$$
some of the β's vanish, in which case as many of the differential equations are linearly independent, which constrains the choice of initial values accordingly. We are once again in that part of the theory of Abelian integrals which was only to be cleared up by Roch. However, going from the local form for ζ to the differential equations brings to light the matrix
\[\begin{pmatrix} \frac{dv}{dt} \\ \frac{w}{s} \end{pmatrix} \]
and if it has maximal rank, p, at $\zeta^{-1}(0)$ then, by the inverse function theorem in the complex case any path from 0 to ζ gives a path for t out of t^0_μ and so paths for the other t_μ's out of their starting points.

This vague gloss on a bald statement by Riemann suggests that a form of Jacobi inversion is being invoked. We shall see shortly how Riemann considered that problem, but here Riemann takes the existence of ζ as an immediate consequence of his inequality.

The value of the integral $b_\pi = \int \phi(s,z)dz$ depends not only on its end points, but also on the path of integration, and Riemann gave a careful explanation of the indeterminacy of a system (b_1, b_2, \ldots, b_p) in terms of the periods, so that he could speak of the value (b_1, b_2, \ldots, b_p) modulo periods. Consequently he was able to re-express the solution to the equations
\[\sum_{\mu=1}^{p+1} d_\mu w(\mu) = 0 \]

as
\[\left(\sum_{\mu} w_1(\mu), \sum_{\mu} w_2(\mu), \ldots, \sum_{\mu} w_p(\mu) \right) \equiv (c_1, c_2, \ldots, c_p) \pmod{\text{periods}} \]
where c_1, c_2, \ldots, c_p are constants depending on the initial point (s_0, z_0) of the integration.

The first to prove the converse of Abel's theorem was Clebsch, in his long paper [1864]. Since he substantially followed Riemann's presentation his argument may reasonably be given here. Clebsch first
gave a slick proof of Abel's theorem that, if the \(mn \) intersection points of a curve \(f = 0 \) (of degree \(n \)) with a variable curve \(\phi = 0 \) (of degree \(m \)) are taken as the upper end points of a sum of \(mn \) integrals of an integrand on \(f = 0 \), then this sum is a sum of rational, circular, and logarithmic functions of the coordinates of \(\phi \). In particular, if the integrand is holomorphic everywhere on \(f = 0 \), then the sum is constant. He then showed that if \(u_1, u_2, \ldots, u_p \) are everywhere finite integrals (the result of integrating \(p \) linearly independent holomorphic integrands, which he presented in a homogenized form \(^{16}\) of Riemann's \(\phi / F_s \)) then the \(p \) sums obtained in this fashion are a \(p \)-tuple of constants, modulo periods:

\[
\begin{align*}
u_1^{(1)} + u_1^{(2)} + \ldots + u_1^{(mn)} & \equiv \gamma_1 \\
u_2^{(u)} + u_2^{(2)} + \ldots + u_2^{(mn)} & \equiv \gamma_2 \\
u_p^{(1)} + u_p^{(2)} + \ldots + u_p^{(mn)} & \equiv \gamma_3
\end{align*}
\]

Furthermore, these constants do not depend on the form of \(\phi \), and may even be taken to be zero, if the lower limit of integration is chosen correctly. He then stated the converse to this form of Abel's theorem \([1864, 198]\):

"Whenever the sums of everywhere finite integrals taken over \(mn \) points are zero, then the \(mn \) points lie at the intersection of a curve of the \(m \)th order with the curve of the \(n \)th order."

Clebsch argued that the \(p \) simultaneous differential equations

\[
\begin{align*}
du_1^{(1)} + du_1^{(2)} + \ldots + du_1^{(mn)} &= 0 \\
\vdots & \quad \vdots \\
du_p^{(1)} + du_p^{(2)} + \ldots + du_p^{(mn)} &= 0
\end{align*}
\]

are simultaneously integrable, since that is the given information. But, by Abel's theorem in its original form, if each equation is integrated from a base point to the \(mn \) intersection points of \(f = 0 \) and a variable curve \(\phi = 0 \) then the sums will be constant. So there is a solution to
the simultaneous system of equations in which the end points all lie on the intersection points of \(f = 0 \) and some common \(\phi = 0 \), which is the desired solution (by the uniqueness of the solution to the differential equations, which Clebsch did not bother to state). The \(p \) constants which arise from integrating the \(p \) equations can be abolished as before.

It might be helpful to discuss the case \(p = 1 \), which corresponds to elliptic functions. If \(\omega = \frac{dx}{\sqrt{4x^3 - g_2x - g_3}} \) is the holomorphic integrand on the curve \(y^2 = 4x^3 - g_2x - g_3 \) then Abel's theorem reduces to the assertion that, if \(a_1, a_2, \) and \(a_3 \) are the intersection of a line with the curve, then

\[
\int_a^{a_1} \omega + \int_{a_2}^{a} \omega + \int_{a}^{a_3} \omega = 0.
\]

It and its converse are contained in the addition theorem for elliptic integrals, which says that

\[
\int_\infty^u \omega + \int_u^v \omega + \int_v^\infty \omega = 0
\]

if and only if the points \(\mathcal{F}(u), \mathcal{F}'(u), \mathcal{F}(v), \mathcal{F}'(v) \) and \(\mathcal{F}(u+v)), \mathcal{F}'(-(u+v)) \) lie on a line.

Riemann concluded the first section of his paper with a look at the zeros of the integrands. Following Abel he supposed the upper end points of the integrals, say \((s_1, z_1), \ldots, (s_m, z_m) \) were the common zeros of \(F = 0 \) and a rational function \(\zeta = \frac{X}{Y} = 0 \). Since \(f(s, z) = X - \zeta Y \) vanishes for all \(\zeta \) whenever \(X \) and \(Y \) simultaneously vanish one may suppose the coefficients of \(f \) to vary provided only that \((s_1, z_1), \ldots, (s_m, z_m) \) stay fixed. Furthermore if \(m < p + 1 \), \(\zeta \) can be written as a quotient of two integrands, say \(\phi^{(1)}/\phi^{(2)} \), and \(f \) then becomes \(\phi^{(3)} = \phi^{(1)} - \zeta\phi^{(2)} \). For any \(\phi \) is of the form \(\sum_{n=1}^{\pi} \phi_n \) and has \(2p - 2 \) zeros, so a quotient \(\phi^{(1)}/\phi^{(2)} \) can always be produced having \(p - 1 \) zeros in the denominator,
but with \(p - 2 \) zeros in numerator so chosen to cancel \(p - 2 \) of the remaining zeros of the denominator. Now \(\phi(1)/\phi(2) \) has \(p \) zeros and \(p \) poles, which, of course, are not entirely arbitrary, and the expression \(\phi(1)/\phi(2) \) still contains two arbitrary constants, so it represents a general function of that kind.

So \(\zeta = \phi(1)/\phi(2) \) can represent a solution of the \(p \) simultaneous differential equations

\[
\sum_{\mu=1}^{p} \frac{d\omega_\pi}{d\mu} = 0, \quad \pi = 1, 2, \ldots, p
\]

and since \(p - 1 \) of the zeros of \(\phi(2) \) determine the rest, the \(2p - 2 \) zeros are also solutions of

\[
\sum_{\mu=1}^{2p-2} \frac{d\omega_\pi}{d\mu} = 0, \quad \pi = 1, 2, \ldots, p,
\]

and the last \(p - 1 \) are uniquely determined as functions of the first. Riemann said the solutions were bound together ('verknüpf't) by \(\phi = 0 \). They are the \(2p - 2 \) points at which an integrand has a second order zero. Consequently the solution

\[
\sum_{\mu=1}^{2p-2} \omega_\mu = 0, \quad \mu = 1, 2, \ldots, p
\]

was congruent to a system of constants \((c_1, \ldots, c_p)\) depending on the initial value of the integrals.

In the second part of his paper, Riemann solved the problem of inverting \(p \)-tuples of sums \(p \) integrals by means of a \(\Theta \) function, using a suggestion due to Jacobi. Each integrand \(\omega_\pi \) is integrated over \(p \) paths,

\[
\int_a^x \omega_\pi = \sum_{i}^{X} \omega_\pi, \quad \text{where} \quad x = (x_1, \ldots, x_p), \quad a = (a_1, \ldots, a_p), \quad \text{and the} \quad p\text{-tuple} \quad \left(\int_a^x \omega_1, \ldots, \int_a^x \omega_p \right) \quad \text{is considered as a function of} \quad x.
\]
The problem of finding \(x \) such that, for given \(s_1, \ldots, s_p \),
\[
\left(\int_a^x \omega_1, \ldots, \int_a^x \omega_p \right) \equiv (s_1, \ldots, s_p)
\]
is the Jacobi inversion problem for the Riemann surface. To solve it, Riemann introduced the \(\theta \)-function in \(p \) variables
\[
\theta(v_1, \ldots, v_p) = \left(\prod_{\mu=1}^{2p} \mu^{-1} \right) \prod_{\mu=1}^{p} (2\pi i, v_{\mu}, \ldots, v_{\mu})
\]
where the first summation is taken over all \(p \)-tuples of integers \((m_1, \ldots, m_p)\), (this reduces to the familiar expression for a \(\theta \) function when \(p = 1 \)). Riemann showed it converges provided the matrix \((a_{\mu\nu})\) is symmetric and negative definite, and it then defines a holomorphic function which satisfies certain identities:
\[
\theta(v_1, \ldots, v_p) = (v_1, \ldots, v_p + \pi i, \ldots, v_p)
\]
\[
\theta(v_1, \ldots, v_p) = e^{-2\pi i + a_{\mu\nu}} \theta(v_1 + a_{1\mu}, \ldots, v_p + a_{p\mu}).
\]

The consequent changes in \(\log \theta \) are additive, and \(\theta \) is an even function.

If \(v_1, \ldots, v_p \) are taken to be \(p \) linearly independent everywhere finite integrals on \(T \), \(u_1, \ldots, u_p \), say, then the \(u \)'s are only defined modulo periods. But, Riemann showed, these periods may be taken to be, for each \(u_\mu, A_\mu(v) \) on the cut \(a_\mu \) and \(B_\mu(v) \) on the cut \(b_\mu \), for a suitable dissection of \(T \) by cuts \(a_1, \ldots, a_p, b_1, \ldots, b_p \). On integrating \(u_\mu d\mu \) along the cuts he found
\[
\sum_{\nu} (A_\mu(v)B_\mu(v) - A_\mu'(v)B_\mu'(v)) = 0
\]
for each \(\mu \) and \(\mu' \). These relations, now known as the Riemann period relations, imply when \(A_\mu(v) = 0 \) (\(\mu \neq v \)) and \(A_\mu(v) = \pi i \) (which can always be arranged by a suitable choice of basis) that \(B_\mu(v') = B_\mu'(v') \).

So Riemann could take \(a_{\mu\mu'} = B_\mu(v') \) as the coefficients of his \(\theta \)-function.
Furthermore, the matrix \((a_{\mu\nu},) = (B_{\mu}^{\nu})\) so obtained is negative definite, as can be seen by integrating \(\left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2\) over \(T\) where \(\omega = u + vi\) is any finite function on \(T\) dissected by the indicated cuts.

As a result \(\theta(u_1 - e_1, \ldots, u_p - e_p)\) is a finite, single-valued function on the dissected surface, for any choice of constants \(e_1, \ldots, e_p\) corresponding to initial values of the integrals. Standard techniques showed that in general \(\theta\) has \(p\) zeros, say at \(\eta_1, \ldots, \eta_p\), whose positions depend on \(e_1, \ldots, e_p\). Strictly, \(\theta\) is a function on \(\mathbb{Z}^p\), and although it is not a single-valued function on \(p\)-tuples of points of \(T\) modulo periods, it follows from the multiplicative properties of \(\theta\) that the zero set of \(\theta\) on \(\mathbb{Z}^p\) (mod periods) is well-defined. Riemann showed

\[\theta(u_1(t) - e_1, \ldots, u_p(t) - e_p)\] was constant across the cuts \(a_\mu\), but jumped by \(e^{-2(u_\mu - e_\mu)}\) on crossing \(b_\mu\), and he gave an essentially transcendental argument to show that the arbitrary constant entering each \(u_\mu\) can be so chosen that these jumps are actually \(e^{-2(u_\mu - e_\mu) u_\mu(\eta_\mu)}\). Indeed, he showed that there is a constant \(p\)-tuple \((k_1, \ldots, k_p)\) such that if \(\eta_1, \ldots, \eta_p\) is the zero set of \(\theta(u_1 - e_1, \ldots, u_p - e_p)\) then \((u_1(\eta_1) + k_1, \ldots, u_p(\eta_p) + k_p) = (e_1, \ldots, e_p)\). The \(p\)-tuple \((k_1, \ldots, k_p)\) depends only on the choice of cuts, and is independent of \((e_1, \ldots, e_p)\), so it can be used to determine the arbitrary constant in each \(u_\mu\) (§22).

In §23 he showed that given an arbitrary \(p\)-tuple \(e_1, \ldots, e_p\) and an arbitrary \(n\), say \(\eta_p\), then \(p-1\) other points can be found, say \(n_1, \ldots, n_{p-1}\), such that

\[\theta(u_1 - u_1(\eta_p) - e_1, \ldots, u_p - u_p(\eta_p) - e_p) = 0.\]

For, the differential equations described earlier (§14) are a system of \(p\) equations for \(p\) quantities, but they can be solved to yield functions \(u_\mu\) of \(\eta_1, \ldots, \eta_p\) since \(\eta_1, \ldots, \eta_p\) is not an arbitrary \(p\)-tuple.
Riemann now used the \(\theta \)-function to solve the problem of Jacobi inversion: given \((e_1, \ldots, e_p)\) mod periods, it is required to find \(t_1, \ldots, t_p \in T\) such that

\[
\left(\sum_{j=1}^{p} u_1(t_j), \ldots, \sum_{j=1}^{p} u_p(t_j) \right) \equiv (e_1, \ldots, e_p).
\]

He remarked that it is a corollary of §22: "that an arbitrary given system of quantities \((e_1, \ldots, e_p)\) is always congruent to one and only one system of quantities of the form \(\left(\sum_{j=1}^{p} u_1(t_j), \ldots, \sum_{j=1}^{p} u_p(t_j) \right)\) if the function

\[
\theta(u_1-e_1, \ldots, u_p-e_p)
\]

does not vanish identically, for then the points \(t\) must be the \(p\) points for which this function will be 0" (§24, with slightly amended notation). This formulation, while not providing an explicit expression for \((t_1, \ldots, t_p)\) as a function of \((e_1, \ldots, e_p)\), at least connects Jacobi inversion for arbitrary curves with Jacobi inversion for elliptic curves, and reduces the general problem to the vanishing of a scalar function on the Riemann surface. It thus gives a hold on the pre-image of a specified point in \(\mathbb{C}^g\) (mod periods) which Riemann was able to exploit.

There is a connection with the \(2p - 2\) zeros bound together by a \(\phi\). Riemann took \((u_1(\eta_p), \ldots, u_p(\eta_p))\), so

\[
(u_1-e_1, \ldots, u_p-e_p) \equiv \left(- \sum_{j=1}^{p-1} u_1(\eta_j), \ldots, - \sum_{j=1}^{p-1} u_p(\eta_j) \right)
\]

and showed conversely that if \(\theta(r_1, \ldots, r_p) = 0\), then
\[(r_1, \ldots, r_p) = (-\sum_{j=1}^{p-1} u_1(\eta_j), \ldots, -\sum_{j=1}^{p-1} u_p(\eta_j)), \]

for one may choose \(\eta_p \) arbitrarily and let \(\eta_1, \ldots, \eta_{p-1} \) then be the other zeros of \(\theta(u_1 - u_1(\eta_p) - r_1, \ldots, u_p - u_p(\eta_p) - r_p) \). Now by definition \(\theta \) is an even function, so let \(\eta_1, \ldots, \eta_{p-1} \) be chosen arbitrarily, so that

\[\theta(-\sum_{j=1}^{p-1} u_1(\eta_j), \ldots, -\sum_{j=1}^{p-1} u_p(\eta_j)) = 0. \]

Then

\[\theta(-\sum_{j=1}^{p-1} u_1(\eta_j), \ldots, -\sum_{j=1}^{p-1} u_p(\eta_j)) = 0, \]

so there are \(p - 1 \) more points \(\eta_p, \ldots, \eta_{2p-2} \), determined by the first \(p - 1 \), and

\[\begin{align*}
\left(-\sum_{j=1}^{p-1} u_1(\eta_j), \ldots, -\sum_{j=1}^{p-1} u_p(\eta_j) \right) & \equiv \left(-\sum_{j=1}^{2p-2} u_1(\eta_j), \ldots, -\sum_{j=1}^{2p-2} u_p(\eta_j) \right) \\
& \equiv (0, \ldots, 0).
\end{align*} \]

The equations \(\sum_{\pi=1}^{2p-1} du_{\pi}(\eta_j) = 0, \pi = 1, 2, \ldots, p \), are thus satisfied, so the \(\eta \)'s are bound together by a \(\phi \). The geometric significance of this will be of interest later. Riemann concluded this paper by writing functions on \(T \) as quotients of \(\theta \) functions and exponentials, thus generatizing to arbitrary genus the well-known techniques of elliptic function theory and Weierstrass's results about hyperelliptic functions.

The responses to Riemann's paper were various, but most mathematicians agreed that it was extremely important and difficult. The high degree of generality and the use of a transcendental method for constructing functions militated against its immediate application, and for a while it was only Riemann's own students who advanced his ideas.
Foremost amongst these was Gustav Roch, who died in 1866 of tuberculosis, at the age of only 29.

Roch investigated the Riemann inequality in a very short paper, [1864]. He began by observing that Riemann had been able to construct functions having fewer than \(p + 1 \) zeros on a given surface \(T \) (these are the root functions discussed in the next section), and set himself the task of counting the constants in an arbitrary rational function exactly.

He took Riemann's form of an arbitrary function

\[
\begin{align*}
 v &= \beta_1 t_1 + \beta_2 t_2 + \ldots + \beta_m t_m + a_1 w_1 + a_2 w_2 + \ldots + a_p w_p + \text{constant},
\end{align*}
\]

where each \(t_i \) has a simple infinity at a point \(\varepsilon_i \neq \infty \). This expression contains \(m + p + 1 \) constants, and denotes a function if and only if its periods vanish on the \(2p \) boundary cuts \(a_j, b_j, j = 1, 2, \ldots, p \). So, as Riemann had said, this gives \(2p \) linear equations for \(m + p + 1 \) unknowns, which can always be solved if \(m + p + 1 \geq 2p \), and in general the number of arbitrary constants is \(m + 1 - p \). But Roch observed that if some of the \(2p \) equations depend on the others then the number of arbitrary constants can be increased. To investigate this, he first of all took Riemann's canonical choice of \(u_i = \int \frac{\psi_i}{\partial F}, i = 1, \ldots, p \), for the everywhere finite integrals \(w_i \). For the function \(u_j \) the periods are \(\pi i \) on the cut \(a_j \) and 0 on the other a's. So the a's can always be adjusted so that \(v \) has zero periods on the a's, if need be by replacing

\[
t_k \text{ by } t_k + \frac{1}{\pi i} (\tau_{k1} u_1 + \ldots + \tau_{kp} u_p) \text{ where } t_k \text{ has period } \tau_{kj} \text{ on } a_j.
\]

The deal with the \(\beta \)'s, Roch supposed \(T \) cut along the a's and b's to yield a simply connected surface \(F' \), and integrated \(u_j^d v \) around the boundary. On the one hand, this integral is \(\pi i B_j = \sum_k A_k a_j k \), where \(A_k \) is the period of \(v \) on \(a_k \) (and is therefore zero), and \(B_j \) the period of \(v \) on \(b_j \). On the other hand, it is \(-2\pi i \beta_j \beta_k a_k^{(k)} \), where \(u_j \) in a neighbourhood
of \(\varepsilon_k \) has an expansion of the form

\[
u_j = u_j(\varepsilon_k) + a^{(k)}_{\mu} \sigma_k + b^{(k)}_{\mu} \sigma_k^2 + \ldots,
\]

\(\sigma_k \) being a suitable local variable near \(\varepsilon_k \). If any \(\varepsilon \) is a branch point it must be circled the appropriate number of times. Roch observed this, but assumed for simplicity that each \(\varepsilon \) was in fact a simple point. So he obtained the \(p \) equations

\[
\pi B_j = -2\pi \sum_k a_k \sigma_k^j \quad j = 1, 2, \ldots, p
\]

So \(B_1 = 0 = B_2 = \ldots = B_p \) if and only if the sums on the right hand side vanish. Since

\[
a^{(k)}_j = \frac{\phi_j(\varepsilon_k)}{\partial F/\partial s},
\]

if \(q \) of the \(\phi \)'s vanish at each \(\varepsilon \) then \(q \) of the \(\beta \)'s are irrelevant for determining the \(B \)'s, and so \(v \) contains \(q \) extra constants. Thus \(v \)

contain \(m - p + 1 + q \) arbitrary constants, where \(q \) is the number of linearly independent integrands vanishing at each \(\varepsilon \) [Theorem on p. 375\(^{19} \)].

In this way Roch showed how to sharpen Riemann's inequality into the form of an equality, nowadays called the Riemann–Roch Theorem.
6.3 Function-theoretic Geometry.

The geometric study of curves based on the theory of algebraic functions formed part of Riemann's lectures during February 1862, and some of this material was published in the Werke (second edition, no. XXXI) based on notes taken by Roch. More was published in the Nachträge [Weber, I-66]. Riemann considered functions which have $p-1$ second order infinities and $p-1$ double zeros on the curve $F(s, z) = 0$, which he obtained as follows. A basis for the holomorphic integrands on the curve is, say,

$$\left\{ \frac{\phi_i(s, z)}{s} \right\}_{1 \leq i \leq p},$$

and each $\phi_i(s, z)/\phi_j(s, z)$ is a function with $2p-2$ simple infinities and $2p-2$ simple zeros. Suppose (e_1, e_2, \ldots, e_p) is zero of θ. Then

$$(e_1, e_2, \ldots, e_p) \equiv \left(\sum_{v=1}^{p-1} u_1(n_v), \ldots, \sum_{v=1}^{p-1} u_p(n_v) \right)$$

$$\equiv \left(-\sum_{v=p}^{2p-2} u_1(n_v), \ldots, -\sum_{v=p}^{2p-2} u_p(n_v) \right) (6.3.1)$$

where n_1, \ldots, n_{2p-2} are the zeros of some $\phi = \Sigma_{v} \phi_{v}$, and $u(n_v) = \int_{0}^{n_v} \frac{\phi_v(s, z)}{s} dz$. If, in particular,

$$(e_1, e_2, \ldots, e_p) \equiv (-e_1, -e_2, \ldots, -e_p) (6.3.2)$$

then the points n_v and n_{v+p-1} coincide with pairs and ϕ has $p-1$ double zeros. If $\tilde{\phi}$ is another function of this kind, corresponding to a system

$$(f_1, f_2, \ldots, f_p) \equiv (-f_1, -f_2, \ldots, -f_p)$$

then it too has $p-1$ double zeros, and so $\phi/\tilde{\phi}$ has $p-1$ double zeros and $p-1$ double poles as required. Furthermore, on crossing the cuts an expression of the form $\sqrt{\phi_1 \phi_2/\tilde{\phi}_1 \tilde{\phi}_2}$ only takes factors of ± 1, and so is the square root of a rational function. Riemann called the individual functions $\sqrt{\phi}$ Abelian functions. To avoid confusion with the functions called Abelian functions today, Weber's name of root function
('Wurzelfunction') will be preferred for them.

The congruence (6.3.2) will be satisfied if and only if

\[(e_1, \ldots, e_p) \equiv (\epsilon, 1/2 + \frac{1}{2}(\epsilon_1 a_{11} + \ldots + \epsilon_p a_{p1}), \ldots, \epsilon_p, 1/2 + \frac{1}{2}(\epsilon_1 a_{1p} + \ldots + \epsilon_p a_{pp}))\]

(6.3.3.)

where the \(\epsilon\)'s and \(\epsilon''\)'s form what Riemann called the characteristic of the function \(\theta(\epsilon, \mu)(v)\):

\[
\theta \left(\epsilon_1, \ldots, \epsilon_p \right) (v_1, v_2, \ldots, v_p) = \sum_{m_1, \ldots, m_p} \exp \left(\sum_{\mu=1}^{p} a_{\mu\mu} (\epsilon_1 - \frac{v_1}{m_1} - \frac{\mu}{2}) + 2 \epsilon_1 (m_1 - \frac{\mu}{2}) (v_1 - \frac{\mu}{2}) \pi i \right)
\]

or, in a modern form

\[
\theta(\epsilon, \mu)(v) = \sum_{m \in \mathbb{Z}^p} \exp(Q(m - \epsilon, \mu) + 2 < m - \epsilon, v - \epsilon, \mu > \pi i)
\]

where \(Q\) is the quadratic form with matrix \(a_{\mu\mu}\).

The \(\epsilon\)'s are to be integers, and so can be taken to be either 0 or 1 without loss of generality. The characteristic

\[
\left(\epsilon_1, \ldots, \epsilon_p \right)\]

was said by Riemann to be even if \(\epsilon_1 \epsilon_1' + \ldots + \epsilon_p \epsilon_p' \equiv 0 \pmod{2}\), otherwise odd. For the system \((e_1, \ldots, e_p)\) satisfying (6.3.3) to be a zero of the \(\theta\)-Function the characteristic must be odd, so there are precisely \((2^{p-1})(2^p-1)\) such systems and \(2^{p-1}(2^p-1)\) root functions. Riemann noted that the even characteristics do not give rise to root functions. When \(p=3\) there are, accordingly, 28 odd characteristics and 28 root functions.
In what follows it will be helpful to recall that the restriction of a rational function \(\sigma \) in \((s, z)\) space to a curve \(F(s, z) = 0 \) gives a function on a curve, and the zero locus of \(\sigma \) is itself a curve which meets \(F \) where \(\sigma(s, z) = 0 \). Repeated zeros on \(F \) of the function \(\sigma \) corresponds to points where \(\sigma \) touches \(F \).

In his study of curve \(F(s, z) = 0 \) of genus \(p = 3 \), Riemann took new coordinates \(\xi = \phi_1 / \phi_3 \) and \(\eta = \phi_2 / \phi_3 \). Since \(\xi \) and \(\eta \) each take every value \(2p - 2 = 4 \) times the curve is now expressed as a quartic \(F(\xi, \eta) = 0 \). The integrands \(\phi / {\partial F / \partial \xi} \) are everywhere finite, so \(\phi \) is of degree \(2p - 5 = 1 \) in \(\xi \) and \(\eta \) and is therefore a linear function containing 3 constants, i.e. the dimension of the space of holomorphic integrands is 3. But then \(F \) is non-singular for, if it had \(r \) singular points, then a line \(\phi = 0 \) through a singular point would have a double zero there, and so the space of lines having double zeros on \(F \) would have dimension \(p + r \). But then \(p + r = 3 \) and \(p = 3 \), so \(r = 0 \). By construction each \(\phi \) vanishes to the second order on \(F \), so \(\phi = 0 \) represents a bitangent to the curve.

He then introduced homogeneous coordinates \(x, y, z (\xi = x/z, \eta = y/z) \), so each \(\phi \) was of the form \(cx + c'y + c''z \). A further linear change of variable allowed him to consider \(x, y, \) and \(z \) as bitangents, in which case \(F(x, y, z) = t^2(x, y, z) - xyzt \), where \(t \) is linear in \(x, y, \) and \(z \). To show this Riemann argued that \(F(x, y, z) = xyzt \) has a repeated zero when \(x = 0 \), so \(F(0, y, z) \) must be a perfect square. So,

at \(x = 0 \): \(F(0, y, z) = (y - az)^2(y - a'z)^2 \), and similarly,

at \(y = 0 \): \(F(x, 0, z) = (z - bx)^2(z - b'x)^2 \), and

at \(z = 0 \): \(F(x, y, 0) = (x - \gamma y)^2(x - \gamma'y)^2 \), say.

If \(F(x, y, z) = ax^4 + by^4 + cz^4 + \text{mixed terms} \),

then \(\alpha\alpha' = \pm \frac{c}{b}, \beta\beta' = \pm \frac{\alpha}{c}, \gamma\gamma' = \pm \frac{b}{a}, \)
and so $aa'ßß'yy' = ±1$ and $aa'ßß'yy' = ±1$.

If $aa'ßß'yy' = +1$, then the six terms $a, a',..., y'$ determine F as $f^2(x, y, z)$ where

$$f = f(x, y, z) = a_{11}x^2 + a_{22}y^2 + a_{33}z^2 + 2a_{23}yz + 2a_{31}zx + 2a_{12}xy$$

and $aa' = \frac{a_{33}}{a_{22}}, \alpha + \alpha' = -\frac{a_{23}}{a_{22}}$

$ßß' = \frac{a_{11}}{a_{33}}, \beta + \beta' = -\frac{a_{31}}{a_{33}}$

$γγ' = \frac{a_{11}}{a_{33}}, \gamma + \gamma' = -\frac{a_{31}}{a_{23}}$

Riemann then argued that the equation can be reduced to the form $f^2 - xyzt$ in 6 different ways once x and y are given. For $F = f^2 - xyzt = ψ^2 - xypq$ implies $(f + ψ)(f - ψ) = xy(zt - pq)$, so xy divides, say, $f - ψ$, i.e. $ψ - f = axy$, a a constant. Then $α(f + ψ) = pq - zt$, or, eliminating $ψ$, $2af + a^2xy + zt = pq$. The left hand side is reducible, so its discriminant must vanish, and its discriminant is of degree three in its coefficients and thus of degree 6 in a. Accordingly, there are 6 decompositions of F in the form $f^2 - xyzt$; $α = 0$ giving precisely the decomposition in which $pq = zt$, and $α = $ the decomposition $pq = xy$.

Salmon [1879, 227] gave a pleasing geometric interpretation of this.

When the equation of the curve is written in the form $xyU = (z^2 + ayz + by^2 + cxz + dx^2)^2$, as it may always be by the above argument, it may thus be written in the form

$$xyU = V^2$$

$$xy(λ^2U + 2λV + xy) = (xy + λV)^2$$

where $U = 0$ and $V = 0$ represent conics. Six conics in the family $λ^2U + 2λV + xy = 0$ are reducible, i.e. are line pairs. One, $λ = 0$, gives the line pair $xy = 0$, the other 5 other line pairs, $zt = 0$ say, such that the equation of the curve becomes, on setting $xy + λV = f$, $xyzt = f^2$.
Thus, "through the four points of contact of any two bitangents we can describe five conics, each of which passes through the four points of contact of two other bitangents", and, since there is \(\frac{1}{2} \cdot 28.27 = 378 \) pairs of bitangents, but each conic is counted six times, "there are in all \(\frac{5}{6} \cdot (378) \) or 315 conics, each passing through the points of contact of four bitangents of a quartic". This result was given by Hesse, Steiner and, incorrectly, by Plücker.

Riemann now confronted two tasks: first, given a curve to find the equation of its 28 bitangents; second, to express the mutual relationships of the bitangents. In reverse order, the second task was accomplished by means of the notation for the characteristics, and then the symmetries between the bitangents enabled Riemann to find their equations as follows.

Given the curve and two bitangents, \(x = 0 \) and \(y = 0 \), there are 5 pairs of bitangents such that the equation can be written in the form \(f^2 - xyzt = 0 \). These six pairs Riemann said formed a "grouping" (literally, "Gruppe" group, using Steiner's word). There are \(378 - 6.63 \) pairs, and so 63 groupings. It is most natural to find the equations for the bitangents in each grouping simultaneously. The simple case is when 3 pairs are already known, say \((x, \xi), (y, \eta), \) and \((z, \zeta)\), for then the above equation for \(a \) is only a cubic. Furthermore the equation for the curve can then be taken as

\[
\sqrt{x\xi} + \sqrt{y\eta} + \sqrt{z\zeta} = 0,
\]

or, equivalently, \(4x\xi y\eta = (xy - x\xi - y\zeta)^2 \). This last equation can be read as saying \((x, \eta)\) and \((y, \xi)\) lie in the same grouping, and Riemann found it more symmetric to find the remaining four pairs in this new grouping. A skillful argument showed that, if \((p, q)\) is such a pair, then

\[
p = ax + by + cz = -(\frac{\xi}{a} + \frac{\eta}{b} + \frac{\zeta}{c})
\]

\[
q = (\frac{\xi}{a} + \frac{\eta}{b} + cz) = -(ax + by + \frac{\zeta}{c})
\]
for undetermined constants a, b, and c. Four pairs being sought, Riemann found it "most elegant" to consider the four equations

$$x + y + z + \xi + \eta + \zeta = 0$$

$$ax + \beta y + \gamma z + \frac{\xi}{a} + \frac{\eta}{b} + \frac{\zeta}{c} = 0$$

$$a'x + \beta'y + \gamma'z + \frac{\xi'}{a'} + \frac{\eta'}{b'} + \frac{\zeta'}{c'} = 0$$

$$a''x + \beta''y + \gamma''z + \frac{\xi''}{a''} + \frac{\eta''}{b''} + \frac{\zeta''}{c''} = 0$$

(6.3.5)

of which only three are linearly independent. The constants $a, \beta, \gamma, a', \beta'$, and γ' are obtained from the three equations connecting the six functions $x, y, z, \xi, \eta, \zeta$, say $u_1 = 0$, $u_2 = 0$, and $u_3 = 0$. The equations imply that

$$l_1u_1 + l_2u_2 + l_3u_3 + ax + \beta y + \gamma z + a'\xi + \beta'\eta + \gamma'\zeta = 0$$

which, furthermore, is of the form

$$ax + by + cz + \frac{\xi}{a} + \frac{\eta}{b} + \frac{\zeta}{c} = 0$$

if $aa' = \beta\beta' = \gamma\gamma'$, whence four systems of values are obtained for the ratios $l_1 : l_2 : l_3$.

Consequently the four pairs in the grouping containing (x, η) and (y, ξ) are found. They turn out to be:

$$x + y + z, \quad \xi + \eta + \zeta$$

$$ax + \beta y + \gamma z, \quad \frac{\xi}{a} + \frac{\eta}{b} + \gamma$$

$$a'x + \beta'y + \gamma'z, \quad \frac{\xi'}{a'} + \frac{\eta'}{b'} + \gamma'$$

and

$$a''x + \beta''y + \gamma''z, \quad \frac{\xi''}{a''} + \frac{\eta''}{b''} + \gamma''$$

But it is also possible to select the pairs (x, ξ) and (z, ξ) as belonging to the same grouping, and also the pairs (y, ξ), (z, η). Thus 32 more bitangents are apparently found, to add to the 12 in the grouping that contains (x, ξ) and (y, η). However, some occur in more than one grouping.
(for example the first one of each pair in the above list occur in all
three new groupings) so only 16 new ones have been found, which does
complete the tally of the \(16 + 12 = 28\) bitangents.

The second task involves connecting the bitangents with the
characteristics of the corresponding root functions. Riemann observed
that the odd characteristics may also be grouped in 63 ways in 6 pairs,
and the 63 groupings indexed by the 63 characteristics different from
\(\langle 0\ 0\ 0\rangle\), in such a way that the sum of each pair in a given grouping
is equal to the indexing group-characteristic as we called it. For
example

\[
\begin{array}{cccc}
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}
= \begin{array}{cccc}
1 & 0 & 1 & 1 \\
1 & 0 & 0 & 0
\end{array}
+ \begin{array}{cccc}
0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0
\end{array}
= \begin{array}{cccc}
0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}
+ \begin{array}{cccc}
1 & 1 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}
\]

\[
= \begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 0
\end{array}
+ \begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}
= \begin{array}{cccc}
0 & 1 & 1 & 1 \\
1 & 1 & 0 & 0
\end{array}
+ \begin{array}{cccc}
0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0
\end{array}
= \begin{array}{cccc}
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0
\end{array}
+ \begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0
\end{array}
\]

So, to assign characteristics to the bitangents, each grouping must
have as many characteristics in common as it has bitangents. Starting
from

\[
\sqrt{x + y + z}, \sqrt{ax + \beta y + \gamma z}, \sqrt{a'x + \beta' y + \gamma' z}, \sqrt{a''x + \beta'' y + \gamma'' z}
\]
to which he assigned characteristics (d), (e), (f), and (g) respectively,
assigning to the groupings

\[
\sqrt{y\zeta}, \sqrt{z\xi}, \sqrt{x\eta},
\]
the group characteristics (p), (q), (r), and to \(\sqrt{x}\) the characteristic,
(n+p), respectively, Riemann then wrote down the characteristics of the
16 root functions determined by the calculation above.
Then, denoting the characteristic of \sqrt{x} by (\sqrt{x}) etc, arbitrarily letting

$$(\sqrt{x}) = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, (\sqrt{y}) = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix}, (\sqrt{z}) = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}, (\sqrt{\xi}) = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix},$$

$$(\sqrt{\eta}) = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, (\sqrt{\zeta}) = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix},$$

and he could write down 16 characteristics. For example, the grouping which contains $\sqrt{x\eta}$ and $\sqrt{y\xi}$ has group characteristic (r), so if $(\sqrt{x}) = (n+p)$, then $(\sqrt{x\eta}) = (r)$ implies $(\sqrt{\eta}) = n+p+r$. Similarly, $(\sqrt{x} + y + z) = (d)$ implies $(\sqrt{\xi} + n + z) = (d+r)$, and so on. The remaining 12, those in the grouping corresponding to $(\sqrt{x\xi})$, $(\sqrt{y\zeta})$ were found by finding the equation of the bitangents explicitly and then deducing the characteristics.

The conclusions were neatly summarized by Cayley. Riemann concluded his investigations by observing that the six constants $\alpha, \beta, \gamma, \alpha', \beta', \gamma'$ may be taken as the moduli for the curve, since curves of genus $g = 3$ are parameterized by a space of dimension $3g - 3 = 6$.

The first to develop Riemann's ideas in a geometrical setting was Clebsch, in his paper [1864] already mentioned. He began by observing that the division properties of elliptic functions make them extremely useful to the geometer, and proposed to develop a range of applications of the new Abelian functions, remarking: "That such applications have not been researched until now, although we have had Riemann's theory of these functions for six years, is without doubt to be ascribed for the most part to the difficulties which the work in question still always puts in the way of comprehension, and which also are not quite removed by the newer efforts of younger mathematicians."

Furthermore, he said, Riemann's treatment of the new functions represented them differently than did Jacobi's, and he felt the Jacobi's presentation was superior.
To illustrate the power of the new functions, Clebsch took the discoveries of Hesse and Steiner about quartic curves, which in Hesse's "elegant presentation" rested on a study of lines in space, and showed that "It lies in the nature of the methods here applied that all these theorems appear as quite special cases of other very general ones...".

Clebsch's approach rested on the use of Abel's theorem and its converse, and Jacobi inversion. Given a nonsingular curve \(f = 0 \) of order \(n \) and genus \(p = \frac{(n-1)(n-2)}{2} \), there are \(p \) everywhere finite integrals \(u_1, \ldots, u_p \). If this curve meets another, of degree \(m \), and each \(u_i \) is written as a many-valued function of its upper end-point, then, taking as these end-points the \(mn \) intersection of the curves and writing the values of each \(u_i \) as \(u_i^{(1)}, \ldots, u_i^{(mn)} \), Abel's theorem says

\[
u_i^{(1)} + \ldots + u_i^{(mn)} \equiv 0 \mod \text{periods, } 1 \leq i \leq n.
\]

As we have seen, Clebsch was the first to prove the converse to this. To bring in the geometry Clebsch supposed \(m \geq n - 2 \), and showed by counting constants (§4) that if \(\lambda = mn - pr \) points are chosen arbitrarily on \(t = 0 \) then they can be joined by a curve of degree \(m \) which has \(r \)-fold contact at \(p \) other points. These points may be found as follows. By Abel's theorem

\[
u_i^{(1)} + \ldots + u_i^{(\lambda)} + u_i^{(\lambda+1)} + \ldots + u_i^{(mn)} \equiv 0, \quad 1 \leq i \leq n.
\]

The \(pr \) integrals \(u_i^{(\lambda+1)}, \ldots, u_i^{(mn)} \) occur \(r \) times as \(u_i^{(\lambda+1)} \), say, \(r \) times as \(u_i^{(\lambda+1+r)}, \ldots, r \) times as \(u_i^{(\lambda+1+(p-1)r)} \), so

\[
r(u_i^{(\lambda+1)} + \ldots + u_i^{(\lambda+1+(p-1)r)}) \equiv -(u_i^{(1)} + \ldots + u_i^{(\lambda)}), \quad 1 \leq i \leq p.
\]

or more simply still as

\[
r v_i \equiv -(u_i^{(1)} + \ldots + u_i^{(\lambda)}), \quad 1 \leq i \leq p
\]
This implies
\[v_i = -\frac{1}{r} (u_i^{(1)} + \ldots + u_i^{(\lambda)}) + \frac{A_i}{r}, \quad 1 \leq i \leq p \] (6.3.7)
where the \(A_i \) are arbitrary periods. The \(\theta \)-function with argument
\((v_1, \ldots, v_p)\) specifies, by Jacobi inversion, the position of the \(p \)
points where the contact with the curve is \(r \)-fold. Clebsch, following
Riemann, took the periods in the canonical form
\[A_i = m_i i^m + a_{i1} q_i + \ldots + a_{ip} q_p \]
where each \(m_i \) and \(q_i \) is an integer, so each \(A_i \) contains \(2p \) integers
\(m \) and \(q \) which can take any value between 0 and \(r-1 \) if the congruences
(6.3.7) are to specify distinct points. So Clebsch had shown that
there were \(r^{2p} \) distinct solutions to the problem. For example, there
are \(2^2 \cdot 3 = 64 \) systems of cubics through six given points which touch a
quartic at three other points, and so, letting the first six points
coincide in pairs, there are also 64 systems of cubics touching the
quartic at 6 points (p. 211). These points satisfy the congruences
\[u_i^{(1)} u_i^{(2)} + \ldots + u_i^{(6)} = \frac{1}{2} (m_i^1 i^1 + a_{i1} q_i^1 + a_{i2} q_i^2 + a_{i3} q_i^3) \text{ modulo periods,} \]
where \(1 \leq i \leq 3 \) (6.3.8)
So \(m_i^{(1)} + m_i^{(2)} + \ldots + m_i^{(6)} \equiv 0 \pmod{2} \) (6.3.9)
and \(q_i^{(1)} + q_i^{(2)} + \ldots + q_i^{(6)} \equiv 0 \pmod{2} \)

In the same way other systems of curves touching a quartic
may be enumerated. Clebsch showed in particular that there are 4096
cubics having 4-fold contact with a given quartic at 3 points (§7).

A slight extension of this method enabled Clebsch to show that
a curve of order \(n-3 \) can be found touching a curve of order \(n \) in
\(\frac{n(n-3)}{2} \) points, as for example, a bitangent to a quartic. The number
of such curves is equal to the number of distinct half-periods \(A_i \) for
which \(\theta \) vanishes, which turns out to be \(2^{n(n-3)/2}(2^p-1) \). So when \(n=4 \)
there are \(2^2(2^3-1)=28\) bitangents, and in this case Clebsch's argument reduces to showing that \(\theta\) vanished at a half-period when

\[q_1^{m_1} q_2^{m_2} q_3^{m_3} \equiv 1 \pmod{2}.

Thus Clebsch was led to the same scheme for presenting the bitangents as Riemann: the 28 characteristics \((m_1, m_2, m_3)\). He makes no mention of Riemann's lectures (then unpublished) and may not have known of them.

The 63 systems of conics touching the quartic at 4 points correspond to the 63 characteristics other than \((0, 0, 0)\), and any one system contains 6 conics which are pairs of bitangents, those whose characteristics add \(\Delta p\) to the given characteristics \(\pmod{2}\), as Hesse and Salmon had shown.

The 64 systems of cubics touching the quartic at 6 points satisfy the congruences (6.3.8), which may be abbreviated to

\[u_i^{(1)} + u_i^{(2)} + \ldots + u_i^{(6)} \equiv \frac{A_i}{2},\]

If a bitangent can be found satisfying

\[u_i^{(7)} + u_i^{(8)} \equiv \frac{A_i}{2},\]

then

\[u_i^{(1)} + u_i^{(2)} + \ldots + u_i^{(8)} \equiv 0\]

and so the contact points of the cubic lie on a conic, and on the other hand if there is no such bitangent then the contact points do not lie on a conic. So the 64 systems of conics divide into Hesse's two families, one having 28 and the other 36 members. Other results of Hesse and Steiner were also obtained in this way by Clebsch.

Clebsch went on to describe how curves in space might be treated in the same spirit; these important developments will not be discussed here.
Roch also applied Riemann's ideas to the study of quartics in his paper [1866], written in 1864. His approach was close to Riemann's, and seemingly independent of Clebsch's. A quotient of two theta-functions is the square root of a rational function on the curve if it has $p-1$ double zeros and $p-1$ double infinities, and this will be the case if its characteristic is odd. The zeros can then be taken as bitangent points. Two bitangent pairs S_1 and S_2 lie in the same grouping if and only if $\sqrt[\text{p}]{S_2} / \sqrt[\text{p}]{S_1}$ is a rational function, and Roch showed (§2) that any three root functions in the same grouping are linearly independent. Riemann had given an incorrect proof of this result based on counting constants in his lectures on 28 February, 3, 4 March 1862 [Nachträ], and Roch also showed that 3 bitangents x, y, and z for which the characteristic of \sqrt{xyz} is even give rise to 6 bitangent points which do not lie on a conic, and went on, in §3, to obtain many of Hesse's numerical results. He concluded his paper by considering the case of a quartic curve with a double point, for which the genus is 2, by these methods.

In 1874 Heinrich Weber submitted a work on Abelian functions of genus 3 for the Beneke Prize of the Göttingen philosophy faculty. It was awarded second place and published unaltered as [1876]. He set
himself the task of describing the six-fold periodic functions on such a surface and connecting them with the algebraic aspects of the theory, notably the bitangents of the corresponding quartic curve. As he said, the work contains no essentially new results, but it seemed worthwhile to present the theory unified around Riemann's idea of characteristics25, "which represent the pivot of the entire theory". Indeed, little is novel in the paper, and he even seems unaware of Clebsch's [1864], but some of his presentation is new. He generated the odd characteristics by letting (p) be any even characteristics, when there are 8 different ways of finding 7 odd characteristics $(\beta_1), (\beta_2), \ldots, (\beta_7)$ such that all the characteristics $(p + \beta_i + \beta_k)$ are odd whenever $i \neq k$. (ibid, 25). The characteristics $\beta_i, 1 \leq i \leq 7$ and $(p + \beta_i + \beta_k), 1 \leq i < k \leq 7$ are precisely the 28 odd characteristics, because they are all distinct. This presentation later allows him to derive Aronhold's result that 7 bitangents determine the curve (p.101-2). He gave exhaustive tables of the bitangents in their various groupings, completing the argument begun by Riemann.

However, his paper was written before he became the editor26, with Dedekind, of Riemann's Werke in November 1874. Weber also presented a generalization of Abel's theorem in this paper (§9), which he amplified in his [1875].
6.4 Klein.

In 1878 Klein began to publish a series of papers generalizing his earlier work to equations and transformations of higher degree than five. These works mark a considerable development in the theory of Riemann surfaces, and are the start of the systematic study of modular functions, Klein's greatest contribution to mathematics. They also form, as has been suggested, an important stage in the development of Galois Theory, being the origin of that part of the subject which concerns fields of rational functions on an algebraic curve. Klein distinguished in his papers between the function-theoretic and the purely algebraic directions in which his research was proceeding, concentrating chiefly on the former, which will be dwelt on accordingly and the latter discussed only in footnote 27.

The most important paper on the function-theoretic side is Klein's "Über die Transformation siebenter Ordnung der elliptischen Functionen" [1878/79]. Klein described the path he took in this paper as going from a thorough description of a group of 168 linear substitutions

\[\omega' = \frac{a \omega + b}{c \omega + d} \]

which permute the roots of the modular equation, to a study of a certain function \(\eta \) as a branched function of \(J \), where it turns out that \(\eta \) forms a surface of genus 3. This leads to the study of a curve in the projective plane having 168 symmetries which is, indeed a quartic. Klein devoted quite some time to describing the curve as vividly as possible.

The group of the modular equation of order 7 is, as Galois had known, made up of the 168 linear substitutions \(\omega' = \frac{a \omega + b}{c \omega + d} \) with coefficients in the integers reduced mod 7, and determinant \(+1\). [For, the column \((\mathcal{O})\) in one of the two matrices representing the transformation
\(\omega^1 = \frac{\alpha}{\gamma} \omega + \frac{\beta}{\delta} \) can have any of 8.6 different entries, the number of vectors through the origin in the field \(\mathbb{Z}/7\mathbb{Z} \), and \(\frac{\beta}{\delta} \) can lie in one of 7 other directions. So there are 8.6.7 = 336 matrices, and 168 linear transformations.] The group was usually referred to the group of order 168, and later denoted \(G_{168} \), as it will be here. It is the only simple group of that order, and is isomorphic to \(\text{PSL}(2; \mathbb{Z}/7\mathbb{Z}) \).

Klein described its elements accordingly to their conjugacy class, which essentially determines their geometric character, referring to conjugacy by the word "gleichberechtigt": \(S_1 \) and \(S_2 \) are conjugate if there is an element \(S \) of \(G_{168} \) such that \(S_1 = S^{-1} S_2 S \). He found there were:

a) 21 conjugate substitutions of period two, such as \(-\frac{1}{\omega} \), characterized by the fact that \(\alpha + \delta = 0 \) [i.e. they have zero trace];
b) 28 conjugate pairs of substitutions of period 3, such as \(\frac{-2\omega}{3} \) and \(\frac{-3\omega}{2} \), characterized by \(\alpha + \delta = \pm 1 \);
c) 48 substitutions of period 7 coming in 8 conjugate sets of 6, such as \(\omega + 1, \omega + 2, \ldots, \omega + 6 \), characterized by \(\alpha + \delta = \pm 2 \) and excluding the identity \(\omega' = \omega \); and
d) 21 conjugate pairs of substitutions of period 4 corresponding to each transposition of period 2, such as \(\frac{2\omega + 2}{-2\omega + 2}, \frac{2\omega - 2}{2\omega + 2} \) corresponding to \(-\frac{1}{\omega} \), characterized by \(\alpha + \delta = \pm 3 \).

There are accordingly the following subgroups of \(G_{168} \):

1) The identity;
2) 21 \(G_2 \)'s of order 2;
3) 28 \(G_3 \)'s of order 3;
4) 21 \(G_4 \)'s of order 4;
5) 8 \(G_7 \)'s of order 7;
6) 14 G_4's of order 4 each containing two substitutions of order two which commute with ("sind vertauschbar ... mit") a given substitution of order 2, for example $\omega, \frac{-1}{\omega}, \frac{2\omega + 3}{3\omega - 2}, \frac{3\omega - 2}{2\omega - 3}$ in two families of 7 conjugates;

7) 28 conjugate G_6's of order 6, containing the three substitutions of order 2 commuting with a given G_3;

8) 21 conjugate G_8's of order 8, the centralizers of the G_4's;

9) 8 conjugate G_{21}'s of order 21, the centralizers of the G_7's;

10) 14 G_{24}'s of order 24 in two families of 7 conjugates, arising from the families of G_4's, and which are octahedral groups (this paper, §14).

Klein claimed that this list was complete, but in footnote 6 in the Werke mentions that each G_4'' contains a normal subgroup G_{12} of order 12 isomorphic to the even permutations on 4 things. The G_4's introduced casually here have come to be known as examples of Klein's four-group.

Klein next considered the subgroup of $\text{PSL}(2; \mathbb{Z})$ consisting of those maps $\omega' = \frac{\alpha \omega + \beta}{\gamma \omega + \delta}$ which are conjugate to the identity mod 7 [in his later work he called this group the principal congruence subgroup of level 7, it is usually denoted $\Gamma(7)$] and introduced a single-valued function η on the upper half plane with the property that

$$\eta(\omega) = \eta\left(\frac{\alpha \omega + \beta}{\gamma \omega + \delta}\right) \text{ if and only if } \omega' = \frac{\alpha \omega + \beta}{\gamma \omega + \delta} \text{ is in } \Gamma(7).$$

The fundamental region for η is 168 copies of the fundamental region for J, since $\Gamma(7)$ has index 168 in $\text{PSL}(2; \mathbb{Z})$, and $\text{PSL}(2; \mathbb{Z})/\Gamma(7) \cong G_{168}$. So for each value of $J(\omega)$ there are 168 different values of $\eta(\omega)$. As for the branching of η over J, it followed from an earlier paper of Klein's that only $J = 0, 1, \infty$ can be branch points. It follows from the classification of the
substitutions and their fixed points that, at \(J = 0 \) the branching is of order 3 and the leaves hang in 56 cycles; at \(J = 1 \) the branching is of order 2 in 84 cycles; and at \(J = \infty \) the order is 7 (typically \(\omega' = \omega + 1 \)). The genus of the surface is thus

\[
p = \frac{1}{2} (2 - 2 \cdot 1.68 + 2.56 + 1.84 + 6.24) = 3,
\]

and \(\pi \) forms a Riemann surface of genus 3 admitting 168 conformal self-transformations. \(\mathbb{T} \) moves the fundamental region around en bloc, and so provides the identifications of the sides to yield a closed surface; \(G_{168} \) provides the self-transformations of the surface.\(^1\)

To understand this surface better Klein introduced certain special points corresponding to the branching. The 24 points \(a \) correspond to \(J = \infty \); the 56 points \(b \) to \(J = 0 \); the 84 points \(c \) to \(J = 1 \). Since each \(a \) is fixed by a \(G_7 \), of which there are 8, each \(G_7 \) fixes 3 \(a \)'s. Likewise each \(G_3 \) fixes 2 \(b \)'s, and each \(G_2 \) four \(c \)'s. No \(G_4 \) fixes any point.

To obtain an equation for the curve Klein (quoting Clebsch-Gordan \[1866\] p.65 and Clebsch-Lindemann \[1876\] pp.687, 712, but only in the \textit{Werke}) argued that the equation would be either a plane quintic with triple points, if the curve was hyperelliptic, or else a non-singular quartic. The curve in question could not be hyperelliptic \[because \(G_{168} \) is simple\] so it can be represented by a non-singular quartic, \(C_4 \), and \(G_{168} \) becomes a group of 168 plane collineations. Klein remarked here that \(G_{168} \) had seemingly been omitted by Jordan in his list \[1877/78\], and only included in the Correction \[1878\]. But now the \(a \)'s, \(b \)'s, and \(c \)'s can be immediately connected with distinguished point sets on a quartic which correspond to certain projective properties. The \(a \)'s are the 24 inflection points; the 28 pairs of \(b \)'s the points of contact of the 28 bitangents; the 21 quadruples of \(c \)'s the sextactic points, at which a cubic has threefold contact with the quartic (a sextactic point is one where a conic has 6-fold contact with a curve).
Furthermore, the triples of a's (inflection points) preserved by a G₃ can be regarded as follows. Each inflection tangent to a C₄ meets it again in 1 point, so there are 24 thus distinguished points, which must be the inflection points themselves (since they form the only distinguished set of 24 points). No inflection tangent is a bitangent, so each inflection tangent meets the curve in a different inflection point. A collineation fixing a given a must also fix its inflection tangent and so the new inflection point, and by iterating this argument one sees that the triple a's preserved by the G₃ are the vertices of a triangle whose sides are inflection tangents, and so there are 8 such inflection triangles.

The 21 quadruples of c's are invariant under collineations of order 2, i.e. perspectivities, which thus occur having 21 centres and 21 axes, each quadruple lying on an axis. There are 4 axes through each centre, 4 centres on each axis (since each transformation of order two fixes 4 c's and 4 other points). Each bitangent carries 3 centres, through each of which pass 4 bitangents. Each G₂₄ permutes a distinguished set of 4 bitangents.

If an inflection triangle is taken as triangle of reference, so the sides are λ = 0, μ = 0, ν = 0, it is soon clear (§ 4) that the equation of the curve is \(f(λ, μ, ν) = λ^3 μ + μ^3 ν + ν^3 λ = 0. \)

Klein gave a series of explicit calculations for the equations of bitangents with respect to this triangle of reference and others, adapted to display the symmetry and so invariance with respect to particular subgroups of G₁₆₈. He also gave a representation of the group G₁₆₈ as projective collineations of the following forms

\[
\lambda' = Aλ + Bμ + Cν
\]
\[
μ' = Bλ + Cμ + Aν
\]
\[
ν' = Cλ + Aμ + Bν
\]
where \(A = \frac{\gamma^5 - \gamma^2}{\sqrt{7}} \), \(B = \frac{\gamma^3 - \gamma^4}{\sqrt{7}} \), \(C = \frac{\gamma^6 - \gamma}{\sqrt{7}} \)

and \(\gamma = e^{2\pi i/7} \) so \(\gamma + \gamma^4 + \gamma^2 - \gamma^6 - \gamma^3 - \gamma^5 = \sqrt{7} \), or

(2) \(\lambda' = \mu, \mu' = \nu, \nu' = \lambda, \) or

(3) \(\lambda' = \gamma\lambda, \mu' = \gamma^4 \mu, \nu' = \gamma^2 \nu \)

and compounds of (1), (2), and (3).

The associated invariants and covariants of the curve are fairly easy to study geometrically. Its Hessian \(V = 5\lambda^2 \mu^2 \nu^2 - (\lambda^5 \nu + \nu^5 \mu + \mu^5 \lambda) \) of course meets it in the 24 inflection points, and since this is the smallest set of distinguished points there is no invariant polynomial of degree less than 6, and, up to constant multiples, only the Hessian of degree 6. Similarly the next invariant polynomial will be of degree 14 and its intersection with the curve will be the bitangent points. There are many such, but all are sums of \(f^2 \nu \) and any one which is not a constant multiple of \(f^2 \nu \). Klein chose

\[
C = \frac{1}{9} \begin{vmatrix}
\frac{\partial^2 f}{\partial \lambda^2} & \frac{\partial^2 f}{\partial \lambda \mu} & \frac{\partial^2 f}{\partial \lambda \nu} & \frac{\partial^2 f}{\partial \nu} & \frac{\partial \nu}{\partial \lambda} \\
\frac{\partial^2 f}{\partial \mu \lambda} & \frac{\partial^2 f}{\partial \mu^2} & \frac{\partial^2 f}{\partial \mu \nu} & \frac{\partial \nu}{\partial \mu} \\
\frac{\partial^2 f}{\partial \nu \lambda} & \frac{\partial^2 f}{\partial \nu \mu} & \frac{\partial^2 f}{\partial \nu^2} & \frac{\partial \nu}{\partial \nu} \\
\frac{\partial \nu}{\partial \lambda} & \frac{\partial \nu}{\partial \mu} & \frac{\partial \nu}{\partial \nu} & 0
\end{vmatrix}.
\]

For an invariant of degree 21 he chose the functional determinant, \(K \), of \(f, \nu, \) and \(C \):

\[
K = \frac{1}{14} \begin{vmatrix}
\frac{\partial f}{\partial \lambda} & \frac{\partial \nu}{\partial \lambda} & \frac{\partial \nu}{\partial \nu} & \frac{\partial \nu}{\partial \lambda} \\
\frac{\partial f}{\partial \mu} & \frac{\partial \nu}{\partial \mu} & \frac{\partial \nu}{\partial \mu} \\
\frac{\partial f}{\partial \nu} & \frac{\partial \nu}{\partial \nu} & \frac{\partial \nu}{\partial \nu}
\end{vmatrix}.
\]
Since K is the only invariant polynomial of degree 21 it must represent the 21 axes of the perspectivities. Finally to represent the 168 corresponding points on $f = 0$, he considered the family of curves $V^7 = k C^3$, where k is a constant. There is a linear relation between V^7, C^3, and K^2 precisely as in the icosahedral case, in this case a comparison of coefficients in the explicit representations of V, C, and K in terms of λ, μ, ν shows

$$(-\nu)^7 = \left(\frac{C}{12}\right)^3 - 27\left(\frac{K}{216}\right)^2,$$

i.e. $J : J - 1 : 1 = \left(\frac{C}{12}\right)^3 : 27\left(\frac{K}{216}\right)^2 : -\nu^7,$

or, in terms of the invariants of elliptic integrals

$$g_2 = \frac{C}{12}; g_3 = \frac{K}{216}; 7\sqrt{\Delta} = -\nu,$$

and f, V, C, K represent a complete system of covariants of f.

The equation of degree 168 is the resolvent of the modular equation. Since G_{168} has subgroups of indices 7 and 8 the equation has resolvents of degrees 7 and 8, which Klein also found. The resolvent of degree 8 he connected to the 36 systems of contact cubics of even characteristic via the 8 inflection triangles. This led him to an explicit solution to the equation of degree 168 in terms of elliptic functions, and he remarked in footnote 21 "[The equation] must also be solvable by means of a linear differential equation of the third order; how can one construct it?" This problem was solved by Hurwitz and Halphen.

Klein then turned, in the concluding sections of the paper, to the task of describing these resolvents "as graphically as possible with the aid of Analysis Situs". The function J maps one half of its fundamental region onto the upper half-plane, the other onto the lower half-plane. Let the triangle mapping onto the upper half-plane be shaded, then the fundamental region for μ contains 168 shaded and 168 unshaded triangles. The vertices of these triangles, in accordance with the branching of μ,
Fig. 6.4

There are 13 symmetry lines, and they can be traced on the figure, some case is needed at the vertices of the 16-gon, which are of two kinds. For example, the vertical line 0 0, continuous as the edge 3 (which is...

Zusammengehörigkeit
der Kanten:

1 - 6	2 - 5
7 - 10	9 - 12
11 - 2	13 - 4

Klein. Transformation vierter Ordnung.
Mathematische Annalen Bd.

Fig. 6.4

closed surfaces the lines are closed curves, i.e. projective lines.
are the \(a\), \(b\), and \(c\) points; at a point \(a\) 7 triangles meet, at a \(b\) 3 triangles and at a \(c\) 2 triangles. As originally presented the points \(a\) are at infinity, and the vertical angle is 0, whereas the vertical angles at the \(b\)'s are \(\pi/3\), and at the \(c\)'s \(\pi/2\), and Klein found it more attractive to work with triangles having angles \(\pi/7\), \(\pi/2\), \(\pi/3\). He did not explain how this transition could be made; his student M. W. Haskell wrote a thesis on this curve in 1890 and pointed out that the Schwarzian \(s\)-function \(s(\frac{1}{3}, \frac{1}{2}, \frac{1}{7}, J)\) can be used [Haskell, 1890, p.9n]. An examination of elements in \(\text{PSL}(2; \mathbb{Z})\) congruent to the identity mod 7 provides the identification of the edges on the boundary needed to make the curvi-linear 14-gon into a closed surface: if the edges are numbered anticlockwise then 1 is identified with 6, 3 with 8, 5 with 10, and so on, until 13 is identified with 4.

The beautiful figure of 168 shaded and 168 unshaded triangles not only displays the inflection points, bitangent points, and sextactic points of the curve as the vertices of the triangles. It also contains several interesting lines, which run straight through the \(a\)'s, \(b\)'s, and \(c\)'s in this order:

![Fig. 6.5](image)

They are the points of the surface on which \(J\) is real-valued. On the closed surfaces the lines are closed curves, i.e. projective lines. There are 28 symmetry lines, and they can be traced on the figure, some care is needed at the vertices of the 14-gon, which are of two kinds. For example, the vertical line 0, 0, 0, 8 continues as the edge 5 (which is,
of course, identified now with the edge 10). Klein remarked: "These symmetry lines are for many purposes the simplest means of orientation on our surface; I will use them here to define the mutually corresponding points \(a, b, c\) on the surface. It is then easy to picture the corresponding self transformations of our surface." The seven symmetry lines emanating from an \(a\) meet again in the two corresponding \(a\)'s. The three symmetry lines through a point \(b\) meet in the corresponding \(b\); and the two through \(c\) meet again in \(c\). Furthermore, if the surface is cut open along the seven lines through a given \(a\), then, because the genus is 3, it appears as a simply-connected region with boundary curve: the 14-gon is recovered. Two corresponding \(b\)'s give rise to three symmetry lines which meet another symmetry line through two \(c\)'s, so there is a one to one correspondence between the \(b\)'s and the symmetry lines. Finally the two lines through a pair of corresponding \(c\)'s meet all the other symmetry lines but two, which themselves meet in two \(c\)'s, giving rise to the quadruples of \(c\)-points.

Klein wanted to display the figure in as regular a way as possible, but he knew that there is no solid in three dimensional space whose symmetry group is \(G_{168}\). However, he pointed out, \(G_{168}\) contains several octahedral subgroups \(G_{24}\). Each permutes a set of 4 pairs of \(b\)-points. It is possible to surround a \(b\)-point with 3 14-gons (strictly 7-gons, because of the adjacent vertical angles of \(\pi/2\)) made up of the 14 triangles meeting at an \(a\)-point, thus dividing the figure so that it is seen as containing \(4.2.(3.14) = 336\) triangles. The \(G_{24}\) acts then on a true octahedron, with a \(b\) point at the mid-point of each face, the \(a\)-points as vertices, and some \(c\)-points as mid-edge points, provided diametrically opposite points are identified.
The aspects of the figure which cannot be realized in three space have this interpretation: one imagines the octahedron as composed of three hyperboloids of one sheet with axes crossing at right angles, and with opposite edges identified at infinity, thus representing a surface of genus 3. The axes of the hyperboloids may be said to pass through the vertices of the octahedron.

Klein concluded the paper with a discussion of the real part of the curve, in keeping with an earlier interest of his, and supplied the following attractive figure shown opposite.

This paper must have convinced Klein, if he needed convincing, of the power of his new methods. A year later he reported on this progress in a paper suggestively entitled "Towards a theory of elliptic modular functions". In this work he set himself the task of showing how the different forms in which one encountered the modular equation were very special cases of a simple general principle. The theory should begin, he said, with an analysis of all the subgroups of $\text{PSL}(2; \mathbb{Z})$, he proposed in this paper only to deal with subgroups of finite index, which he admitted was a great restriction. He pointed out that this use of groups as a classifying principle went beyond Galois in that it invoked infinite.
as well as finite groups, to be precise, infinite normal
("ausgezeichneten") subgroups of PSL(2; Z). His second classifying
principle, introduced on empirical grounds, was that the subgroups
should be defined arithmetically by means of congruences, but, he
pointed out sternly, "it must be clearly understood that not all
subgroups are congruence groups". Thirdly, he argued that a
fundamental polygon should be introduced for each group, and the
function theory of the corresponding Riemann surface brought into
consideration. In particular, the genus of the surface should be
evaluated, above all to see whether or not it is zero.

For a given subgroup, he considered the functions invariant
under the substitutions of the subgroup; such functions he called
Moduln, here translated as modules (moduli would also be confusing).
When \(p = 0 \) a module can be found taking each value precisely once on
the fundamental polygon. For \(p > 0 \) two modules are needed to specify
a point, and they will be related by an algebraic equation of degree \(p \).
The case \(p = 0 \) includes, he pointed out, the \(v^{th} \) roots of Legendre's
modules \(\kappa^2 \) and of \(\kappa^2 \kappa'^2 \) for integers \(v \). Up until now only the follow-
ing had been studied in the usual theory: \(\kappa^2, \kappa, \sqrt[k]{\kappa}, 4\sqrt[k]{\kappa}, \kappa^2 \kappa'^2, \kappa \kappa', \sqrt[k]{\kappa \kappa'}, 4\sqrt[k]{\kappa \kappa'}, 3\sqrt[k]{\kappa \kappa'}, 6\sqrt[k]{\kappa \kappa'}, 12\sqrt[k]{\kappa \kappa'} \), and this was, he said,
because only these are congruence modules.

For a modular transformation \(w' = w/n \) or \(w' = -n \sqrt[w]{w} \) Klein
proposed to consider the equation between \(J(w) \) and \(J(w') \) as the prototype
of all modular equations, and to investigate it by finding its degree,
its Galois group, and subgroups thereof.

One notices very clearly here the role of invariant functions and
the sense in which Galois groups appear as indices of the relation
between two fields of functions. It is in this sense that Klein, and
Gordan also, have been described in Chapter IV as extending or going
beyond the Galois theory of their day. Also, Klein was clearly aware how many groups are excluded from his approach by the arithmetic restriction. It was to be his chief concern in the next two years to find some way of eliminating it from the theory of Riemann surfaces and modular functions, as will be discussed in the final chapter.

Two of Klein's students at this time deserve particular mention: Walther Dyck, and Adolf Hurwitz. Dyck presented his thesis at Munich in 1879 on the theory of regularly branched Riemann surfaces, and published two papers on this topic in the Mathematische Annalen the next year [1880a, b]. He called a surface regularly branched if each leaf was mapped by the self-transformations of the surface onto every other leaf, and was particularly interested in the case where the group (supposed to be of order N) has a normal ("ausgezeichneten") subgroup of order N_1. He then interested himself in the surfaces corresponding to the subgroup and the quotient group, and in this way analysed surfaces until simple groups were reached. The map of a subgroup into a bigger group corresponds to a map of one Riemann surface onto another, and he gave explicit forms for these in the cases he looked at. In the example which most attracted him, the surface was composed of triangles with angles \(\pi/2, \pi/3, \) and \(\pi/8 \), and its genus is 3. The principal group has order 96, so Dyck regarded the surface as having 96 leaves. There is a normal subgroup of order 48, and so a surface made up of triangles with angles \(\pi/3, \pi/3, \) and \(\pi/4 \), of genus 0. This in turn sits over a 16 leaved surface made up of 2-sided leaves with vertical angles of \(\pi/3 \) and \(\pi/3 \), and so on until a double cover of the sphere is reached. He also noted that other decompositions are possible.
Dyck was in some ways very like Klein as a mathematician, attracted to "anschauliche" geometry and the role of groups in describing the symmetry of figures. He also became very interested in constructing models of various mathematical objects, and collaborated with Klein in the design of these for the firm, owned by A. Brill's brother in Munich, which made them.

Klein's other, and younger, student was a more independent character. Hurwitz's *Inauguraldissertation* at Leipzig was published in the *Mathematische Annalen* for 1881 [Hurwitz 1881]. It recalls both Klein and Dedekind's work on modular functions, but it develops the theory entirely independently of the theory of elliptic functions. This had been Dedekind's aim as well, but had not been able to carry it through completely. Hurwitz succeeded because he had read and understood Eisenstein, a debt he fully acknowledged. He did not say he was the first person to have read Eisenstein since the latter's death in 1852, although he might well have been. Weil points out [Weil 1976, 4] that only Hurwitz and Kronecker (in 1891) seem to mention their illustrious predecessor in the whole of the later nineteenth century. In Hurwitz's case the reference to Eisenstein is a little more substantial than Weil's comment might suggest, but even so it was not sufficient to rescue him from the shades.

Hurwitz began by recapitulating Klein's work on the group of transformations $w' = \frac{\alpha w + \beta}{\gamma w + \delta}$ (where α, β, γ, and δ are integers and $\alpha \delta - \beta \gamma = 1$) here called the principal group (Hauptruppe). He established that the region of the upper-half plane bounded by $\text{Re}(\omega) = -\frac{1}{2}$, $|\omega| = 1$, and $\text{Re}(\omega) = \frac{1}{2}$ is a fundamental polygon for the principal group, and introduced the idea of congruence subgroups and their fundamental polygons, following Klein [Klein 1880/81].
obtain functions invariant under the modular group or, alternatively, under one of its proper subgroups, Hurwitz turned to the ideas of Eisenstein's [1847], and defined modular functions as quotients of modular forms of the same weight. A modular form for the principal group was typically a sum of homogeneous functions \(\phi(\omega_1, \omega_2) \) of dimension \(k \) in two variables of the type

\[
\sum \phi(\lambda \omega_1 + \mu \omega_2, \nu \omega_1 + \rho \omega_2); \text{ if}
\]

\[
\phi(\lambda \omega_1 + \mu \omega_2, \nu \omega_1 + \rho \omega_2) = (\nu \omega_1 + \rho \omega_2)^k \phi(\omega_1, \omega_2) \text{ if } \phi \text{ is of weight } -k.
\]

The sum was taken over all integral \(\lambda, \mu, \nu, \) and \(\rho \) (thus over the lattice generated by \(\omega_1 \) and \(\omega_2 \), Hurwitz stipulated that \(\omega_1/\omega_2 \) was not real) and was further required to be independent of the order of the summation in some domain for which it yielded a single-valued function of \(\omega_1 \) and \(\omega_2 \). Modular functions are consequently invariant under the principal group.

Hurwitz said it would be enough to consider these examples

\[
\sum_{\mu, \nu = -\infty}^{\infty} \left(\frac{1}{\mu \omega_1 + \nu \omega_2} \right)^m \quad (\text{'} \ means \ omit \ \mu = 0 = \nu \ from \ the \ summation)
\]

for \(m \) an integer greater than 2. These are zero when \(m \) is odd, so he considered

\[
G_n(\omega_1, \omega_2): = \sum_{\mu, \nu = -\infty}^{\infty} \left(\frac{1}{\mu \omega_1 + \nu \omega_2} \right)^{2n}, \quad n > 1
\]

Like Eisenstein he also admitted

\[
\frac{G_1(\omega_1, \omega_2)}{2} = \sum_{\mu, \nu = -\infty}^{\infty} \left(\frac{1}{\mu \omega_1 + \nu \omega_2} \right) \quad \text{and}
\]

\[
G_1(\omega_1, \omega_2): = \sum_{\mu, \nu = -\infty}^{\infty} \left(\frac{1}{\mu \omega_1 + \nu \omega_2} \right)^2 \text{ for which the convergence}
\]

depends on the order of summation, and an order must be fixed once and for all.
Still following Eisenstein he obtained power series expansions for G_1, G_2, and G_3, and pointed out that Weierstrass's invariants for elliptic integrals of the first kind are already to hand: $g_2 = 60G_2$, $g_3 = 140G_3$. (These functions, and indeed Weierstrass's \wp function, are in Eisenstein, see also Weil [1976, 24].) He added that G_1, ω_2 is what Weierstrass denoted, up to a factor, by 2π in his lectures on elliptic functions.

Then he derived an absolute invariant Δ as

$$\Delta(\omega_1, \omega_2) = \left(\frac{2\pi}{\omega_2}\right)^{12} q^{\frac{\pi}{24}} \prod_{k=1}^{\infty} (1 - q^{2k})^{24},$$

where $q = e^{i\pi \omega_1/\omega_2}$ and Klein's J invariant as g_2^3/Δ up to a constant factor, which he showed how to find using standard arguments about poles of quotients.

He extended these techniques to show that all the G_μ, $\mu > 3$, are polynomial functions of g_2 and g_3. The coefficients of the polynomials could be found, he said, by Eisenstein's method of partial fractions [Eisenstein 1847, 285].

Differential quotients of modular forms are again modular forms and Hurwitz considered these too, finding, for example

$$\frac{dJ(\omega)}{d\omega} = \frac{\omega_1^{\nu/3}}{\pi} \frac{6\sqrt{\Delta}}{J^{2/3}(J - 1)^{1/2}}$$

which recalls Dedekind's equation [Dedekind 1877, §6] described above:

$$\eta(\omega) = \text{const. } v^{-1/6} (1 - v)^{-1/8} \left(\frac{dv}{d\omega}\right)^{1/4},$$

where Dedekind's v is Klein's J, indeed $\eta(\omega) = \alpha^2 \Delta^{1/4}$ apart from a constant factor.

In part II of his paper Hurwitz considered what he called the multiplier equation at the first level (i.e. for the principal group). The 12th root of $\Delta(\omega)$ is still single-valued as a function on the upper half plane, unlike the higher roots of Δ, so Hurwitz looked for its corresponding group. This would also be the group keeping $\Delta^{1/3}$ and $\Delta^{1/4}$ simultaneously invariant. The harder case, he found, was $\Delta^{1/4}$.
This group is generated by \(\omega' = \omega + 2 \) and \(\omega' = \frac{\omega - 1}{\omega} \). It is a congruence group at the 4th level, i.e. on taking congruences mod 4 its elements are reduced to one of 12 elements filling out a group isomorphic to the tetrahedral group. Similarly the group for \(\Delta^{1/3} \) reduces under congruences modulo 3 to a group of order 8 (listed explicitly by Hurwitz, it is \(D_4 \)). Following Dedekind and Hermite, Hurwitz then considered the twelve roots of unity appearing in

\[
\Delta^{1/12} \left(\frac{a \omega + b}{c \omega + d} \right)
\]

gave an explicit expression for them (§ 3).

He could now tackle what he called the transformation problem: relating the values of a modular function \(F \) at \(\omega \) and \(\omega' \) when \(\omega \) and \(\omega' \) are related in a specified way. In particular, he considered the case \(\omega_1' = \omega_1/n, \omega_2' = \omega_2 \), \(n \) an integer. He showed there were as many inequivalent sets of pairs \((\omega_1, \omega_2) \) as the index of the group

\[
\{ (\alpha \beta : \beta \equiv 0 \pmod{\nu}) \text{ in the principal group, i.e. } N: = n \prod_{p|n} (1 - \frac{1}{p}) \}.
\]

What he called the multiplier equation at the first level was the equation of degree \(N \) (when \(n \) was prime to 12) whose roots were the magnitudes \(\Delta^{1/12} (\omega_1/n, \omega_2) \). He gave the equation that name since the multiplier of elliptic integrals normalized by \(\Delta^{1/12} \) is

\[
\Delta^{1/12}(\omega_1/n, \omega_2) \frac{\Delta^{1/12}(\omega_1, \omega_2)}{\Delta^{1/12}(\omega_1/n, \omega_2)},
\]

and he gave the roots as infinite products in \(q \). He also showed how to eliminate the side condition on \(n \).

Then he considered the monodromy group of the multiplier equation and showed it was isomorphic to the group of the corresponding modular equation. Finally he computed the coefficients of the multiplier equation explicitly in certain special cases, having shown that they must always be rational functions of \(g_2(\omega_1, \omega_2) \) and \(g_3(\omega_1, \omega_2) \).
CHAPTER VII AUTOMORPHIC FUNCTIONS

This final chapter is, naturally, concerned with the triumphant accomplishments of Poincaré: the creation of the theory of Fuchsian groups and automorphic functions. These developments brought together the theory of linear differential equations and the group-theoretic approach to the study of Riemann surfaces, so this account draws on all of the preceding material. It begins with a significant stage intermediate between the embryonic general theory and the developed Fuchsian theory: Lamé's equation.

7.1 Lamé's Equation.

1) Lamé's equation may be written variously as

\[
\frac{d^2y}{dx^2} + \frac{1}{2} \left[\frac{1}{x-e_1} + \frac{1}{x-e_2} + \frac{1}{x-e_3} \right] \frac{dy}{dx} - \frac{(n(n+1)x + B)y}{4(x-e_1)(x-e_2)(x-e_3)} = 0 ,
\]

(7.1.1)

which exhibits it algebraically as an equation of the Fuchsian type, as

\[
\frac{d^2y}{du^2} - (n(n+1) \wp(u) + B) y = 0
\]

(7.1.2)

which may be called the Weierstrassian form, or as

\[
\frac{d^2y}{dv^2} - (n(n+1)k^2sn^2v + A)y = 0
\]

(7.1.3)

which may be called the Jacobian form. Form 7.1.1 is essentially how it was introduced by Lamé [1845] in connection with a study of triply orthogonal coordinates in space. The substitution \(x = \wp(u) \), where \(\wp \) is Weierstrass's elliptic function with half-periods \(e_1, e_2, \) and \(e_3 \) transforms (1) into (2); in this form the equation was studied by Halphen [1884]. The substitution \(r = u(e_1 - e_3)^{1/2} \) transforms (2) into (3), where

\[
A = \frac{B + e_3n(n+1)}{(e_1 - e_3)} \quad \text{and} \quad k = \left(\frac{e_2 - e_3}{e_1 - e_3} \right)^{1/2} ; \quad \text{in this form it was studied by Hermite [1877] and Fuchs [1878].} \]
As an equation of the Fuchsian type it has four regular singular points: e_1, e_2, and e_3, at which the exponents are 0 and $\frac{1}{2}$ in each case, and infinity, at which the exponents are $-\frac{1}{2}n$, $\frac{1}{2}(n+1)$. Its properties, however, come out more clearly when it is written in either of the elliptic forms. Hermite [1877 = Oeuvres III, 266] summarized work of his predecessors as follows. Lamé had shown that for suitable values of the constant, A, in (7.1.3) one solution can be written as a polynomial of degree n in snx.

Liouville [1845] and Heine [1845] independently had studied the second solution and Heine established a connection, via what he called higher order Lamé functions, with spherical harmonics. In a series of papers Hermite [1877-1882 = Oeuvres III, 266-418] considered the case when the constant A may be arbitrary, and showed that the solutions were always elliptic functions of the second kind. These are functions F such that

$$F(x+2K) = \mu F(x)$$
$$F(x+2iK') = \mu' F(x)$$

for some constants μ and μ'. Hermite showed that they may always be written in terms of Jacobi's functions Θ and H. The designation of the second kind was introduced by Picard [1879], it conforms with Legendre's classification of elliptic integrals. Hermite gave many examples of how elliptic functions, of both the old and the new kinds, could solve problems in applied mathematics, and initiated a considerable amount of research in that area.²

²

Fuchs, in his [1877c] observed that the explicit forms of the solution follow from the elementary fact that, if y_1 is one solution of an equation

$$\frac{d^2y}{dx^2} + p_1 \frac{dy}{dx} + p_0 y = 0,$$

then there is another, linearly independent, solution of the form $y_2 = y_1 \int \frac{e^{-\int p_1 \, dx}}{y_1^2} \, dx$. Hermite's work connected with cases
studied by Fuchs [1876a, §13], when working on the all-solutions-algebraic
problem, of equations integrable by elliptic or Abelian functions: the
equation \(\frac{d^2y}{dx^2} = Py \) has a solution of the form \(y = \phi(z)^{1/2} e^{\left(\sqrt{-\frac{\lambda}{4}} \int \frac{dz}{\phi(z)}\right)} \),
where \(\phi^2(z) \) is rational in \(z \), \(\lambda \) is a constant, and \(P = \frac{1}{4} \left(\frac{d}{dz} \log \phi \right) + \frac{1}{2} \frac{d^2}{dz^2} \log \phi - \frac{\lambda}{4\phi^2} \). Fuchs observed [1878a] that \(\lambda = 0 \) led to Heine's Lamé
functions of higher order, and that the integrals are elliptic if
\(\phi^2(z) = (1 - z^2)(1 - k^2z^2) \), when the differential equation reduces to Lamé's.

In a third paper [1878c] Fuchs investigated what conditions must be
imposed on the coefficient \(P \) so that \(\frac{d^2y}{dx^2} = Py \) has a basis of solutions
consisting of two elliptic functions of the second kind whose poles are
the poles of \(P \). Since \(P = \frac{d^2y_i}{y_i dx^2} \) for any solution \(y_i \) of the equation,
P must be a single-valued doubly periodic function of \(x \), which, Fuchs,
going on to show, can be written explicitly as a sum of Jacobian functions
\(H \) (equation 10).

The converse to this theorem was established by Picard, who showed
[1879b, 1880a,b] that every differential equation \(\frac{d^2y}{dx^2} + p \frac{dy}{dx} + qy = 0 \) of
the Fuchsian class with doubly periodic coefficients and single-valued
solutions, has as its general solution a sum of two doubly periodic functions
of the second kind, with an analogous result for equations of higher order.
He also showed how the solutions can in general be written explicitly,
the exceptional cases were treated by Mittag-Leffler [1880]. Picard's [1881]
presented his results to a German audience with extensions to systems of
first-order linear equations. The result about the basis of solutions followed
easily from Picard's observation that, if it is false, then there are equations
of the form
\[
f(x + 4K) = Af(x) + Bf(x + 2K) \\
f(x + 4iK') = A'f(x) + B'f(x + 2iK')
\]
where f is a solution of the differential equation and $2K$ and $2iK'$ are the periods of p and q. But then a suitable linear combination of $f(x)$ and $f(x + 2K)$ can be found, say $\alpha f(x) + \beta f(x + 2K)$, such that

$$af(x + 2K) + \beta f(x + 4K) = \lambda (af(x) + \beta f(x + 2K))$$

for some λ, and so $\alpha f(x) + \beta f(x + 2K)$ is the sought-for solution.

Once it has been found, and because $e^{-\int p\,dx}$ is doubly periodic since the general solution is single-valued, the function $e^{-\int p\,dx} / f^2(x)$ is also doubly-periodic of the second kind. There is then an independent doubly periodic solution (of the second kind): $f(x) \int e^{-\int p\,dx} / f^2(x)$. The quasi-periods of the solutions are the periods of the coefficients. It may, of course, happen that the solutions are themselves doubly-periodic functions of the first kind.

A thorough study of equations with doubly-periodic coefficients was made by Halphen in 1880 in his prize-winning essay (published as [1884] and again in [1921]). He showed (p55) that any linear differential equation with single-valued doubly-periodic coefficients and a pair of independent solutions whose ratio is only undefined at infinity can be transformed into one of the same form for which the solutions are single-valued. The periods of the coefficients will in general be changed by this transformation. Halphen drew on the earlier results of Hermite and Picard, and on Weierstrass's theory of elliptic functions as presented in [Kiepert, 1874] and [Mittag-Leffler, 1876]4. Halphen also showed how to solve the hypergeometric equation when its solutions are elliptic functions, and how to solve Lamé's equation, e.g. (93, equation 44)

$$\frac{d^2y}{du^2} = \frac{3}{4} \Theta(u)y$$

has the solutions

$$y = \left(\Theta'(u_2)^{-\frac{1}{2}}\right)^{-\frac{1}{2}}$$

and

$$y = \left(\Theta'(u_2)^{-\frac{1}{2}}\right)^{-\frac{1}{2}} \Theta(u/2).$$
Halphen's presentation also showed how one might proceed from equations with rational coefficients to those with elliptic coefficients and then to those with more general algebraic coefficients via the theory of invariants (Chapter IV above). Nevertheless, for the most part he confined himself to cases integrable by elliptic functions. The successful treatment of the more general cases was inspired by the work of Fuchs which will now be discussed, and presented to the Academy in an essay which took second place to Halphen's.
In a series of paper [1880 a, b, c, d, e, 1881 a, b, c] (this summary follows [1880 a, b]) Fuchs considered the equation

\[
\frac{d^2 y}{dz^2} + P(z) \frac{dy}{dz} + Q(z)y = 0, \quad (7.1.5)
\]

where \(P\) and \(Q\) are rational functions of \(z\), took functions \(f(z)\) and \(\phi(z)\) as a basis of solutions for it, and asked: when is \(\frac{f(z)}{\phi(z)} = \zeta\) a single valued function of \(\zeta\)? To obtain an answer he made certain other simplifying assumptions. He considered, by analogy with Jacobi inversion, the equations

\[
\begin{align*}
\int_{\zeta_1}^{z_1} f(z) \, dz + \int_{\zeta_2}^{z_2} f(z) \, dz &= u_1, \\
\int_{\zeta_1}^{z_1} \phi(z) \, dz + \int_{\zeta_2}^{z_2} \phi(z) \, dz &= u_2,
\end{align*}
\quad (7.1.6)
\]

as defining functions of \(u_1\) and \(u_2\): \(z_1 = F_1(u_1, u_2)\), \(z_2 = F_2(u_1, u_2)\).

Plainly

\[
F_i(a_1 u_1 + a_2 u_2 + a_1 c, a_2 u_1 + a_2 u_2 + a_2 c) = F_i(u_1, u_2), \quad i = 1, 2.
\]

He let \(a_i\), \(i = 1, \ldots, n\), and \(\zeta\) be the singular points of the differential equation, and took the roots of the associated indicial equations to be \(r_1(i), r_2(i), i = 1, \ldots, n\), and \(s_1\) and \(s_2\). He let \(a\) and \(b\) be two distinct points, possibly infinite, and let \(u_1, u_2\) be such that \(z_1(u_1, u_2) = a\) and \(z_2(u_1, u_2) = b\) and let either \(a, b\), or both be singular points, but insisted that \(f(z_1)\phi(z_1) - f(z_2)\phi(z_2) \neq 0\). (Call these conditions \(A\).) Then the four derivatives \(\frac{\partial z_i}{\partial u_j}\) are holomorphic functions of \(z_1, z_2\) near \(z_1 = a, z_2 = b\). Furthermore every value \((z_1, z_2) \in \mathbb{C}^2\) is to be attainable with finite \((u_1, u_2) \in \mathbb{C}^2\).
For this it is necessary and sufficient that at each finite singular point a_i, $r_1^{(i)}$ and $r_2^{(i)}$ satisfy $r_1^{(i)} = -1 + \frac{1}{n_i}$, $r_2^{(i)} = -1 + \frac{k_i}{n_i}$,

$1 < k_i < n_i$, n_i, k_i positive integers and at ∞

$s_1 = 1 + \frac{1}{n}$, $s_2 = 1 + \frac{k}{n}$, $1 < k$, n, k, positive integers.

Extra conditions on the roots of the indicial equation ensure that $\frac{f(z)}{\phi(z)} = \zeta$ defines z as a single valued functions of ζ

and that the equation $f(z_1)\phi(z_2) - f(z_2)\phi(z_1) = 0$ has only the trivial solution $z_1 = z_2$. They are that either $r_2^{(i)} - r_1^{(i)} = 1$ or $\frac{1}{n_i}$

and either $s_2 - s_1 = 1$ or $\frac{1}{n}$, together with the extra condition that the solutions to the differential equation do not involve logarithmic terms (conditions B). If furthermore $r_2^{(i)} - r_1^{(i)} = \frac{1}{n_i}$

and $r_2^{(i)} = -r_1^{(i)} = \frac{1}{2}$, and $s_2 - s_1 = \frac{1}{n}$ or $s_2 = \frac{5}{2}$, $s_1 = \frac{3}{2}$ (conditions C) and if ∞ is not a regular point, but Fuchs is obscure here, then z_1, z_2 are roots of a quadratic equation, whose coefficients are single-valued holomorphic functions of u_1, u_2. In this case the number of finite singular points cannot exceed but can equal, 6. In the example where 6 finite singular points occur the functions $F_1(u_1, u_2)$, $F_2(u_1, u_2)$ are necessarily hyperelliptic, but generally they will not be even Abelian functions, since the differential equation will not be algebraically integrable.

Fuchs's proofs of these assertions proceeded by a case by case analysis of each kind of singularity that could occur in terms of the local power series expansions of the functions. Poincaré pointed out (see below) that the analysis rapidly becomes confusing and was, in any case, incomplete. A summary of Fuchs's arguments is provided in Appendix 5.
The condition that no logarithmic terms appear in the solutions to the differential equation even though \(r_2 - r_1 = 1 \), an integer, is a strong restriction on the kind of branching that can occur. Fuchs also seems to be assuming, or perhaps is only interested in, the case \(\xi \) takes very value in \(C \), not merely in some disc.

The curious condition that there are at most six finite singular points was obtained simply as follows (§7). From the general theory of differential equations of the Fuchsian type, if the number of finite singular points is \(A \) then

\[
\sum_i (r_1^{(i)} + r_2^{(i)}) + s_1 + s_2 = A - 1.
\]

If there are \(A' \) where \(r_1 = -\frac{1}{2} \) and \(r_2 = \frac{1}{2} \), and \(A'' \) others, where necessarily \(r_1^{(i)} + r_2^{(i)} = -2 + \frac{k_i}{n_i} \), \(1 < k_i < n_i \), then

\[
\sum_{i=1}^{A''} \frac{3}{n_i} + s_1 + s_2 = A' + 3A'' - 1 \quad \text{(summing only over the second kind)}.
\]

But \(s_1 + s_2 \leq 5 \), and \(\frac{1}{n_i} \leq \frac{1}{2} \) implies

\[
3 \sum \frac{1}{n_i} \leq \frac{3A''}{2},
\]

so \(A' + 3A'' - 1 \leq \frac{3A''}{2} + 5 \) or

\[
A + \frac{1}{2} A'' \leq 6
\]

so \(A \leq 6 \), as was to be shown.

This case can arise when, say, \(\infty \) is an ordinary point, \(s_1 = 2 \) and \(s_2 = 3 \). These were the conclusions drawn from conditions (C).
As an example of the case when there are 6 singular points

Fuchs (18) adduced the hyperelliptic integrals

\[y_1 = \int \frac{g(z)}{\sqrt[4]{\phi(z)}}, \quad y_2 = \int \frac{h(z)}{\sqrt[4]{\phi(z)}}, \text{where } \phi(z) = (z-a_1)\ldots(z-a_6) \]

and \(\infty \) is not a singular point, so \(s_1 = 2, s_2 = 3, \) and \(g(z) \) and \(h(z) \) and linearly independent polynomials of degree 0 or 1 (say \(g(z) = 1, h(z) = z \)). In this case \(z_1 = F_1(u_1, u_2) \) and \(z_2 = F_2(u_1, u_2) \) are hyperelliptic functions of the first kind, but (§9) non-Abelian functions may arise. Fuchs gave as an example as equation with finite singular points

\[a_1, \text{ at which } r_1^{(1)} = -\frac{2}{3}, \quad r_2^{(1)} = -\frac{1}{3} \]
\[a_2, \text{ at which } r_2^{(1)} = -\frac{5}{6}, \quad r_2^{(2)} = -\frac{4}{6}, \text{ and} \]
\[\infty, \text{ at which } s_1 = \frac{3}{2}, \quad s_2 = 2 \quad (\text{These satisfy conditions (C) with } n_1 = 3, \ n_2 = 6, \ n = 2.) \]

The original differential equation \(\frac{d^2y}{dz^2} + P(z) \frac{dy}{dz} + Q(z)y = 0 \)

is transformed by the substitution \(y = (z - a_1)^{-1/3}(z - a_2)^{-5/4}w \)

into one with exponents \(\frac{1}{3}, \frac{2}{3} \) at \(a_1, \frac{5}{12}, \frac{7}{12} \) at \(a_2, \) and \(-\frac{3}{4}, -\frac{1}{4} \) at \(\infty \)

and so is of the form \(\frac{d^2w}{dz^2} = Pw. \) But, by Fuchs's test (Chapter 4, p. 127) the denominators of the exponents at \(a_2 \) are \(12 > 10, \) so the equation is not algebraically integrable unless its solutions (or a second degree homogeneous polynomial in the solutions) is the root of a rational function. But this is not possible either, since the denominators at \(a_1 \) and \(a_2 \) are neither 1, 2, nor 4.

Fuchs was chiefly concerned to study the inversion of equations (7.1.6) and only slightly interested in the function \(\zeta = \frac{f(z)}{\phi(z)}. \) His obscure papers rather confused the two problems but they were soon to be distentangled.
On the 29th May, 1980, a young Frenchman at the University of Caen wrote a letter to Fuchs expressing interest in the subject of Fuchs's paper in the *Journal für Mathematik*, but seeking clarification of some points. The author was very interested in the global theory of differential equations, whether first-order real or linear and complex. Within two years his work was to transform both subjects completely, opening up whole new aspects of research in the one, and in the other leaving little, it has been said, for his successors to do. His name was Jules Henri Poincaré.
Poincaré was born at Nancy on 29th April, 1854. His father was professor of medicine at the university there, his mother, a very active and intelligent woman, consistently encouraged him intellectually, and his childhood seems to have been very happy. He did not at first show an exceptional aptitude for mathematics, but towards the end of his school career his brilliance became apparent, and he entered the École Polytechnique at the top of his class. Even then he displayed what were to be life-long characteristics: a capacity to immerse himself completely in abstract thought, seldom bothering to resort to pen and paper, a great clarity of ideas, a dislike for taking notes so that he gave the impression of taking ideas in directly, and a perfect memory for details of all kinds. When asked to solve a problem he could reply, it was said, with the swiftness of an arrow. He had a slight stoop, he could not draw at all, which was a problem more for his examiners than for him, and he was totally incompetent in physical exercises. He graduated only second from the École Polytechnique because of his inability to draw, and proceeded to the École des Mines in 1875. In 1878 he presented his doctoral thesis to the faculty of Paris on the subject of partial differential equations. Darboux said of it that it contained enough ideas for several good theses, although some points in it still needed to be corrected or made precise. This fecundity and inaccuracy is typical of Poincaré; ideas spilled forth so fast that, like Gauss, he seems not to have had the time to go back over his discoveries and polish them. On the first of December 1879 he was in charge of the analysis course at the Faculty of Sciences at Caen, there, perhaps, as a result of a rare attempt by the ministry of education not to allow Paris to recruit talent at the expense of the provinces.
1880 was a busy time for him. On the 22nd of March, he deposited his essay "Mémoire sur les courbes définies par une équation différentielle" with the Académie des Sciences as his entry in their prize competition. That essay considered first-order non-linear differential equations \(\frac{dx}{x} = \frac{dy}{y} \), where \(x \) and \(y \) are real polynomial functions of real variables \(x \) and \(y \), and investigated the global properties of their solutions. He later withdrew the essay, on 14 June 1880, without the examiners reporting on it, perhaps wanting to concentrate on the theory of complex differential equations.

Poincaré's question to Fuchs concerned the nature of inverse function \(z = z(\zeta) \). Fuchs had claimed that \(z \) is meromorphic function of \(\zeta = \frac{f(z)}{\phi(z)} \), whether \(z \) is an ordinary or a singular point of the differential equation. Indeed, \(z \) is finite at ordinary points and infinite at singular points. Poincaré observed\(^6\) that \(z \) is meromorphic at \(\zeta = \infty \), so \(z = z(\zeta) \) seems to be meromorphic on the whole \(\zeta \)-sphere, and so is a rational function of \(\zeta \). But then the original differential equation must have all its solutions algebraic, which Fuchs had expressly denied. Poincaré suggested that there were three kinds of \(\zeta \) value: those reached by \(\frac{f(z)}{\phi(z)} \) as \(z \) traced out a finite contour on the \(z \)-sphere; those reached on an infinite contour, and those which are not attained at all. \textit{A priori}, he said, all three situations could occur, and indeed the last two would if the differential equation did not have all its solution algebraic. Fuchs's proof would only work for \(\zeta \)-values of the first kind; however, Poincaré went on, he could show that \(z(\zeta) \) was meromorphic even if the other kinds occurred, and he was led to hypothesize that (1) if indeed all \(\zeta \)-values were of the first kind then \(z \) would be a rational function; (2) if there are values of only the first and second kinds but \(z \) is monodromic at the values of the second kind then Fuchs's theorem is
still true; (3) if \(z \) is not monodromic or (4) if the values of the third kind occur and so the domain of \(z \) is only a domain \(D \) on the \(\zeta \)-sphere, then \(z \) is single-valued on \(D \). In this case the \(\zeta \)-values of

![Fig. 7.1](image)

the first kind occur inside \(D \), as shown. Those of the second kind lie on the boundary of \(D \), and the unattainable values lie outside \(D \). There is, finally, a fifth case, when all three kinds of \(\zeta \) occur, but \(D \) has this form

![Fig. 7.2](image)

values of the first kind filling out the annulus. Now, said Poincaré, \(z \) will not return to its original value on tracing out a closed curve \(HHHHH \) in \(D \).

Fuchs replied on the 5th June: "Your letter shows you read German with deep understanding, so I shall reply in it". He admitted that his Theorem I was imprecisely worded, and suggested that the hypothesis of his earlier Göttingen Nachrichten articles were to be preferred, namely that the exponents at the \(i \)th singular point satisfy either \(r_2^{(i)} = r_1^{(i)} + 1 \) or \(r_1 = -1 + \frac{1}{n_1} \), \(r_2 = -1 + \frac{2}{n_1} \), and the exponents at infinity satisfy \(\rho_2 = \rho_1 + 1 \) or \(\rho_1 = 1 + \frac{1}{\nu} \), \(\rho_2 = 1 + \frac{2}{\nu} \) for integers \(n_1, \nu \). He added a few words on the meaning: he excluded paths in which \(f(z) \) and \(\phi(z) \) both become infinite, and then the remaining \(\zeta \)-values filled out a simply connected region of the \(\zeta \)-plane with the excluded values on the boundary.
Poincaré replied on the 12th, apologising for the delay in doing so, but he had been away. He found some points were still obscure, and suggested the following argument. Suppose the singular points of the differential equation are joined to ∞ by cuts, and z moves without crossing the cuts. Then ζ traces out a connected region F_0. Let z cross the cuts, but no more than m times, then the values of ζ fill out a connected region F_m. As m tends to infinity F_m tends to the region Fuchs called F, and F will be simply connected if F_m is simply connected for all m. Now, asked Poincaré,"is that a consequence of your proof? One needs to add some explanation."

He agreed that F_m could not cover itself as it grew in this fashion:

![Fig. 7.3](image)

but the proof left open this possibility:

![Fig. 7.4](image)

He said that when there were only two finite singular points it was true that z was a single-valued function, "that I can prove differently" and he went on "but it is not obvious in general. In the case that there are only two finite singular points I have found some remarkable properties of the functions you define, and which I intend to publish. I ask your permission to give them the name of Fuchsian functions". In conclusion, he asked if he might show Fuchs's letter to Hermite.
Fuchs replied on the 16th, promising to send him an extract of his forthcoming complete list of the second order differential equations of the kind he was considering. This work, he said, makes any further discussion superfluous. He was very interested in the letters, and very pleased about the name. Of course his replies could be shown to Hermite.

The reply points to an interesting difference of emphasis between the two men. For Fuchs the main problem was to study functions obtained by inverting the integrals of solutions to a differential equation, thus generalizing Jacobi inversion. As a special case one might also ask that the inverse of the quotient of the solutions is single valued, which imposed extra conditions. For Poincaré, interested in the global nature of the solutions to differential equations, it is only the special case which was of interest, and he gradually sought to emancipate it from its Jacobian origins.

There is also some humour in the situation of the young man gently explaining about analytic continuation and the difference between single-valued and unbranched functions, to one who had consistently studied and applied the technique for fifteen years.

Poincaré's reply of the 19th June (one is struck by the efficiency of the postal service almost as much as by the rapidity of his thought) pointed up this difference of emphasis. Taking the condition on the exponents to be

\[\begin{align*}
 r_1(i) &= -1 + \frac{1}{n_1}, \\
 r_2(i) &= -1 + \frac{2}{n_1} \quad \text{or} \quad r_1(i) = -\frac{1}{2} = -r_2(i), \\
 s_1 &= 1 + \frac{1}{n}, \\
 s_2 &= 1 + \frac{2}{n} \quad \text{or} \quad s_1 = \frac{3}{2}, \\
 s_2 &= \frac{5}{2} \quad \text{(at infinity)},
\end{align*} \]
he wrote that he had found that when the differential equation was put in the form \(y'' + qy = 0 \), the finite singular points with exponent difference \(1 \) vanished. Thus he found that at all the finite singular points the exponent difference was an aliquot part of \(1 \) and not equal to \(1 \), and that there were no more than 3 singular points. If there was only one, then \(z \) was a rational function of \(\zeta \). If there were two, and the exponent differences were \(\rho_1 \), \(\rho_2 \), and \(\rho_3 \) at infinity, then either \(\rho_1 + \rho_2 + \rho_3 > 1 \), in which case \(z \) is rational in \(\zeta \), or \(\rho_1 + \rho_2 + \rho_3 = 1 \), in which case \(z \) was doubly periodic. Even in this case there were difficulties, as he showed with this example. Let \(z = \Lambda(u) \) be a doubly periodic function, and set \(\gamma = (\frac{dz}{du})^{\frac{1}{2}}e^{au} \). Then \(\gamma \) and \((\frac{dz}{du})^{\frac{1}{2}}e^{-au} \) satisfy a second-order linear differential equation and \(\zeta = e^{2au} \). So for \(z \) to be single valued in \(\zeta \), it must have period \(\frac{i\pi}{a} \) as a function of \(u \), which, he pointed out, was not the case in general. Finally, if there were three finite singular points then the exponents would have to be \(-\frac{1}{2} \) and \(0 \), and at infinity they would be \(\frac{3}{2}, 2 \). But although these satisfied Fuchs's criteria \(z \) was not a single-valued function of \(\zeta \), so the theorem is wrong. Poincaré proposed to drop the requirement that Fuchs's functions \(z_1 + z_2, z_1z_2 \) be single-valued in \(u_1 \) and \(u_2 \). He went on to say that this gave a "...much greater class of equations than you have studied, but to which your conclusions apply. Unhappily my objection requires a more profound study, in that I can only treat two singular points". Dropping the conditions on \(z_1 + z_2, z_1z_2 \) admits the possibility that the exponent differences \(\rho_1, \rho_2, \) and \(\rho_3 \) satisfy \(\rho_1 + \rho_2 + \rho_3 < 1 \). Now \(z \) is neither rational nor doubly periodic, but is still single valued. "These functions I call Fuchsian, they solve differential equations with two singular points whenever \(\rho_1, \rho_2, \) and \(\rho_3 \) are commensurable with each other. Fuchsian functions are very like elliptic functions, they are defined in a certain circle and are meromorphic inside it". On the other hand, he concluded, he knew nothing about what happened when there were more than two singular points.
We do not have Fuchs's reply, but Poincaré wrote to him again on the 30th of July to thank him for the table of solutions "which lifts my doubts completely", although he went on to point out a condition on some of the coefficients of the differential equations which Fuchs had not stated explicitly in the formulation of his theorems. As to his own researches on the new functions, he remarked that they "... present the greatest analogy with elliptic functions, and can be represented as the quotient of two infinite series in infinitely many ways. Amongst those series are those which are entire series playing the role of Theta functions. These converge in a certain circle and do not exist outside it, as thus does the Fuchsian function itself. Besides these functions there are others which play the same role as the zeta functions in the theory of elliptic functions, and by means of which I solve linear differential equations of arbitrary orders with rational coefficients whenever there are only two finite singular points and the roots of the three determinantal equations are commensurable. I have also thought of functions which are to Fuchsian functions as abelian functions are to elliptic functions and by means of which I hope to solve all linear equations when the roots of the determinantal equations are commensurable. Finally functions precisely analogous to Fuchsian functions will give me, I think, the solutions to a great number of differential equations with irrational coefficients."

Poincaré's last letter (20th March, 1881) merely announces that he will soon publish his research on the Fuchsian functions, which partly resemble elliptic functions and partly modular functions, and on the use of zeta Fuchsian functions to solve differential equations with algebraic coefficients. In fact, his first two articles on these matters already appeared in the Comptes Rendus, and these will be discussed below.

Poincaré had not had long to study Fuchs's work by the time he wrote him his first letter on 29th May 1880, for he had only received the journal at the start of the month. Yet, incredibly, he had already written up and presented his findings in the form of an essay for the prize of the Paris Académie des Sciences. Indeed, he...
had submitted his entry on the 28th May 1880, the day before he wrote to Fuchs. His essay was awarded second prize, behind Halphen's, but it was not published until Nörlund edited it for Acta Mathematica (vol 39, 1923 58-93, = Oeuvres, I, 578-613). In awarding it second prize, Hermite said of the essay, which also discussed irregular solutions, that

"... the author successively treated two entirely different questions, of which he made a profound study with a talent by which the commissions was greatly struck. The second... concerns the beautiful and important researchs of M. Fuchs, ... The results ... presented some lacunas in certain cases that the author has recognized and drawn attention to in thus completing an extremely interesting analytic theory. This theory has suggested to him the origin of transcendents, including in particular elliptic functions, and which has permitted him to obtain the solutions to linear equations of the second order in some very general cases. A fertile path is there that the author has not entirely gone down, but which manifests an inventive and profound spirit. The commission can only urge him to follow up his researches in drawing to the attention of the Academy the excellent talent of which they give proof."
In the essay Poincaré considered when the quotient \(z = \frac{f(x)}{\phi(x)} \) of two independent solutions of the differential equation \(\frac{d^2y}{dx^2} = Qy \) defines, by inversion, a meromorphic function \(x \) of \(z \). He found Fuchs's conditions were not necessary and sufficient. It was necessary and sufficient for \(x \) to be meromorphic on some domain that the roots of the indicial equation at each singular point, including infinity, differ by an aliquot part of unity (i.e. \(\rho_1 - \rho_2 = 1/n \), for some positive integer \(n \)). If the domain is to be the whole complex sphere then this condition is still necessary, but it is no longer sufficient. He found that Fuchs's methods did not enable him to analyse the question very well, as special cases began to proliferate, and sought to give it a more profound study, beginning with Fuchs's example ([Fuchs 1880b, 168 = 1906, p. 210], above p. 281) of a differential equation in which there are two finite singular points \(a_1 \) and \(a_2 \), where the exponent differences are \(\frac{1}{3} \) and \(\frac{1}{6} \), and the exponent difference at \(\infty \) is \(\frac{1}{2} \). In this case he found the change in \(z \) was on the form

\[
z \rightarrow z'' \cdot \frac{z''-\alpha}{z''-\beta} = e^{2\pi i/3} \left(\frac{z''-\alpha}{z''-\beta} \right) \quad \text{upon analytic continuation around } a_1,
\]

\[
z \rightarrow z'' \cdot \frac{z''-\gamma}{z''-\delta} = e^{\pi i/3} \left(\frac{z''-\gamma}{z''-\delta} \right) \quad \text{upon analytic continuation around } a_2,
\]

and \(\frac{1}{z} \rightarrow -\frac{1}{z} \) (around \(\infty \)).

Accordingly \(x \) is a meromorphic single-valued function of \(z \) mapping a parallelogram composed of eight equilateral triangles onto the complex sphere, and \(z = \infty \) is its only singular point, so \(z \) is an elliptic function. The differential equation, Poincaré showed, has in fact an algebraic solution \(y_1 = (x - a_1)^{1/3} (x - a_2)^{5/2} \) and a non-algebraic solution \(y_2 \) such that

\[
\frac{y_2}{y_1} = \int \frac{(x - a_1)^{-2/3}(x-a_2)^{-5/6}}{dx}.
\]

This result agrees with Fuchs's theory.
Poincaré next investigated when a doubly-periodic function can give rise to a second order linear differential equation, and found that one could always exhibit such an equation having rational coefficients for which the solution was a doubly periodic function having 2 poles. If furthermore the periods, \(h \) and \(K \), were such that

\[
2i\pi = 0 \pmod{h, K}
\]

then \(x \) would be a monodromic function of \(z \) with period \(2i\pi \).

His reasoning is too lengthy to reproduce, but the condition on \(2\pi i \) derives essentially from the behaviour of \(z \) under analytic continuation: if \(z \) is monodromic it must reproduce as \(z \to z'' = \frac{az+b}{a'z+b'} \) (for some \(a, b, a', b' \)), and thus can be written as

\[
\frac{z'-\alpha}{z'-\beta} = \lambda \frac{z-\alpha}{z-\beta},
\]

and \(\lambda^n = 1 \). After a further argument Poincaré concluded (p.79) that (i) there were cases when one solution of the original differential equation was algebraic, and then Fuchs' theory was correct, but (ii) there were cases when the differential equation had four singular points, elliptic functions were involved, and then extra conditions were needed.

However, it might be that the domain of \(x \) could not be the whole \(z \)-sphere. Poincaré showed that this could happen even when the differential equation had only two finite singular points. For example if the exponent differences were \(\frac{1}{4} \), \(\frac{1}{2} \) and \(\frac{1}{6} \) at \(\infty \), then as long as \(x \) crosses no cuts \(z \) stays within a quadrilateral (Figure 2, p.86) \(\alpha \ O \alpha' \gamma \).

Fig. 7.5
Furthermore, however x is conducted about in its plane, z cannot escape the circle HH'. Poincaré described the quadrilateral as 'mixtiligne', the circular-arc sides meet the circle HH' at right angles. This geometric picture is quite general, curvilinear polygons are obtained with non-re-entrant angles and circular arc sides orthogonal to the boundary circle. Thus the domain of x is $|z| < OH$, and Poincaré then investigated whether x is meromorphic. This reduces to showing that, as x is continued analytically, the polygons do not overlap. This does not occur if the angles satisfy conditions derived from Fuchs's theory, unless the overlap is in the form of an annular region 11:

However if the angles are not re-entrant, this cannot happen, and so x is meromorphic. Poincaré's proof of this is of incidental interest. He projected the circle HH' stereographically onto the southern hemisphere of a sphere, and then projected the image orthogonally back onto its original plane. The circular arcs orthogonal to HH' become straight lines, which renders the theorem trivial.

This result virtually concluded Poincaré's essay. As he said in his letter to Fuchs, his understanding was limited essentially to the case of two finite singular points. But one notices in this last argument that the final image of the disc is the Beltrami picture of non-Euclidean geometry. Poincaré did not recognize it at this stage, but he soon did.

Poincaré himself has left us one of the most justly celebrated accounts of the process of mathematical discovery, which concerns exactly his route to the theory of Fuchsian functions. Although it is very well known, it is not apparent from the usual sources
precisely how and when it connects with the correspondence with Fuchs; even the year, 1880, is left unstated. Poincaré gave this account in a lecture he gave to the Société de Psychologie in Paris 1908, and it was later published as the third essay in his volume *Science et Méthode* [1909].

He began by doubting that Fuchsian functions could exist, but shortly came to the opposite view.

"For two weeks I tried to prove that no function could exist analogous to those I have since called the Fuchsian functions: I was then totally ignorant. Every day I sat down at my desk and spent an hour or two there: I tried a great number of combinations and never arrived at any result. One evening I took a cup of coffee, contrary to my habit; I could not get to sleep, the ideas surged up in a crowd, I felt them bump against one another, until two of them hooked onto one another, as one might say, to form a stable combination. In the morning I had established the existence of a class of Fuchsian functions, those which are derived from the hypergeometric series. I had only to write up the results, which just took me a few hours."

This account is consistent with his knowledge of Fuchs's problem as presented in the prize essay, and plainly marks his realization of the fundamental invariance properties of the new functions. It is most likely therefore that it refers to the period between 29 May and 12 June 1880 (the date of the second letter). He may also have accomplished the second stage of his discoveries by that time:

"I then wanted to represent the functions as a quotient of two series; this idea was perfectly conscious and deliberate; the analogy
with elliptic functions guided me. I asked myself what must be the property of these series, if they exist, and came without difficulty to construct the series that I called theta-fuchsian."

His probable ignorance of Riemann's theory of θ-functions may well have been a blessing to him here, for the analogy is with the Jacobian theory of the θ-function of a single variable.

Next comes his marvellous, almost Proustian, donne:

"At that moment I left Caen where I then lived, to take part in a geological expedition organized by the École des Mines. The circumstances of the journey made me forget my mathematical work; arrived at Coutances we boarded an omnibus for I don't know what journey. At the moment when I put my foot on the step the idea came to me, without anything in my previous thoughts having prepared me for it; that the transformations I had made use of to define the Fuchsian functions were identical with those of non-Euclidian geometry. I did not verify this, I did not have the time for it, since scarcely had I sat down in the bus than I resumed the conversation already begun, but I was entirely certain at once. On returning to Caen I verified the result at leisure to salve my conscience."

The letter of 12th June records that he had been away from Caen, and speaks of the remarkable properties of these new functions. One may surely conclude that this alludes to the connection with non-Euclidean geometry. It would be possible that the reference to being away is misleading, and that the crucial bus journey took place between the 12th and the 19th. This would explain the more independent tone of the third letter, and its explicit reference to the domain of
the functions being a circle. Nonetheless it is the second letter which speaks of the dramatic nature of the discoveries, whereas the third is more of a methodical reworking of the material guided by the new insights. It is hard to account for the excitement of the second letter if the progress is only arriving 'without difficulty' at the \(\theta \)-fuchsian series. That no-one had had such an idea before does not seem to have been a particular source of joy to Poincaré, who happily lacked the personally competitive streak of some mathematicians.

The appearance of non-Euclidean geometry does not seem to have enabled Poincaré to think of the transformations in \(z \) as motions. He still spoke of crossing cuts in the \(x \)-plane although one can read the idea of tiling by a fundamental region - implicit in his prize essay - into his description, in the second letter, of the sequence of regions \(F_0, F_1, \ldots, F_m, \ldots \). Furthermore he remained stuck on the case of the hypergeometric equation at least until his fourth letter, 30th July. Liberation came from an unexpected source, arithmetic, just as arithmetical considerations had earlier enriched Klein's work. But here the response was to be entirely different.

"I then undertook to study some arithmetical questions without any great result appearing and without expecting that this could have the least connection with my previous researches. Disgusted with my lack of success, I went to spend some days at the sea-side and thought of quite different things. One day, walking along the cliff, the idea came to me, always with the same characteristics of brevity, suddenness, and immediate certainly, that the arithmetical transformations of ternary indefinite quadratic forms were identical with those of non-Euclidian geometry."
"Once back at Caen I reflected on this result and drew consequences from it; the example of quadratic forms showed me that there were Fuchsian groups other than those which correspond to the hypergeometric series; I saw that I could apply them to the theory of theta-fuchsian series, and that, as a consequence, there were Fuchsian functions other than those which derived from the hypergeometric series, the only ones I knew at that time. I naturally proposed to construct all these functions; I laid siege systematically and carried off one after another all the works begun; there was one however, which still held out and for which as the chase became involved it took pride of place. But all my efforts only served to make me know the difficulty better, which was already something. All this work was quite conscious."

Quite by chance, I have very recently discovered that there is still more evidence about Poincaré's work in 1880, which does not appear to have been considered before. The Comptes Rendus record three anonymous supplements to the essay bearing the motto 'Non inultus premor', received by the Academy on 28th June, 6th September, and 20th December. Prize essays were submitted anonymously and only identified by a motto, this motto identifies the supplements as Poincaré's (it is in fact the motto of his home town of Nancy). The supplements are to be found in the Poincaré dossier in the Académie des Sciences, but for some reason Nörlund did not publish them when he published the essay in Acta Mathematica, nor have they been included in Poincaré's Oeuvres. A brief examination of the first one shows that Poincaré has just grasped the significance of non-Euclidean geometry for his problem, and on pp 14, 15 he described how figures in the disc are to be understood in terms of the new geometry. Unhappily, I must await receipt of a micro-film of the supplements from Paris before I can analyse them further.
The published work makes abundantly evident the astounding clarity of Poincaré's mind, coupled to an almost equally dramatic ignorance of contemporary mathematics. There is no mention of the work of Schwarz on the hypergeometric equation, so naturally and even pictorially connected with the crucial case \(\rho_1 + \rho_2 + \rho_3 < 1 \). Nor is there any mention of the work of Dedekind or Klein, and even Hermite's work on modular functions, which he must have known, seems to have been forgotten. We shall see that these omissions are not mere oversights; Poincaré genuinely did not then know the German work. The contrast with the deliberately well-read Felix Klein could not be more marked.
Although Klein was far from idle in 1880, he did not make the
dramatic progress that Poincaré did. He reworked his 1879 paper on
eleventh order transformations of elliptic functions, connecting it,
and his work on the transformations of orders 5 and 7, with division
values of θ-functions, in a paper he finished on January 3, 1881, [1881].
He reported to the Akademie der Wissenschaften in Munich on the
significance of his work for the study of the normal forms of
elliptic integrals of the first kind, and concerned himself with
the work of his students Cierster, Dyck, and Hurwitz. Bianchi
stayed in Munich during the year autumn 1879 to autumn 1880, and
Klein [1923, b] described the work he did with him as "more transient..., but
as very essential for me" for it showed him how to connect his
work with the developments of the Weierstrassian school, including
that of his friend Kiepert. In the autumn of 1880 he moved to
become professor at the University of Leipzig, and gave his inaugural
address on the 25th of October on the relationship of the new
mathematics to applications, a theme dear to his heart. Carl
Neumann stimulated his interest in applied mathematics, and he
wrote a short paper in mid-January 1881 on the Lamé functions.
Even so he was, he said later, so deeply immersed in geometric function
theory that he began to lecture on it as soon as he arrived at Leipzig.
He gave two series of lectures, the second has become very well-known
in the slightly re-worked form of his book "Über Riemanns. Theorie
der algebraischen Functionen und ihre Integrale".

Klein wanted to conceive of an algebraic curve \(F(s,z) \) not as spread
out over the \(z \)-plane, but as a closed surface in its own right, and a
complex function as a pair of flows, with singularities, on the
surface. In so doing, he argued that he was only following Riemann's
own approach, and he sought out Riemann's students and colleagues
to ask them how true was it that Riemann had thought this way. At
first Prym agreed with Klein, but later correspondence between Prym
and Betti makes it clear that Riemann had not, so it seems that
Klein's description must be regarded not as historically accurate,
but as an inspired response to reading Riemann. Although his
presentation of Riemann's topological ideas is highly attractive,
it can perhaps be doubted if it helped Klein with his "old problem...
to construct all discontinuous groups in one variable, esp. the
corresponding automorphic functions" ([1923, 581, italics Klein's) for it
avoids the problem of how the corresponding Riemann surfaces are best
constructed. One sees here very clearly how Klein wanted to advance
a particular view of mathematics, on the one hand visual and intuitive,
on the other naturally algebraic, group theoretic or invariant
theoretic, and linked to projective geometry. The unity of these
domains and the connection with number theory delighted him, and
also, I shall suggest, bound him too closely to one view of the
problem.

7.4 1881

Klein's attention was first drawn to Poincaré when he read
Poincaré's three notes "Sur les fonctions Fuchsiennes" in the Comptes
Rendus which will now be described. The papers, and the ones which
followed them, are a jumble of promises, allusions, examples, and,
sometimes, mistakes, within which various themes can be detected. The
main object of study is what Poincaré called Fuchsian functions,
functions defined on a disc or half plane and invariant under certain
subgroups of \(SL(2, \mathbb{R}) \). The main method of study is the use of
fundamental regions or polygons, in the sense of the non-Euclidean
geometry intrinsic to the disc. The main results concern the
relations between Fuchsian functions associated to a given group, and
the use of these related functions to solve linear differential
equations with rational or algebraic coefficients.

In the first paper (14 February 1881) Poincaré announced the
discovery of a large class of functions generalising elliptic functions
and permitting the solution of a differential equations with algebraic
coefficients, which he proposed to call Fuchsian "in honour of M. Fuchs,
whose works have been very useful to me in these researches". These
functions were invariant under discontinuous subgroups of the group
\[\frac{az+b}{cz+d} \]
which leaves a "fundamental" circle fixed; discontinuous
meaning no \(z \) is infinitesimally near any transform of itself. As a
result, the group, called by Poincaré a Fuchsian group, can be studied
by looking at how it transforms a region \(R \) bounded by arcs of circles
perpendicular to the fundamental circle. He said non-Euclidean geometry
would be helpful here, but he did not explain how. Instead he
gave an example of a triangular polygon \(R_0 = ABCD \) vertical angles
\[\hat{BAC} = \hat{BDC} = \frac{\pi}{\alpha}, \hat{CBA} = \hat{CBD} = \frac{\pi}{\beta}, \hat{BCA} = \hat{BCD} = \frac{\pi}{\gamma} \]
where \(\alpha, \beta, \gamma \) are positive
integers or \(\infty \) and \(\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} < 1 \). The transforms of such a region
would provide an example of a Fuchsian group, and Poincaré asked if
any polygon would do. As other examples he gave the special case
\(\alpha = 2, \beta = 3, \gamma = \infty \), which gives \(SL(2;\mathbb{Z}) \), and any linear substitution
group preserving an indefinite ternary form \((px^2 - qy^2 - rz^2) \). Finally
he introduced functions he called theta-fuchsians, by analogy with
the theta-functions occurring in the theory of elliptic functions.
Suppose \(z \) is a point inside the fundamental circle, \(K_i \) an element of
the Fuchsian group and \(zK_i \) the transform of \(z \) by \(K_i \). The single-valued
function \(\theta \) is a theta-function if, for some integer \(m \), it satisfies
\[\theta(zK_i) = \theta(z)(dzK_i)^{-m}, \]
or equivalently, if
\[\theta(\frac{az+b}{cz+d}) = \theta(z)(cz + d)^{2m}, \] assuming \(ad - bc = 1 \).
The existence of theta-fuchsian functions follows, he said, from the convergence of the series

$$\sum_{i=1}^{\infty} H(zK_i) \left(\frac{dzK_i}{dz} \right)^m, \quad m \text{ an integer greater than 1,}$$

where H is a rational function of z. Two cases arise, one in which every point of the fundamental circle is an essential singular point of the theta-fuchsian, the other in which the essential singular points, although infinite in number, are isolated. Only in this case can the function be extended to the whole plane.

Next week's installment, so to speak, began by pointing out that the quotient of two theta-fuchsian functions corresponding to the same Fuchsian group was a Fuchsian function. Poincaré then observed that between any two Fuchsian functions corresponding to the same group there existed an algebraic relation, but he gave no proof, and that every Fuchsian function F permitted one to solve a linear differential equation with algebraic coefficients. For, if $x = F(z)$ is a fuchsian function, then $y_1 = \frac{dF}{dz}$ and $y_2 = z \frac{dF}{dz}$ are the solutions of the equation $\frac{d^2y}{dx^2} = y\phi(x)$, where ϕ is algebraic in y. He gave the hypergeometric equation as an example, and pointed out that one example of that,

$$\frac{d^2y}{dx^2} = y \left(\frac{x(x-1)-1}{4x^2(x^2-1)} \right),$$

gives the periods of sinam as functions of the square of the modulus. Zeta-functions (to be defined below) were also introduced, and Poincaré claimed that, such functions provided a basis of solutions to any linear differential equation having rational coefficients and two finite singular points.
The third paper suggested a connection between Fuchsian functions $x(z)$ and $y(z)$ corresponding to the same group and abelian integrals $u(x,y)$. Regarding u as a function of z, and operating on z by transformations in the given group which send (x,y) round a cycle, Poincaré was led to relate the number of generators, $2p + 2$, of the group to the periods of the abelian integral, and consequently obtained an upper bound, p, for the genus of the algebraic equation connecting x and y. Only a truly great mathematician can achieve this degree of visionary imprecision.

Klein read these notes on 11th June 1881 and wrote to Poincaré the next day. He had, he said, considered these topics deeply in recent years, and had written about elliptic modular functions in several articles, which "naturally are only a special case of the relations of dependence considered by you, but a closer comparison would show you that I had a very general point of view". After listing these works, and referring to related work of Halphen and Schwarz, Klein went on to say that the task of modern analysis was to find all functions invariant under linear transformations, of which those invariant under finite groups and certain infinité groups, as the elliptic modular functions, were examples. He had talked to other mathematicians about these questions, without coming to any definite result, and now he wondered if he should not have got in touch earlier with Poincaré or Picard; he hoped his letter would start a correspondence. He admitted that at the moment other duties kept him from working on the problem, but he would return to it soon for he was to lecture on differential equations in the winter.
Klein was rather exaggerating his achievements, and seems a little concerned to impress Poincaré with what he has already done perhaps even to over-awe him. We have seen that he was, in fact, at an impasse with his research in this direction, and had moved off onto other topics. Now that a rival had entered the field, he would return to it by the winter.

Poincaré's reply (15 June) was characteristically more modest, and he was more willing to admit to ignorance, even quite astounding ignorance. He immediately conceded priority over certain results to Klein, but said he was not at all surprised "...for I know how well you are versed in the study of non-Euclidean geometry which is the veritable key to the problem which occupies us". He would do justice in that matter when he next published his results, meanwhile he would try to find the relevant Mathematische Annalen, which were not in the library at Caen. But, since that would take time, could Klein please explain some things straight away. Why speak of modular functions in the plural, when there was only one, the square of the modulus as a function of the periods? And had Klein found all the circular-arc polygons which give rise to discontinuous groups and found the corresponding functions?

Klein got the letter on the 18th and replied the next day, enclosing reprints of his own articles and promising to send those of his students Dyck, Gierster, and Hurwitz. Then he warmed to the theme of using Fuchs's name. All such research, he said, was based on Riemann. His own was closely related to that of Schwarz, which he urged Poincaré to read "if you do not already know it". The work of Dedekind had shown how modular functions could be represented geometrically, which had already become clear to him (Klein), whereas
Fuchs's work was ungeometric. He did not criticize the rest of Fuchs's work on differential equations, but here he had made a fundamental mistake which Dedekind had had to correct. On the subject of polygons Klein pointed out that any polygon was equivalent to a half plane, so repeated reflection or inversion in the sides generated a group and invariant functions in the manner of Schwarz and Weierstrass, without the need to return to general Riemannian principles. But some polygons gave rise to discontinuous groups which did not preserve a fixed circle, so "the analogy with non-Euclidean geometry (which is in fact very familiar to me) does not always hold". He gave this polygon as an example

![Fig. 7.7](image)

Poincaré replied on the 22nd, before the reprints had arrived, seeking permission to quote the passage about the group in his next publication and defending the name 'Fuchsian function' on the grounds that, even if "...the viewpoint of the geometric savant of Heidelberg is completely different from yours and mine, it is also certain that his work served as a point of departure..." and so it was only just that his name should stay attached to those functions.¹⁷

Klein's brief reply (25 June) demurred, directing Poincaré back to Fuchs's original publication in the *Journal für Mathematik* for the purposes of comparison.

Poincaré wrote on the 27th to say that finally the reprints had arrived, having been sent via the Sorbonne and the Collège de France even though they were correctly addressed (so the postal service was not always so efficient). He now admitted that "I would
have chosen a different name [for the functions] had I known of
Schwarz's work, but I only knew of it from your letter after the
publication of my results,..." and he could not change the name now
without insulting Fuchs. As to the mathematics, had Klein determined
the fundamental polygons for all the principal congruence subgroups?
And what, in that connection, was the Geschlecht in the sense of Analysis
situs? Was it the same as the genre that he, Poincaré, had defined,
for he only knew that they both vanished simultaneously. Poincaré
asked for a definition of the topological genus, or, if it was too
long to give in a letter, a reference to where it could be read.
As for the polygon, presumably its sides should not meet when
extended, and finally, he asked what Klein understood by général
Riemannian principles?

On the 27th Klein answered these questions as well as he could.
Dyck had established the polygons for congruence subgroups for prime n,
composite n had not been considered. Genus in the sense of analysis
situs was the maximal number of closed curves which can be drawn
without disconnecting the surface, and was materially the same number
(Klein's emphasis) as the genus of the algebraic equation representing
the surface. He went on "I have only conjecturally a freer representation of
a Riemann surface and the definition of p based on it."

The furthest he had gone on the question of connection of polygons
and curves was this. Map a half-plane onto a polygon such as
this one, and let the points corresponding to 1, 2, 3, 4, 5 be
I, II, III, IV, V respectively, which can be arbitrary. Then I, II
etc. are the branch points of an algebraic function, w(z), and w(z) can
have no other branch points. So w and z are single-valued functions
of the right kind, and if all the branchpoints lie on a circle
in the z-plane there is nothing more to be said. But in the other cases, and here the unsymmetric polygon of the last letter is relevant, reflections generated a fundamental space. But did they together cover only one part of the plane? "I find myself already brought to a halt on this difficulty for a long time". In this conclusion Schottky's study of inversion in families of non-intersection circles was interesting.

Riemann's principles he went on, do not tell you how to construct a function, so for that reason these consequences are somewhat uncertain, and Weierstrass and Schwarz have done a lot of work on circular arc polygons. Riemann's principles map a many-leaved surface to a given polygon and enable one to prove the existence of a function having prescribed infinities and real parts to their periods. "This theorem, which by the way I have only completely understood recently, includes, so far as I can see, all the existence proofs of which you speak in your notes as special cases or easy consequences."

Finally, referring to another of Poincaré's papers ("Sur les fonctions abéliennes", CR 92, 18 April 1881) Klein asked why the moduli were presumed to be \(4p + 2\) in number when they are really only \(3p - 3\). "Haven't you read the relevant passage of Riemann? And is the entire discussion of Brill and Noether...unknown to you?"

Poincaré's reply of 5 July apologised profusely for asking about the topological genus when it was defined "on the next page of your memoir". Not having had a refusal of his request to quote Klein he had done so, taking silence for consent. As for the branchpoints of algebraic functions, that had been proved by him too, he said and published on May 23rd, but where was it in the
work of his predecessors. Finally, the number $4p + 2$ had only been needed as an upper bound and was easy to obtain. He made no mention of his deficient reading.

This part of the correspondence closed with Klein's letter of 9 July, in which he pointed out that Riemann's use of Dirichlet's principle was not conclusive, but that one could find stronger proofs in e.g. Schwarz's work. By now Poincaré had published several more short papers, and these should be described.

The notes of 18 April, 23 and 30 May, published before the correspondence with Klein had begun, dealt in more detail with the role of circular-arc polygons in generating groups. Poincaré supposed the fundamental circle to be bisected by the real axis, O_x, and considered the polygon with sides C_1, \ldots, C_n as follows:

i) All the C_i meet the fundamental circle at right angles;

ii) C_1 meets O_x at α_1 and β_1, making an angle of $\frac{\lambda_1}{2}$;

iii) C_i meets C_{i-1} at α_i and β_i, making an angle of λ_i;

iv) C_n meets O_x at α_{n+1} and β_{n+1}, making an angle of $\frac{\lambda_{n+1}}{2}$;

where he supposed each λ_i is an aliquot part of 2π and $\lambda_1 + 2\lambda_2 + \ldots + 2\lambda_n + \lambda_{n+1} < 2\pi(n-1)$ (so that the construction is possible).

The transformation sending z to z_j by
leaves \(\alpha_j \) and \(\beta_j \) fixed, and rotates the family of coaxal circles surrounding \(\alpha_j \) and \(\beta_j \) by \(\lambda_j \). Since one may suppose \(\alpha_j \) is inside the fundamental circle and \(\beta_j \) outside, this has the effect of rotating the polygon about the vertex \(\alpha_j \) so that its new position lies alongside its old one. Even so it is not true, as Poincaré claimed, that one obtains a discontinuous group in this way unless the sides of the polygons have the same length (i.e., vertex \(\alpha_{j-1} \) is rotated onto \(\alpha_{j+1} \)). The idea is clear nonetheless, successive transformations move the polygon around crabwise and a function defined on the original domain extends to a Fuchsian function accordingly, satisfying

\[
F(z) = F(z_1) = \ldots = F(z_{n+1}).
\]

Since two such functions \(x \) and \(y \) will be related algebraically one can consider the genus of the equation connecting them, \(f(x, y) = 0 \). Should it be zero, so \(f \) is a rational function, then taking \(x = F(z) \),

\[
y = \left(\frac{dF}{dz} \right)^{\frac{1}{2}},
\]

one obtains

\[
\frac{d^2 x}{dx^2} = y \phi(x),
\]

in which \(\phi \) is also a rational function, and the singular points of the equation, being the infinities of \(\phi \), are at \(F(\alpha_1), \ldots, F(\alpha_n) \). Suppose these to be all arbitrary but real, and \(F(z) \) to be real along the sides \(C_1, \ldots, C_n \) of the polygon, then the case considered is that of an algebraic function with arbitrary real branch points, as discussed in the correspondence. Suppose furthermore that

\[
\lambda_1 = \ldots, \lambda_{n+1} = 0,
\]

so \(\alpha_1, \ldots, \alpha_{n+1} \) lie on the fundamental circle itself. Then \(F(z) \) fails to take the values \(F(\alpha_1), \ldots, F(\alpha_{n+1}) \). So
if one has a linear differential equation with coefficients rational in x and real singular points at $x = F(\alpha_1), \ldots, F(\alpha_{n+1})$, then one sets $x = F(z)$ and the solutions of the equation are zeta fuchsian functions of z. In this way a large class of differential equations are solved.

On 30th May Poincaré clarified this a little: when $\lambda_{n+1} = 0$ the appropriate $F(z)$ is the limit of the original $F(z)$ as the λ's tend to 0, and it is only in this case that the values of $F(\alpha_1), \ldots, F(\alpha_{n+1})$ can be arbitrary. In this paper he broached a continuity argument to show that if a given differential equation has $2n$ singular points, these can perhaps be allowed to tend to $2n$ real points and the solutions to the real case allowed to deform into those in the general case:

"If I succeed in showing that these equations always have a real solution I will have shown that all linear equations with algebraic coefficients can be solved by Fuchsian and zeta-fuchsian transcendents".

On the 27th June, after he had heard from Klein, Poincaré returned to the description of non-Euclidean polygons, this time defined in the upper half plane (which can be obtained from the disc by an inversion). He took a and b in the upper half plane, with conjugates \overline{a} and \overline{b}, and defined

$$(a, b) = \frac{(a - \overline{a})(b - \overline{b})}{(a - \overline{b})(b - \overline{a})}$$

Since this is invariant under the projective group $\text{PSL}(2; \mathbb{R})$ which preserves the upper half plane, it can play the role of a metric
invariant in the sense of non-Euclidean geometry. In particular there
will be a transformation sending \(a\) to \(c\) and \(b\) to \(d\) if and only if
\((a,b) = (c,d)\). If this condition is stipulated for each of \(n\) pairs
of sides of a 2\(n\) -gon whose angles are, as before, aliquot parts
of 2\(\pi\), and whose vertices are made to correspond only if they are
either both above the real axis or both on it (or both segments of
it, Poincaré admitted the infinite case

\[
\begin{array}{c}
\text{Fig. 7.9}
\end{array}
\]

then indeed a discontinuous group is obtained. Poincaré added, without
a hint of a proof, that every Fuchsian group can be obtained in this
way. Turning to Klein’s example of an unsymmetric polygon, which does
not preserve a fundamental circle, and to his generalization of that
to a region bounded by 2\(n\) circles exterior to one another and possibly
touching externally, he said that successive reflections again
generated a discontinuous group and so also invariant functions.
Making amends for his earlier choice of names, and surely with a
twinkle in his eye, Poincaré added that \(^{20}\)“...I propose to call

[these functions] Kleinian functions, because it is to M. Klein that
one owes the discovery. There will also be theta-Kleinian and
zeta-Kleinian functions analogous to the theta-fuchsian functions”.

In the paper of 11th July entitled "Sur les groupes Kleinéens"
Poincaré delightfully restored the analogy between discontinuous
groups and non-Euclidean polygons which Klein had said his example
of unsymmetric polygons broke. His insight was to take the \((x, y)\)
plane as the boundary of the space \((x,y,z), z \geq 0\), and to regard
the polygon as bounded by arcs which were the intersections of
hemi-spheres centre \((x, y, 0)\) with the \((xy)\) plane. Thus the groups generated by reflections on the sides is regarded as acting on 3 dimensional non-Euclidean space, realised as the space above the \((xy)\) plane in this way:

A pseudogeometric plane (Poincaré referred to the pseudogeometry of Lobatschewky) is a hemisphere; a pseudogeometric line is the intersection of two such planes; the distance along a line from \(p\) to \(s\) is half the logarithm of the cross-ratio \(pscd\), where \(c\) and \(d\) are the points where the line \(ps\) meets the \(xy\) plane; and the angle between two intersecting lines is their usual geometric angle.

This is the first appearance in print of Poincaré's conformal model of non-Euclidean geometry. Oddly enough, it is three-dimensional, just as the original versions of Lobatchevskii and Bolyai were.

Papers continued to stream out of Caen. In another (8 August) he claimed that he had been able to show by a simple polynomial change of variable that his earlier work (30 May) on differential equations led to the conclusions that

i) Every linear differential equation with algebraic coefficients can be solved by zeta fuchsians;

ii) The co-ordinates of points on any algebraic curve can be expressed as Fuchsian functions of an auxiliary variable.

The second point is the uniformization theorem for algebraic curves:
if \(f(u, v) = 0 \) is the equation of an algebraic curve then it is claimed that there are Fuchsian functions \(\phi(x) \) and \(\psi(x) \) such that \(u = \phi(x), v = \psi(x), f(\phi(x), \psi(x)) = 0 \).

Klein meanwhile had concluded his summer lectures on geometric function theory, and on 7th October he sent the manuscript of Über Riemanns Theorie der algebraischen Funktionen und ihrer Integrale to Teubner in Leipzig. Now he could return to his old problem. He wrote to Poincaré on the 4th of December, congratulating him on solving the general differential equation with algebraic coefficients and the uniformization problem, and asking for an article on this work for Mathematische Annalen, of which he was the editor. He, Klein, would add a letter to it, connecting it with his work on modular functions. Publication would serve two purposes, acquainting the readership of the Annalen with his work, and explaining its relationship to Klein's [one wonders who would gain most by this]. Poincaré, who had moved to Paris by now, agreed, and sent a manuscript to Klein on December 17th, which made the deadline for the last part of volume 19. In content it much resembles Poincaré's report presented to the Mémoirs de l'Académie nationale des Sciences, Arts et Belles-Lettres de Caen, written and published shortly before, but it goes into more details on the topics Klein had requested. Before discussing these two memoirs, which represent Poincaré's first attempts to survey what he had done in that memorable year, one must turn to the sourer discussion of priorities which Klein's letters provoked.
Klein again objected to the name Fuchsian functions, on the grounds that Fuchs had published nothing on the domain of fuchsian functions, whereas Schwarz had. Nor had he, Klein, done anything on Kleinian functions except to bring one special case to Poincaré's attention; in this case Schottky deserved more of a mention, as did Dyck for the group-theoretic emphasis in his work. Klein had warned Poincaré by letter (13 January 1882) that he would protest against the names as much as was in him, and Poincaré indicated that he would like space in the Annalen to defend his choice. So, in the next issue he pointed out that it was not ignorance of Schwarz that made him select Fuchs's name, but the impossibility of forgetting the remarkable discoveries of Fuchs, based on the theory of linear differential equations. Furthermore, Schwarz was only a little interested in differential equations, and Klein indeed dwelled more on elliptic functions, whereas Fuchs had brought forward a new point of view on differential equations "which had become the point of departure for my researches". As for Kleinian functions, the name belonged rightly to the man who had "stressed their principal importance", said Poincaré, turning Klein's observation on Schottky in his own work [1882a] against him.
Now that Klein had criticized Fuchs publicly, Fuchs came to hear of the dispute and could reply himself. Which he did in the "Journal für Mathematik" [1882] and also privately in a letter to Poincaré. Stung by the allegation that he had published nothing on invariant functions, he cited not only those works of his which had inspired Poincaré, but also his earlier study [1875] of differential equations with algebraic solutions. He observed that Klein himself, in the "Annalen", vol II, had said that these works had led to his own developments. Fuchs was not quite correct. Klein had said rather that he should, at the conclusion of a work devoted to differential equation having algebraic solutions, refer to Fuchs's [1875], "which likewise concerns the subject matter here presented, the study of which I was recently induced to do, even to derive the simple method I substitute here" [Klein, 1876a, = 1922, 305]. In that paper he invoked Schwarz's work at the start, and his own work on binary forms. It is entirely plausible that this was his route to the problem, and that his acquaintance with Fuchs's studies was slight and scarcely influential. It is a story he was to repeat in his book "Vorlesungen über das Ikosaeder" [1884], although towards the end of his life he conceded that Fuchs had been a particular impulse [1922, 257]. But he was eager to see Poincaré harboured no doubts on the matter.

His next letter to Paris (3 April 1882) contains a lengthy restatement of the historical priorities as viewed from Düsseldorf. In Klein's view his study of linear transformations of a variable went back to 1874. When in 1876 he solved the problem thrown up by Fuchs the facts were contrary to what Fuchs had said: "I did not take the ideas from his work, rather I showed that his theme must be handled with my ideas" (Klein's emphasis). He would welcome the new class of functions of several variables being called Fuchsian, but by the way, were they single valued or only unbranched? Then Klein returned to mathematical comments. This remark is the most interesting one: uniformization permits one to show, what is only claimed as probable in the lectures
on Riemann's Theory of Algebraic functions and their integralst: that a Riemann surface of genus \(p > 0 \) cannot have infinitely many discrete self transformations. [Klein meant \(p > 1 \), see his section XIX].

Klein hoped his letter would close the debate, and Poincaré at once agreed (4 April). He wrote that he had not started the debate and he would not prolong it. As for the question of 'Kleinian' he had known of no right to the property before Klein's letter. As for Fuchs's functions of two variables these divided into three classes, two effectively uniform and one only unbranched, and he directed Klein's attention to the smaller works of Fuchs which had followed the main paper. He concluded by wishing the debate over names to be over: "Name is Schall and Rauch" he wrote in German ("Name is sound and fury"). Happily, no more was said, at least on this occasion, but Fuchs remained acutely sensitive to plagiarism, once accusing Hurwitz of it, in 1887, once P. Vernier, and once, incorrectly, Loewy (in 1896). In private he had indeed already registered a similar wound in 1881. He wrote (30 March 1881) to Casorati complaining that Brioschi had referred only to Klein and not to him on the algebraic solutions question, although his work preceded Klein's[1076a] (letter quoted by E. Neuenschwander [1978]).

Poincaré's two memoirs on Fuchsian functions have been mentioned already, and shall now be described, dwelling on the Annalen paper, which subsumes the Caen one. Poincaré hardly ever supplied proofs in these article; statements were given bald, supported only by reference to long calculations or even obscurely qualified by vague remarks about simple cases. Some of these evasions are unimportant, others are more interesting.
A Fuchsian group, he said, is a group of substitutions of the form \(S_i = \left(\begin{array}{cc} \alpha_i \zeta + \beta_i \\ \gamma_i \zeta + \delta_i \end{array} \right) \), where \(\alpha_i, \beta_i, \gamma_i, \delta_i \) are all real and \(\alpha_i \gamma_i - \beta_i \delta_i = 1 \), which move a region \(R_0 \) of the upper half plane around so that the various \(S_i R_0 \) form a sort of web. The \(S_i R_0 \) are to be non-Euclidean polygons, not necessarily finite in extent, fitting together along their common edges, and whose angles are aliquot multiplies of \(2\pi \).

Theta Fuchsian function \(\theta(\zeta) \) are defined as follows: let \(H(\zeta) \) be any rational function, then the series

\[
\theta(\zeta) = \sum_{i=1}^{\infty} H(\frac{\alpha_i \zeta + \beta_i}{\gamma_i \zeta + \delta_i}) \left(\frac{1}{(\gamma_i \zeta + \delta_i)^{2m}} \right)
\]

converges for each integer \(m \) greater than 1 and defines a theta-fuchsian function. Consideration of \(\int \frac{\theta'(\zeta) \, dz}{\theta(\zeta)} \) over the boundary of \(R_0 \) shows that the number of its zeros and its infinities in \(R_0 \) is finite. A quotient of two theta-fuchsians is a Fuchsian function \(F(\zeta) \), it satisfies

\[
F\left(\frac{\alpha_i \zeta + \beta_i}{\gamma_i \zeta + \delta_i} \right) = F(\zeta).
\]

If \(R_0 \) has a segment of its boundary in common with the real axis \(F \) can be extended analytically into the lower half plane, but otherwise, he remarked, it is only defined on the upper half plane.

If the substitutions of the group have all these properties except that of preserving a half-plane or circle, than Poincaré called the group Kleinian, and the functions theta-Kleinian and Kleinian respectively, remarking that their study required processes derived from three dimensional non-Euclidean geometry. He gave no reason for the
name in the Annalen, in the Caen essay he said that Klein had been the first to give an example of such groups.

Poincaré stated four main results for the theory of Fuchsian functions and groups. The first concerned the genus of the algebraic equation connecting two Fuchsian functions belonging to the same groups. He called two edges of \(R_0 \) conjugate if they were identified by some \(S_1 \), and said that vertices which were identified belonged to the same cycle. Then in the case of a finite polygon, if there were \(2n \) sides to \(R_0 \) and \(p \) cycles, then genus of the equation connecting any two functions was \(\frac{n+1-p}{2} \). For a polygon with 'sides' along the real axis the formula is \(n - p \).

The second theorem concerned the connection between Fuchsian functions and second order differential equations. If \(x \) and \(y \) are two Fuchsian or Kleinian functions corresponding to the same group then

\[
\begin{align*}
\nu_1 &= \frac{dx}{\sqrt{d\zeta}} \quad \text{and} \quad \nu_2 = \zeta \frac{dx}{d\zeta}
\end{align*}
\]

are certainly solutions of

\[
\frac{d^2\nu}{dx^2} = \nu \phi(x,y),
\]

where \(\phi \) is an algebraic function. Poincaré claimed that he could state very complicated conditions on the coefficients of \(\phi \) under which the converse was true, and the solutions of \(\frac{d^2\nu}{dx^2} = \nu \phi(x,y) \) were Fuchsian functions, but he did not do so. He gave instead one example of an equation not of the Fuchsian type, in which if the coefficients satisfied certain (unspecified) inequalities the solutions were Kleinian functions, and if they satisfied certain (unspecified) equalities the solutions were Fuchsian. [This brings in the 'notorious' accessory parameters.]
The third theorem was uniformization, derived from the existence of a Fuchsian function $F(\zeta)$ omitting $n + 1$ values $a_1, a_2, \ldots, a_n, \infty$ from its range, which rested in turn on a long numerical calculation, which was not given. If $f(x, y) = 0$ is an algebraic equation with singularities at a_1, a_2, \ldots, a_n, and $x = F(\zeta)$ then y is also a Fuchsian function and the curve $f(x, y) = 0$ has been uniformized.

The fourth theorem concerned zeta-fuchsian functions, i.e. functions

$$\phi_1(\zeta), \phi_2(\zeta), \ldots, \phi_n(\zeta)$$

which satisfy

$$\phi_i\left(\frac{\alpha_i \zeta + \beta_i}{\gamma_i \zeta + \delta_i}\right) = A_{1i}^i \phi_1(\zeta) + A_{2i}^i \phi_2(\zeta) + \ldots + A_{ni}^i \phi_n(\zeta)$$

for constants A such that $\det(A_{ij}) = 1$ for all i. Poincaré claimed that his earlier results could be extended to show that every n^{th} order linear differential equation with algebraic coefficients can be solved by Fuchsian and zeta-fuchsian functions, or by Kleinian and zeta-Kleinian ones.

The same volume of the Annalen also contained Klein's first response to Poincaré's ideas. Excited, but also challenged by the sudden emergence of the younger man, he felt driven to use methods which even he regarded as "to some extent irregular" and to publish his results before he had managed to put them in order. This was a departure from his usual practice, which might indeed gloss over special cases and prefer geometric reasoning to the arithmetizing of, say, Weierstrass, but is nonetheless quite precise. The contrast between Klein and the Berlin school shows itself in Klein's preference for generic situations to exceptional cases, however, the generic situation is always treated carefully. The
contrast between Klein and Poincaré is between the clear-sighted and the visionary. Poincaré's genius was paradoxically helped by his strange lack of mathematical education; he was making it up as he went along. Klein was reformulating his considerable store of existing knowledge, bringing to the new problems not only techniques he knew had worked in the past but a unifying view of mathematics to which, he felt, the new subject must conform. The result of each comparison is oddly similar. The thoroughness of the Berlin school revealed hidden riches in known fields whereas Klein's study of modular functions was almost a new field of study; Klein's thoroughness in turn lacks the vivid re-creation of the theory of Riemann surfaces and differential equations one finds in Poincaré.

In his first brief paper, Klein asserted that for each Riemann surface of genus greater than 1, there is always a unique function \(\eta \) which is single-valued on the simply-connected version of the surface, on crossing a cut changes to a function of the form \(\frac{an + \delta}{\eta n + \delta} \) and so by analytic continuation maps the cut surface without overlaps onto a 2p-connected region of the \(\eta \)-sphere. The (suppressed) argument to the existence was a continuity one; the uniqueness derives from the manner of the analytic continuation. It has the uniformization of the Riemann surface as a corollary, and Klein give a more general description of the generation of the discontinuous group in this context. Poincaré always at this time used infinite polygons in his discussion of uniformization, as Freudenthal [1954] has pointed out. Klein regarded the analytic continuation of \(\eta \) as \(\frac{an + \delta}{\eta n + \delta} \) as moving the image of the cut surface around on the \(\eta \)-sphere. Furthermore, these generating substitutions, although they must satisfy certain inequalities determined by the shape of the fundamental region, contain \(3p - 3 \) complex variable parameters. He explained this count as
follows. The image of the cut surface may be taken to be a polygon whose 2p sides, the images of the cut, are identified in pairs. Each identification, being a fractional linear transformation, contains three parameters, so 3p parameters specify the group, but then 3 may be chosen arbitrarily since the group does not depend on the initial position of the polygon. Klein's description of the decomposition of a Riemann surface by means of cuts is confused: 2p cuts are needed to render a surface of genus p simply connected, when it becomes a polygon of 2p sides. In the "Neue Beiträge" he counted more carefully: there are 2p lengths and 2p angles in such a polygon, so 6p - 3 independent real co-ordinates, and then, using the upper half plane model, the coefficients of \(\eta \) are real and \(\eta \) may be replaced by \(\frac{an+b}{cn+d} \), so these parameters are inessential, and the function \(\eta \) depends on \(3p - 3 \) parameters. Now, the space of moduli for Riemann surfaces has complex dimension 3p - 3 and Klein made the audacious claim that every Riemann surface corresponds accordingly to a unique group. As Freudenthal [1954] remarks, the direct route to uniformization is the only point at which Klein surpassed Poincaré. One might even make this point a little more strongly: it is only Klein who invoked the birational classification of surfaces and so made at all precise how the correspondence between discontinuous groups and curves might be expected to work.

Klein went on to describe symmetric surfaces and surfaces whose equations have real coefficients. In this way he encountered as a special case the figure bounded by \(p + 1 \) non-intersecting circles, which, he said, Schottky had already described "without emphasizing its principal importance".

The next developments were vividly described by Klein himself in a lecture of 1916, reprinted in his Werke (III, 584) and his Entwicklungen (p. 379). He wrote: "In Easter 1882 I went to recover my health to the North Sea, and indeed to Nordeney. I wanted to write a second part of my notes on Riemann in peace, in fact..."
to work out the existence proof for algebraic functions on a given
Riemann surface in a new form. But I only stayed there for eight
days because the life was too miserable, since violent storms made
any excursions impossible and I had severe asthma. I decided to go
back as soon as possible to my home in Düsseldorf. On the last
night, 22nd to 23rd March, when I needed to sit on the sofa because
of Asthma, suddenly the 'Grenzkreis theorem' appeared before me in
2½ hours as it was already quite properly represented in the figure
of the 14-gon in volume 14 of the Math. Annalen. On the following
morning, in the post wagon that used to go from the North to Emden
in those days, I carefully thought through what I had found once in
every detail. I knew now that I had a great theorem. Arrived in
Düsseldorf I wrote all it at once, dated it the 27th of March, sent
it to Teubner and allowing for corrections to Poincaré and Schwarz,
and by way of examples to Hurwitz." So Klein too had a sleepless
night of inspiration.

The 'Grenzkreis theorem' (or boundary circle theorem) is the
assertion that every Riemann surface of genus greater than one and
without branch points can be represented in an essentially unique
way by an invariant function defined on a bounded region. This raises
two rather trivial historical problems: it is quite unclear what is novel
in Klein's publication of the Grenzkreis theorem; and what ever it is, it
was not amplified in the letter to Poincaré, which was in fact written
on 3rd April. That letter, as we have seen, is given over to the
question of names. The answer seems to be that Klein's second
publication dispenses with cuts, and goes directly from the curve via
the essentially unique function to the fundamental region (for the
group) contained within a bounded domain. So what is vague in the first
paper is made more precise in the second: the space of all groups and
the space of all curves correspond one-to-one via the functions \(n \).
What Klein saw in the figure of the 14-gon was a way of depicting any
Riemann surface within a bounded region upon which a group acts discontinuously. This dispenses entirely with Riemann's approach, which started from the equation, considered to define a surface spread out over the complex sphere. This surface was rendered simply connected by means of cuts, and then functions on the surface were studied in terms of their behaviour at singularities and on crossing the cuts; in short, the surface is given intact and sits above the \(z \)-sphere. In the new view it is given opened out and sits underneath the \(\eta \)-domain. Analytic continuation of functions is given by the group action simultaneously with the identification of the sides - in modern jargon the surface is in Riemann's view a total space and in the new view it is a quotient or base space.\(^{24}\)

Seen in this light one may say that this was Poincaré's attitude all along. Totally ignorant of Riemann's work (he did not know even of Dirichlet's principle, as his question (27 June 1881) about "general Riemannian principles" makes clear) he had come to construct Riemann surfaces naturally from discontinuous groups. In his mind this connected with linear differential equations, a topic much less interesting to Klein. This insight of Poincaré, so painfully gained by Klein, testifies to the strong hold Klein's idea of mathematical unity had upon him. The paradox is that Klein, who had done so much to further non-Euclidean geometry in the 1870's, did not appreciate it here. This derives from his view of geometry as essentially projective. He had been able in 1871 to ground non-Euclidean geometry in projective geometry; the Klein model is a projective model. Thereafter his attitude to geometry had been connected with invariant theory or with line geometry, again a projective idea, or else with topological or visual properties of figures, questions of reality, etc. He does try to discuss intrinsic metrical ideas on a
Riemann surface in his lectures on Riemann's algebraic functions, but
the discussion is clumsy. Differential geometry was not his forte, and
did not fit centrally into his view of mathematics. On the other
hand, Poincaré went directly to a conformal model of non-
Euclidean geometry, and viewed the transformations as isometries;
Klein missed the metrical force of the idea of reflection and kept
it confined to a complex analytic circle of ideas. This is one
way in which Poincaré's ideas are more flexible and better adapted to
the problem at hand. Klein for once was too committed to his picture
of the overall nature of mathematics. It is a cruel irony to penetrate
further into Riemann's way of doing things than anyone else at just the
moment when epoch-making progress is being made on Riemannian
questions in a non-Riemannian way. One can only admire the heroic
and largely successful effort Klein made to grasp the new ideas against
the current of his recent work.

The fruits of his labour were published in his long paper
"Neue Beiträge zur Riemannschen Functionentheorie", finished in
Leipzig 2 October 1882 and published in vol. 21 of the Math. Annalen
1882/83. It will shortly be compared with Poincaré's two long papers
in volume I of Mittag-Leffler's Acta Mathematica, also published in
1882, but first some more of Poincaré's short notes and the correspon-
dence of the two men must be pursued.

Poincaré had published two notes on discontinuous groups and
Fuchsian functions while Klein wrestled with the Grenzkreis Theorem.
The one on discontinuous groups (27 March 1882) made explicit the
connection he had been so pleased to discover between number theory and
non-Euclidean geometry. In it he pointed out that substitutions
(x, y, z ax + by + cz, a'x + b'y + c'z, a''x + b''y + c''z) with real coefficients, preserving $z^2 - xy$, correspond to substitutions

$$(x, y \begin{pmatrix} ax+by+c \\ a''x+b''y+c'' \end{pmatrix}, a'x+b'y+c')$$

and thence to substitutions

$$(t, \begin{pmatrix} at+\beta \\ \gamma t+\delta \end{pmatrix})$$

where a, β, γ, δ are real and t is a complex quantity $x t^2 + 2zt + y = 0$. To make t lie in a half-plane he assumed $z^2 - xy$ was negative.

Accordingly, discontinuous subgroups G of the initial group correspond to discontinuous subgroups G' of the final group, and the same is true for other forms in x, y, z. In particular one might start by assuming $a, b, ..., c''$ were integers. Furthermore, the polygonal region R' appropriate to G' (when G' is thought of as transforming the interior of a conic, say a circle) corresponds very simply to the polygon R moved around by G. Place a sphere so that stereographic projection from the plane to the sphere lifts the circular region on which G' acts up to a hemisphere. Now project the image vertically down onto the plane. The image of R' so obtained is R, and is rectilinear. This is the now standard process (discussed above) for converting the conformal description of non-Euclidean geometry of the projective one.

In the paper on Fuchsian groups (10 April) he looked again at nth order linear differential equations whose coefficients $p_i(x, y)$ are rational in x and y, and may become infinite at some points, where x and y satisfy an algebraic equation $f(x, y) = 0$ of genus p. He claimed that if there exist two Fuchsian functions $F(z)$ and $F_1(z)$ defined inside some fundamental circle, such that $x = F(z)$ and
y = F₁(z) satisfy f(x, y) = 0, and the only singular points of the equation are such that the roots of the determinant equation are multiples of \(\frac{1}{n} \), and \(F, F₁ \) and their first \(n-1 \) derivatives vanish at the singular points, then the equation is solvable by zeta-fuchsian functions of \(z \). Furthermore, the fundamental region has \(4p \) sides and either opposite sides are identified, or the sides are identified \(4q + 1 \) with \(4q + 3 \) and \(4q + 2 \) with \(4q + 4 \).

Klein was struck by the close resemblance of this paper of Poincaré's to his own, and wrote to him on the 7th of May to say he found the methods interchangeable. He went on:\change{25) "I prove my theorems by continuity in that I assume the two lemmata: 1. that to any "groupe discontinu" there corresponds a Riemann surface, and 2. that to a single necessarily dissected Riemann surface (under the restrictions of the present theorem) there can correspond only one such group (in so far as a group does generally correspond to it." (Klein's emphasis). He offered Poincaré a new version of his general theorem to accompany the two notes in the Math. Annalen, for which he said he had very little time. Let \(p = \mu₁ + \mu₂ + \ldots + \muₘ \), where the \(\mu \)'s are integers greater than 1. Take \(m \) points on the Riemann surface \(O₁, \ldots, Oₘ \), and draw \(2\mu₁ \) boundary cuts from \(O₁ \). On the \(\eta \)-sphere draw \(m \) circles lying outside one another and draw a circular-arc polygon in the regions they bound having \(4\mu₁ \) sides each perpendicular to the first circle, then another of \(4\mu₂ \) sides standing on the second circle, and so on until an \(m \)-fold connected polygon is obtained. Order the sides of the boundary \(A₁, B₁, A₁⁻¹, B₁⁻¹, A₂, B₂, \ldots \), then the corresponding linear substitutions satisfy \(A₁ B₁ A₁⁻¹ B₁⁻¹ \ldots A_{µ₁}⁻¹ B_{µ₁}⁻¹ = 1 \). Then, he said "there is always one and only one analytic function which represents the dissected Riemann surface on the circular-arc polygon described in this way."}
Poincaré replied (12 May) that the methods differed less in the general principle than in the details. As for the lemmas he had established the first by considerations of power series, and the second "presents no difficulty and it is probable we will establish it in the same way". Once this was done, "and it is in effect there that I begin, like you I employ continuity,...".

Klein replied by return of post (14 May). To prove the second lemma he considered the sets of all groups and of all Riemann surfaces as forming analytic manifolds with analytic boundaries in Weierstrass's sense of the term. The correspondence between these manifolds is analytic and $1 - x$ in different places, where x is 0 or 1, and the lemma follows from the result that the mapping from groups to surfaces has a nowhere vanishing functional determinant. But he admitted this argument was only advanced in principle, he expected that to carry it out would be a lot of trouble and it might have to be modified. He had also been to see Schwarz in Göttingen, and without Schwarz's permission to do so he offered Poincaré Schwarz's ideas on the problem. Schwarz imagined the dissected Riemann surface infinitely covered by leaves joined along the boundaries cuts, so as to form a surface. This surface, at least for n-functions of the second kind, would be simply-connected and simply bounded (in as much as infinite surfaces can be described in such ways at all) and so can be mapped onto the interior of a circle. As he said, "this Schwarzian line of thought is in any case very beautiful."

Poincaré agreed in that estimation (18 May) but admitted that he had tried and failed to extend Schwarz's ideas to more complicated problems, and hoped that Schwarz would have better luck.

As spring turned into summer both men were free to write up
their researches in extended form. Poincaré had been commissioned by Mittag-Leffler to publish his work in the first issue of the new Acta Mathematica26, and Klein had his own Mathematische Annalen. It is clear from their correspondence that they had each arrived at a convenient summit, offering a view over a considerable amount of new mathematical terrain, and with a hint of new peaks in the distance. In the event both men chose to survey their discoveries, rather than to continue their assault, and indeed the uniformization theorem and Kleinian groups were to prove markedly less tractable problems. As a result, it is possible to describe their long papers quite briefly.

Klein began his "Neue Beiträge zur Riemannschen Funktionentheorie" with a discussion of a Riemann surface as a closed surface in space, carrying a metric

$$ds^2 = Edp^2 + 2 Fdpdq + Gdq^2$$

for which

$$\frac{3}{3p} \left(\frac{E\frac{\partial u}{\partial q} - G\frac{\partial u}{\partial p}}{\sqrt{EG-F^2}} \right) + \frac{3}{3q} \left(\frac{G\frac{\partial u}{\partial p} - E\frac{\partial u}{\partial q}}{\sqrt{EG-F^2}} \right) = 0$$

This is the approach taken in the earlier "Riemann's Theorie der algebraischen Funktionen und ihrer Integralen''. It leads naturally to a local theory of Riemann surfaces and then to the global study of the patches of surfaces obtained from the above equation. Dirichlet's principle as proved by Schwarz is the crucial tool for representing surfaces. Klein quotes an extensive passage from a letter Schwarz wrote to him on 1st February 1882 in which the non-simply connected case is discussed. Various patches are described including circular arc-triangles and polygons, and the way in which they might fit together to form surfaces is discussed, following the lines of the
correspondence. This line of argument is extended in the second section of the paper to a general discussion of the analytic continuation of a function by means of tiling or polygon nets (Bildungsnetz) which leads to the central idea of the paper: single valued functions with linear transformations to themselves.

These functions and their groups are discussed carefully in section III. Klein points out in §5 that even amongst discontinuous groups there are those which have no fundamental region, the fundamental points are everywhere dense in the complex plane. Then there are groups which arise when the complex plane is divided up by several natural boundaries, and those which have no connected fundamental domain. So, said Klein the idea of a discontinuous group must be supplemented by that of the fundamental domain before it be becomes workable. He then devoted several paragraphs to examples where the fundamental domains are well understood: the regular solids, the parallelogram lattice for elliptic functions, and the circular arc triangles of Schwarz. In the last case he introduced considerations of non-Euclidean geometry as Poincaré had done. He went on to look at more general examples where the group preserves a fundamental, circle, and showed how Riemann surfaces may be produced by drawing a certain fundamental polygon and identifying the sides. In §14 he showed that a bounded Riemann surface of genus p with n branch points may be produced by identifying the sides of a polygon of $4p + 2n$ sides. To each boundary cut correspond 2 sides A_1 and A_1^{-1}, B_1 and B_1^{-1}. There are 8 real choices to be made to specify A_1 and A_1^{-1}, B_1 and B_1^{-1}; 6 for each subsequent quadruple. The branch points each require two sides (which are identified by the group, the curve so obtained joins each branch point to the initial point 0 of A_1) so there are 2n choices to be made, so there are seemingly $6p + 2n + 2$ choices in all. But the polygon must be closed, so three choices are lost, the position of 0 is
arbitrary, losing two more, and \(n \) may be replaced by \(\frac{an^+\delta}{yn^+\delta} \) with real \(\alpha, \beta, \gamma, \delta \), so the decomposition depends on \(6p + 2n - 6 \) real parameters.

Fairly general remarks followed, about the situation when there is no fundamental circle, and the process of continuously varying the parameters. This gave way to the fourth and penultimate section of the paper, on the so-called fundamental theorem. This asserted that to every Riemann surface of genus \(p \), with \(n \) branch points joined by lines \(z_k \) to a common point, there corresponded one and only one normal function \(\eta \) which mapped the polygon onto the dissected surface. The theorem, said Klein, had the Grenzkreis theorem and the Ruckkehr-schnitt theorem (to give them their later names) as special cases. Its proof rested on a 1-1 correspondence between two manifolds, \(M_1 \) consisting of all Riemann surfaces of type \((p, n, z_k) \) and \(M_2 \) of all the normalized functions \(\eta \). \(M_1 \) and \(M_2 \) have the same dimension, \(6p + 2n - 6 \). Klein argued that each element of \(M_2 \) can be associated to exactly one element of \(M_1 \). For, given \(\eta \), one obtained a Riemann surface of a certain type, but any two which could be obtained could be deformed continuously into one another since the dissected surfaces can be mapped onto discs, and their images in the discs deformed continuously into one another. This was, he said, intuitively evident. Conversely, to each element of \(M_1 \) there corresponds a unique element of \(M_2 \), i.e. given a Riemann surface one can find a unique function \(\eta \). For, Klein argued, suppose these were two: \(\eta \) and \(\eta^1 \). Then analytic continuation of the same fundamental region would yield two equal regions, which, together with any isolated singularities and their boundary points, may be mapped onto one another by a harmonic function, which in turn establishes a linear relationship between \(\eta \) and \(\eta^1 \). Finally Klein invoked a continuity argument to establish that the correspondence between \(M_1 \) and \(M_2 \) was analytic. He admitted that the arguments in this section constituted
only grounds for a proof and not a rigorous proof, which is indeed a fair understatement of what still needed to be done.

Klein concluded his paper by remarking on how the theory of elliptic functions fitted into this framework. The group in this case is commutative, and the transformation theory concerns the passage from \(\eta \)-functions for one modulus to \(\eta \)-functions invariant under a subgroup.

As Klein himself said, ironically the price he had to pay for the work was extra-ordinarily high. In autumn 1882, while working on his "Neue Beiträge" his health broke down completely. A sad passage in his *Werke* [II, 258] records that he had to rest for a long time, and was never able to work again at the same high level; elsewhere he spoke of the centre of his productive thought being destroyed. The competitive element in his personality might be supposed to have driven him too hard, and much has been made of the 'race' between the two men, but the true story is clearly more complicated.

It was not simply, or even chiefly, a race. The generosity of the two men towards each other made it more of a cooperative effort. As has been made clear, doubts and insights are shared in the letters, even to the point of divulging private discussions with other mathematicians. Klein never withheld anything, and cannot be accused of delay in reporting his ideas. But, although Klein had a profound grasp of mathematics, he was not the innovator that Poincaré was, and did not bring to the quest for automorphic function the same depth of vision that Poincaré did. As a contest it was unequal, but Klein was too fiercely ambitious not to feel it as a challenge.
In 1880 he was the dominant figure of his generation. Only Schwarz could rival him in Germany, there was no one to compare with him in France or England, and there can be no doubts about his ambition.

The magisterial tone of at least his early letters to Poincaré, the ceaseless carping about Fuchs, the displays of erudition betray a man eager to be seen as the leader of his profession. The older generation in Berlin were out of reach, but their likely successors (Fuchs, Schwarz, Frobenius) he saw as rivals as much as colleagues. The familiar picture of Klein in his later years as an autocrat who could not be contradicted merely confirms the portrait of the young man who wanted to know all mathematics, and who felt he must shout at the Berlin seminars to put across his point of view. And yet it is a fine achievement to accompany Poincaré for a year as he invented the theory of automorphic functions, so often reformulating old ideas in ways that ran counter to the tradition Klein had just struggled for some years to master. Klein felt called upon to try his utmost to match Poincaré's achievements, and failed cruelly in the attempt. The mathematical community today shows fewer signs than ever of resisting comparing men by comparing their work. Klein's ambition was sustained by a hierarchical mathematical community which a hundred years later generates similar pressures; his grievous misfortune was not his fault.
Poincaré's two papers straddled Klein's. The first, on Fuchsian groups, was finished in July and printed in September, the second, on Fuchsian functions was finished in late October and published at the end of November 1882. The papers gave the first detailed account of the theory since the resume published in Annalen, but, despite their greater length (62 and 102 pages), they are more reticent.

The first paper describes how a discontinuous group of transformations of the upper half-plane H, $z' = \frac{az + b}{cz + d}$ ($ad - bc = 1$, $a, b, c, d \in \mathbb{R}$) may be considered geometrically. If $\alpha, \beta \in H$, and the circle through them perpendicular to the real axis meets the real axis, \mathbb{R}, at h, k say, then the cross-ratio $\frac{(\alpha - h)(\beta - k)}{(\alpha - k)(\beta - h)} = [\alpha, \beta]$ is preserved by all elements of the group and is determined by α and β. It is multiplicative in that, if γ lies on the same circle, then $[\alpha, \beta][\beta, \gamma] = [\alpha, \gamma]$, and, for infinitesimal points z and $z + dz$ in H, Poincaré showed that

$$[z, z + dz] = 1 + \frac{|dz|}{y},$$

neglecting higher terms. So $\log([\alpha, \beta])$ may be taken as defining the distance between α and β, whence the element of arc length is $ds = \frac{|dz|}{y}$ and the element of area is $dS = \frac{dxdy}{y^2}$, setting $z = x + iy$, $dz = dx + idy$. Poincaré observed that these definitions implied that the geometry thus introduced into the upper half plane was non-Euclidean, but decided not to employ that terminology in order to avoid any confusion. He called the group 'discontinuous' if no substitution in it could be found, say $f_\mathbf{i}$, for which $\log[z, f_\mathbf{i}(z)]$ was infinitesimally small, and a discontinuous group of real substitutions he called a Fuchsian group (§3).
To each Fuchsian group he assumed he could associate a region R_0 of H such that the transforms of R_0 by the elements of the group covered it exactly once with overlaps only on the boundaries of regions. Two regions with a piece of boundary in common he called limitrophic (limitrophes). An edge of a region was a piece of boundary in the form of an arc of a circle perpendicular to the real axis, i.e. a non-Euclidean line segment; two edges of one region were said to be conjugate if one edge could be mapped onto the other by an element of the group. The interior of R_0 was mapped by f_i, an element of the group, onto the interior of $f_i(R_0)$. R_0 was, by definition, a region containing only one point in the set \(\{ \frac{a_i z + b_i}{c_i z + d_i} \} \) as f_i ran through the group, for each point $z \in H$. Poincaré noted (§4) that this constraint fell far short of defining R_0 uniquely, and argued that one could always find an R_0 which was in one piece and without a hole. For, if R_0 has a hole, it also has a second piece exterior to it, S_0, and a transformation, f_i, exists which maps S_0 into the hole, so R_0 can be replaced by $R_0 + f_i(S_0) - S_0$. Furthermore, the region R_0 may be taken to be bounded by edges and to form a convex region, upon suitably adding and subtracting pieces to R_0 along conjugate sides. Poincaré admitted polygonal regions for which segments of the real axis \mathbb{R} formed part of the boundary (such segments he called vertices). A convex region R_0 bounded by edges Poincaré called a normal polygon, and he claimed that given such a polygon and the pairing of conjugate sides the group was determined completely. As Nörlund noted [1916, 126], this is true unless an edge AB has both vertices on the real axis, when the polygon determines an infinity of groups.
Poincaré was thus led to 7 families of groups, depending on the nature of the vertices of R_0. A vertex was of the first kind if it lay strictly in H, of the second kind if it was a point of \mathbb{R}, of the third kind if it was a segment of \mathbb{R}. Accordingly the seven kinds of region were obtained by insisting that either (1) all vertices were of the first kind, or (2) all were of the second kind, or (3) all of the third kind, or (4) all were of the second and third kinds, or (5) all of the first and third kinds, or (6) all of the first and second kinds, or (7) were of all kinds.

He said vertices z and z' corresponded if an element of the group took z to z' and the set of all corresponding vertices to a given one formed a cycle. The cycle was of the first category if it was closed under the process of leaving a vertex, tracing an edge and then its conjugate edge until a new vertex is reached (the edges being directed in a standard way in advance), and so on, and all the vertices were of the first kind. Cycles of the second category are closed and only contain vertices of the second kind. Cycles of the third category contain vertices of the second or third kind, and are open. For R_0 to generate a Fuchsian group he observed that the angle at any vertex of the first kind must be an aliquot part of 2π, and that corresponding sides must have the same length (as they evidently will). Conversely, he showed (§6) that these conditions are also sufficient for R_0 to generate a Fuchsian group. At this stage in his argument Poincaré assumed that certain regions R_0 could be found for which the set of all $f_1(R_0)$ did not cover all of H but was a proper subset, which is false.
He then gave several examples before turning to the computation of the genus of the surface obtained by identifying corresponding sides of R_0. He found (by Euler's formula) that if R_0 had $2n$ edges all of the first kind and q closed cycles of vertices then genus, p, was given by

$$p = \frac{n+1-q}{2}.$$

Similarly, if R_0 has n edges of the second kind then Euler's formula implied that the genus was

$$p = n - q.$$

Finally, if R_0 was of the third kind the genus was necessarily 2.

Poincaré discussed how the generating polygon might be simplified, gave more examples and observed that a Fuchsian group has as many fundamental relations between its fundamental substitutions (those which transform R_0 to a limitrophic region) as it has cycles of the first kind. He observed that a Fuchsian group is obtained by letting a discontinuous group of complex substitutions preserve a fixed circle but if a discontinuous group has no fixed circle it is not Fuchsian but Kleinian. Finally he gave some brief historical notes which indicate how much he had learned from Klein while still paying generous tribute to Fuchs.

In his second paper, on Fuchsian functions, Poincaré began by showing that, if $f_i(z) = \frac{\alpha_i z + \beta_i}{\gamma_i z + \delta_i}$, then $\frac{df_i(z)}{dz} = \frac{1}{(\gamma_i z + \delta_i)^2}$, and $\sum_{i=0}^{\infty} \left| \frac{df_i}{dz} \right|^m$ converges for any integer m greater than 1. His domain for z is now the unit circle, and he showed that
the series converges inside and outside the circle, and at those points which are not limit points of a sequence \((-\frac{\delta_i}{\gamma_i})_n\), i.e. \(z\) belongs to an edge of the second kind (is interior to a segment of the boundary of the unit circle which is part of the boundary of \(R_0\)).

He gave two proofs of this result, the second rests essentially on the observation that there are not many points \(f_1(z)\) within any circle centre \(z = 0\) and radius \(R < 1\). Furthermore, he said, if the parameters determining \(R_0\) are varied without the angle sum changing then \(R_0\) in it changed form generate isomorphic groups and the series \(\sum_i \frac{df_i}{dz}_m\) depends continuously on these parameters.

A theta-Fuchsian function he defined by the formula

\[
\theta(z) = \sum_i \frac{a_i z + \beta_i}{\gamma_i z + \delta_i}^{-2m}
\]

where \(H(z)\) is an arbitrary rational function of \(z\) having no pole on the fundamental circle, and \(m\) is an integer greater than 1.

If \(H\) has poles at \(a_1, \ldots, a_r\) inside the unit circle then \(\theta(z)\) is infinite at all the points \(\frac{a_i a_k}{\gamma_i a_k + \delta_i}\), but the series converges everywhere else. In Section V of the paper Poincaré investigated whether \(H\) could be chosen that \(\theta(z)\) vanished identically, and gave examples to show that this could happen. E.g. (no. 4) if \(a_r\) is a vertex of the polygon \(R_0\) and \(a'_r\) its image in the fundamental circle, then the Fuchsian group contains the substitution \((z - a_r)e^{2\pi i/\beta_r} (z - a'_r)\)

for some integer \(\beta_r\). If \(H(z) := \frac{(z - a_r)^p}{z - a'_r} \frac{1}{(z - a'_r)^{2m}}\) and \(p + m \equiv 0 \mod \beta_r\) then \(\theta(z) = 0\) for all \(z\). For the function \(\theta\) may be written as \(\theta(z) = \sum_i \frac{(f_i - a_r)^p}{(f_i - a'_r)^{p+2m}} \frac{df_i}{dz}_m\) and if the summation is taken first over the rotation around \(a_r\) and then over each coset the factor \(e^{2n(p+m)\pi i/\beta_r}\) appears, which is identically zero. Poincaré showed
how one example automatically generates infinitely many more, but
gave no characterisation of the \mathcal{H} for which θ vanishes.

The bulk of the paper was given over to establishing the
theorem that every theta-Fuchsian can be written as $\left(\frac{dx}{dz}\right)^m F(x,y)$,
where F is a rational function and x and y are two Fuchsian functions
in terms of which every other Fuchsian function can be written
rationally and between which there exists an algebraic relation
$\psi(x,y) = 0$. Conversely, every function of the form $\left(\frac{dx}{dz}\right)^m F(x,y)$
can be written as a theta-Fuchsian function provided it vanishes
whenever z is a vertex of R_0 which lies on the fundamental circle.
The proof distinguished between finite and infinite R_0 and the cases
where the genus does and does not equal zero. It follows from
the theorem that every Fuchsian function can be written infinitely
many ways as a quotient of two theta-Fuchsian functions. Furthermore,
the theta-Fuchsian functions which do not have poles in the fundamental
circle form a finite dimensional space, and Poincaré showed how
various linear relationships between such functions might be found.
The dimension is $q = (2m - 1)(n - 1)$, where m is as above and
$2n$ is a number of sides of R_0.

Mention should be made of Poincaré's other three big papers in
Acta Mathematica: [1883] on Kleinian groups, [1884a] on the groups
associated to linear differential equations, and [1884b] on Zeta-Fuchsian
functions. The difficulties involved in studying Kleinian groups and
Kleinian functions are much greater than those of the Fuchsian case,
and are still not properly resolved today. Poincaré does little more
than indicate how much of the analogy goes over, and how three-dimensional
non-Euclidean geometry might help. The papers on differential equations
and Zeta-Fuchsians are more substantial. Poincaré raised two questions: given a linear equation with algebraic coefficients, find its monodromy group; and, given a second-order linear equation containing accessory parameters, choose them in such a way that the group is Fuchsian. His conclusions, based on the method of continuity (which he admitted was not at all obviously true) were that every equation

\[
\frac{d^2v}{dx^2} = \phi(x,y)v
\]

where \(\theta(x,y) = 0 \), \(\phi \) and \(\theta \) are rational in \(x \) and \(y \), and the exponent differences of the solutions at the singular points are zero or aliquot parts of unity is such that, if \(z \) is a quotient of two independent solutions, then \(x := x(z) \):

(i) will be a Fuchsian function existing only inside a circle for exactly one choice of the accessory parameters;

(ii) will be a Fuchsian or Kleinian function existing for all \(z \) for exactly one choice of the accessory parameters;

(iii) will be a Kleinian function existing only in a subregion of \(\phi \) for infinitely many choices of the accessory parameters.

The zeta-Fuchsian paper likewise confined itself to equations all of whose solutions are regular. These equations whose coefficients may be uniformized by Fuchsian functions, are called Fuchsian equations. At the end of this series of papers, and 390 pages of Acta Mathematica, Poincaré modestly bade farewell to these subjects for a while with the words: "This will suffice to make it clear that, in the five memoirs of Acta Mathematica which I have dedicated to the study of Fuchsian and Kleinian transcendent I have only skimmed a vast subject which without doubt will furnish geometers with the occasion for numerous important discoveries."
DIFFERENTIAL EQUATIONS AND GROUP THEORY FROM RIEMANN TO POINCARÉ.

Appendices, Notes, and Bibliography.
BEST COPY

AVAILABLE

TEXT IN ORIGINAL IS CLOSE TO THE EDGE OF THE PAGE
Appendix 1, Schwarz and Schottky on conformal representation.

Schwarz wrote several papers on the conformal representation of one region upon another between 1868-1870 which should be mentioned, although they do not immediately relate to differential equations.

In the first of them, [1869a], Schwarz remarked that Mertens, a fellow student of his in Weierstrass's 1863-64 class on analytic function theory, had observed to him that Riemann's conformal representation of a rectilineal triangle on a circle raised a problem: the precise determination of such a function seemed to be beyond one's power to analyse because of the discontinuities at the corners. Discontinuity at that time meant any form of singularity, in this case the map is not analytic. That had set Schwarz thinking, for he knew no examples of the conformal representation of prescribed regions, and in this paper be proposed to map a square onto a circle. He said [1869a, Abh II, 56,]

"For this and many other representation problems this fruitful theorem leads to the solution:

"If, to a continuous succession of real values of a complex argument of an analytic function, there corresponds a continuous succession of real values of the function then to any two conjugate values of the argument correspond conjugate values of the function."

This result is now called the Schwarz reflection principle.

In symbols, it asserts that if \(f \) is analytic and \(f(x) \) is real for real \(x \), then \(f(x + yi) = \overline{f(x-yi)} \). To represent the square on a circle by a function \(t = f(u) \) Schwarz said it was simpler to replace the circle by a half-plane, which can be done by inversion ("transformation by reciprocal radii"). The singular points would be \(t = \infty, -1, 0, \) and \(1 \) and the upper half plane is to correspond to the inside of the square. The boundary of the square will be mapped by \(t \) onto the real axis. As the variable \(u \) crosses a side of the square \(t(u) \) will cross into the lower half plane, and by the reflection principle \(t \) is thus defined.
on the four squares adjacent to the original one, so on iterating this process \(t \) is seen to be a doubly periodic function defined on a square lattice, thus a lemniscatic function.

Indeed, Schwarz went on, the function \(v = u^2 \) converts the wedge-shaped region within an angle of \(\pi/2 \) to a half plane, and any analytic function with non-vanishing derivative at \(v = 0 \) will then produce a conformal copy of the wedge. One might speak of such a function straightening out the corner. But even so, this \(u \) is not sufficiently general, for an everywhere analytic map sending lines to lines, namely: \(u' = C_1 u + C_2 \), where \(C_1 \) and \(C_2 \) are constants is surely equivalent to it. To eliminate the constants Schwarz forward the equation

\[
\frac{d}{dt} \log \frac{du'}{dt} = \frac{d}{dt} \log \frac{du}{dt},
\]

which he said was an important step, for \(\frac{d}{dt} \log \frac{du}{dt} \) is infinite whenever \(\frac{du}{dt} \) is zero or infinite, which happens at each singular point. So

\[
\frac{d}{dt} \log \frac{du}{dt} = -\frac{1}{2} + \frac{1}{t+1} + \frac{1}{t} + \frac{1}{t-1},
\]

and by, considering the vertices \(t = -1, 0 \) and 1, Schwarz showed that the expression

\[
\frac{d}{dt} \log \frac{du}{dt} + \frac{1}{2} \left(\frac{1}{t+1} + \frac{1}{t} + \frac{1}{t-1} \right) = *
\]

is to be analytic for all finite \(t \). The transformation \(t' = \frac{1}{t} \) enabled him to consider \(t \) infinite, and it turned out \(\frac{d}{dt} \log \frac{du}{dt} \) was zero at infinity, so * is constant and indeed zero, which implies that

\[
\frac{d}{dt} \log \frac{du}{dt} = -\frac{1}{2} \left(\frac{1}{t+1} + \frac{1}{t} + \frac{1}{t-1} \right).
\]

This led Schwarz to his result:

\[
u = C_1 \int_0^t \frac{dt}{\left(4t(1-t^2) \right)^{1/4}} + C_2
\]

To represent a regular \(n \)-gon on a circle, a simple generalization showed that

\[
u = \int_0^s \frac{ds}{\left(1-s^n \right)^{n/2}}
\]
would suffice, a result which Schwarz said he had presented for his promotion at Berlin University in 1864. A continuity argument which which Schwarz attributed to Weierstrass enabled him also to deal with an irregular n-gon.

To consider figures bounded by "the simplest curved lines", circles, Schwarz applied an inversion

$$u' = \frac{C_1 u + C_2}{C_3 u + C_4},$$

where C_1, C_2, C_3 and C_4 are arbitrary constants, to obtain the fullest generality. He eliminated the arbitrary constants and obtained

$$\frac{d^2}{dt^2} \log \frac{du}{dt} - \frac{1}{2} \left(\frac{d}{dt} \log \frac{du}{dt} \right)^2,$$

which he denoted $\Psi(u, t)$

$$\frac{d^3 u}{dt^3} \frac{du}{dt} - 3 \frac{d^2 u}{dt^2} \left(\frac{du}{dt} \right)^2.$$ [it is equal to $\frac{du}{dt}^2$]

If t has no winding point inside the circular arc polygon, then $\Psi(u, t)$ is analytic inside the polygon, and so, if the polygon is mapped onto the upper half plane, $\Psi(u, t)$ will be a rational function $F(t)$. Furthermore, the general solution of the differential equation $\Psi(u, t) = F(t)$ will be the quotient of two solutions of a second order linear differential equation with rational coefficients. Schwarz thanked Weierstrass for drawing this observation to his attention.

We have seen that this observation was a standard move in the theory of elliptic functions.

Schwarz then considered the function

$$u = u_0 = \int_{t_0}^{t} \frac{(t-a)^{a-1}(t-b)^{b-1}(t-c)^{c-1}}{(t-b)^{b-1}(t-c)^{c-1}} dt$$

for real constants, $a, b, c, \alpha, \beta, \gamma$, where α, β, γ are positive and $\alpha + \beta + \gamma = 1$. It maps the upper and lower half planes onto two rectilinear triangles with angles $\pi \alpha$, $\pi \beta$, and $\pi \gamma$. By reflection an
infinitely many valued function is obtained unless \(\alpha, \beta, \gamma \) take one of these four sets of values

\[
\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \frac{1}{12}, \frac{1}{3}, \frac{1}{12}, \frac{1}{3}, \frac{1}{2}, \frac{1}{3}, \frac{1}{6}, \frac{1}{6},
\]

in which case the triangles tesselate the plane, as Christoffel [1867] and Briot and Bouquet had shown [1856a, 306-308].

During 1869 Schwarz's views on the Dirichlet principle hardened, one supposes in discussions with Weierstrass, who indeed published a counter-example to a related Dirichlet-type argument the next year. In his paper [1869a] Schwarz observed that Dirichlet's principle still lacked a proof (it was becoming Dirichlet's problem), and he supplied one for simply-connected polygonal regions, or more generally for convex regions. The proof consisted of showing that one could deform a conformal map of a small convex region onto a circle analytically so that the domain was a slightly larger convex region, which was also mapped conformally into a circle. The deformation of the domain went from one convex boundary curve to another through a series of (non-convex) rectangular approximations. One started trivially with a circle inside the given region and finished with a map of the whole region onto a circle.

By the next year Dirichlet's principle had become quite problematic. In his [1870a] Schwarz brought forward an approach based, he said, on discussion he had had with Kronecker and other mathematicians in November 1869 on the partial differential equation \(\Delta u = 0 \). This was his "alternating method" ("alternirendes Verfahren"), and it applied to regions bounded by curves with a finite radius of curvature everywhere, and only finitely many vertices, although cusps were not excluded. The idea is an attractive one. He considered two overlapping regions \(T_1 \) and \(T_2 \) of the kind he could already solve Dirichlet's problem for, called the boundary of \(T_1 \) \(L_0 \) outside \(T_2 \) and \(L_2 \) inside, and likewise the boundary of \(T_2 \) \(L_3 \) outside \(T_1 \) and \(L_1 \) inside, and called the overlap \(T^* \).
He sought a map u such that $\Delta u = 0$ and u took prescribed values on L_0 and L_3.

Invoking the metaphor of an air pump he regarded T_1-T^* and T_2-T^* as air cylinders, and L_1 and L_2 as valves. The first stroke of the first cylinder maps T_1 by u_1 onto a half-plane, taking arbitrary prescribed values on L_0 and a fixed value on L_2 equal to the least value to be taken by u on L_0 and L_3. The first stroke of the second cylinder did the same for T_2, with a function u_2 which always took the maximum value of u on L_1. This is possible because of his assumptions about T_1 and T_2.

The second stroke of the first cylinder converted u_1 into u_3, a function agreeing with u on L_0 and u_2 on L_2. The second stroke of the second cylinder likewise turned u_2 into u_4, which agreed with u and L_3 and u_3 on L_1. The pump works smoothly, and Schwarz found the sequences

$$u' = u_1 + (u_3 - u_1) + (u_5 - u_3) + \ldots + (u_{2n+1} - u_{2n-1}) + \ldots$$

$$u'' = u_2 + (u_4 - u_2) + (u_6 - u_4) + \ldots + (u_{2n+2} - u_{2n}) + \ldots$$

converge to the same, sought-for function u.

He then gave examples of what could be done, remarking at one point [Abh. II, 142]

"Let a circular arc triangle be given. The conformal representation of the surface of a circle onto the inside or the outside of a circular arc triangle can be carried out without difficulty by means of hypergeometric series."

An extended version of this paper was published in [1870b]. Schwarz took the opportunity to point out that the analytic functions he was constructing might have a natural boundary beyond which they could not be analytically continued, a circumstance of importance.
for function theory which, he said, Weierstrass had remarked upon in general some years ago. But he gave only a rather contrived example. Finally he again presented his proof of Dirichlet's principle for simply connected regions with, so to speak, 'rectifiable' boundaries.

Twelve years later, on February 1, 1882, Schwarz wrote a letter to Klein, [1882] in which he showed how to extend the alternating method to multiply-connected regions. A two-fold connected region with boundary, such as an annulus, T, becomes a simply-connected region once a boundary cut is drawn. Let the cut Q produce the region T_1, and Q_2 produce T_2. The alternating method enables one to equalize the two solutions to Dirichlet's Problem for T_1 and T_2, and find a function which jumped by a prescribed constant amount upon crossing a cut. The argument readily extended by induction to regions of higher connectivity, but Schwarz admitted he had found it much harder to deal with unbounded, closed, Riemann surfaces. The difficulty, he said, was overcome by removing two concentric circular patches R_2 containing R_1 from the surface, which lay in the same leaf and enclosed no singular point. The problem could be solved for the Riemann surface without the smaller patch, as it had a boundary, and one could indeed assume the solution function, u_1, took a constant value on the boundary of R_1 and prescribed moduli of periodicity along the cuts. The function did not extend into R_1, but one could solve the Dirichlet problem for the surface patch R_2 by a function u_2 which took the values of u_1 on the boundary of R_2. One could then solve the problem outside R_2 and find a
function which agreed with u_2 on P_1 and so on. In this way one could solve the problem.

One supposes this letter was a reply to one of Klein's about the validity of the Dirichlet principle, perhaps to the publication of Klein's essay on Riemann, to which Schwarz referred. Schwarz still regarded the Riemann surface as spread out above the complex plane. When Klein shortly came to a different view he wrote again to Schwarz, as is described in Chapter VII. I have examined the collection of letters from Schwarz to Klein in the Klein Archive in Göttingen, [N.S.U. Bib. Göttingen, Klein XI, 934-938] but they add nothing to our knowledge of Schwarz's idea. #937 (8 April) looks forward to Klein's visit, #938 (2 July) talks about different matters - models of Kummer's and other surfaces.

Schottky.

The conformal representation of multiply connected regions was studied by Schottky [1877]. He considered the integrals of rational functions defined on such a region, A, and showed (§4) by looking at their periods that every single-valued function on A, which behaves like a rational function on the interior of A and is real and finite on the boundary of A, can be written as a rational function of functions like

$$u = \frac{1}{x - a} + u_0 + \sum_{i=1}^{\infty} u_i (x - a)^i$$

$$v = \frac{i}{x - a} + v_0 + \sum_{i=1}^{\infty} v_i (x - a)^i.$$

He defined the genus of A (§16) as Weierstrass had done (Schottky referred to Weierstrass's lectures of 1873-74), noted that it agreed with Riemann's definition and that genus was preserved by conformal
maps. He concluded the paper (§16) by taking the special case when A is bounded by a circle L_0 which encloses $n-1$ circles which are disjoint and do not enclose one another. This region has genus $n-1$ and there is a group of conformal self transformations of the disc bounded by L_0 obtained by inverting A in each L_1, \ldots, L_{n-1} and then in the circle which bound the images, and so on indefinitely. (The limit point set can be quite dramatic; Fricke in Fricke-Klein Automorphe Functionen, I, 104, gives an example when A is bounded by three circles and the limit set is a Cantor set). Such regions had already been considered by Riemann, and the fragmentary notes he left on the question edited into a brief coherent text by Weber (Riemann [1953f], and published in 1876). Like Schottky, Riemann showed that a conformal map of the region can always be found which maps the boundary circles onto the real axis and takes very value in the upper half plane, \mathbb{H}, n times. Repeated inversion then produces a function invariant under the group and this function is the inverse of the quotient of a second-order differential equation with algebraic coefficients, that is to say, the differential equation is defined on the above covering of \mathbb{H}. Conversely, a conformal representation of this covering on A is obtained by solving such a differential equation, provided the coefficients take conjugate imaginary values at conjugate points. Schottky's work is essentially his thesis of 1875, and consequently was done independently of Riemann.
Appendix 2, Klein's later group-theoretic approach.

In his Vorlesungen über das Ikosaeder [1884] Klein let G be a group of Möbius transformations acting on the sphere (the complex numbers with a point at infinity added) and supposed G to have N elements. The orbit of a typical point under G then has N elements, which may be represented as the common values of a rational function

$$Z = R(z) = c, \text{ } c \text{ some parameter}.$$

Each element of G will be assumed to be a rotation of the sphere, and so of the form

$$z' = \frac{az - b}{bz + a} \text{ where } aa + bb = 1, \text{ since}$$

two points P and P' on a sphere are diametrically opposite if they subtend a right-angle at the North Pole, N.

![Fig. A.2.1](image)

Under stereographic projection from N they correspond to z and z' respectively, so, by similar triangles, $z' = -\frac{1}{z}$. Let $z = \frac{az + b}{cz + d}$ be an element of G, then it must send diametrically opposite points to diametrically opposite points, so

$$\frac{-\frac{a(z + b)}{cz + d}}{-1} = \frac{a(-z)}{c(-z)} + b\frac{c(-z)}{c(-z)} + d$$

i.e.

$$\frac{-cz - d}{az + b} = \frac{bz - a}{dz - c}$$

Since we may assume $ad - bc = 1$ without loss of generality we may equate coefficients, so $b = -\overline{c}, \overline{d} = a$, and the element has the form

$$z = \frac{az - b}{bz + a}, \text{ } aa + bb = 1.$$
Klein now found the finite groups which can occur as follows [1884, I.5]. An algebraic function can be thought of as a Riemann surface over the sphere with only finitely many leaves; it is therefore represented by only finitely many function elements and has only a finite monodromy group. The group elements are representable as circuits of the branch points, and thence, in terms of their effect on the quotient of two solutions to a second order differential equation, as Möbius transformations. So the question of algebraic solutions reduces to finding all finite subgroups of Möbius transformations. To this end, let G be such a group, of N elements. Suppose it has a subgroup H of index v which fixes some point of the sphere. Then that point is a branch point of order $v - 1$. Suppose there are n distinct groups H_i of index v_i, then, by a formula of Riemann’s (see Chapter VI), the total branch point order satisfies

$$\sum_{i=1}^{n} \frac{N}{v_i} (v_i - 1) = 2N - 2.$$

i.e. $$(1 - \frac{1}{v_1}) + (1 - \frac{1}{v_2}) + \ldots = 2 - \frac{2}{N}.$$

Each term on the left is $\geq \frac{1}{2}$, whereas the left hand term is less than 2. So either $n = 2$ and $\frac{1}{v_1} + \frac{1}{v_2} = \frac{2}{N}$, in which case $v_1 < N$ forces the solution $v_1 = v_2 = N$, or $n = 3$. In this case

$$\frac{1}{v_1} + \frac{1}{v_2} + \frac{1}{v_3} = 1 + \frac{2}{N}$$

and the only possibilities are, up to order,

- $v_1 = 2, v_2 = v_3 = 3$, and $N = 12$,
- $v_1 = 2, v_2 = 3, v_3 = 4$, and $N = 24$,
- and $v_1 = 2, v_2 = 3, v_3 = 5$, and $N = 60$.

These are speedily seen to be the dihedral, tetrahedral, octahedral, and icosahedral groups respectively. The cyclic group of order \(N \) is contained within the dihedral group of that order, but is a special case analytically.

For each of these groups, Klein's next task was to find polynomial functions invariant under the action of \(G \), or, passing to homogeneous coordinates \(z = z_1 : z_2 \), to find invariant forms. Clearly, if \(f(z_1, z_2) \) is such a form,

\[
f(z_1, z_2) = 0,
\]

it represents a set of points invariant under \(G \) (as a set) and the converse is also true. If this set cannot be broken into smaller invariant sets, or, better, if \(f \) is irreducible, the form defining it was said to be a ground form. In general such a form will have order \(N \).

If, however, \(G \) has a subgroup \(H \) of index \(\nu \) which fixes some point of the sphere the orbit of that point will be described by a form of order \(\frac{N}{\nu} \). Different illustrations of this principle arise according as the cyclic, dihedral, tetrahedral, octahedral, or icosahedral groups are considered.

Thus the action of the cyclic group of order \(N = n \) has two one-point orbits (the north and south poles) and otherwise an \(n \)-point orbit parameterized by the choice of initial point. These orbits are specified by the forms

\[
z_1 = 0, z_2 = 0 \quad \text{and} \quad \lambda_1 z_1^n + \lambda_2 z_2^n = 0 \quad \text{(which has zeros}
\]

\[
z_1 : z_2 = (-\lambda_2/\lambda_1) e^{2\pi k i/n}, \quad 0 \leq k < n
\]

so the most general set invariant under the cyclic group is represented by an arbitrary product of these:
\[z_1^\alpha z_2^\beta \prod_{i} (\lambda_1^{(i)} z_1 + \lambda_2^{(i)} z_2) \]

where \(\alpha, \beta \) are any two positive integers and \(\lambda_1^{(i)} : \lambda_2^{(i)} \) any parameter.

The other groups are somewhat more complicated, in that three important conjugacy classes of subgroups of \(G \) always arise: those groups fixing either vertices, mid-edge points, or mid-face points of the associated solid. Each group within a given conjugacy class has the same index in \(G, \nu_1, \nu_2, \) or \(\nu_3 \) say, and each orbit of \(G \) corresponding to a given fixed point has order \(N/\nu_1, N/\nu_2, N/\nu_3 \) respectively, which can be specified by a form of that order, say \(F_1, F_2, F_3 \). Consider the form

\[\lambda_1 F_1^{\nu_1} + \lambda_2 F_2^{\nu_2} + \lambda_3 F_3^{\nu_3}. \]

It is of order \(N \) and invariant, so represents a typical orbit of \(G \), but so does \(\lambda_1 F_1^{\nu_1} + \lambda_2 F_2^{\nu_2} \) alone. Choice of \(\lambda_1 : \lambda_2 \) permits any orbit to be defined by \(\lambda_1 F_1^{\nu_1} + \lambda_2 F_2^{\nu_2} \), so in particular the orbit defined by \(\lambda_1 F_1^{\nu_1} + \lambda_2 F_2^{\nu_2} + \lambda_3 F_3^{\nu_3} \). So, for a suitable choice of the \(\lambda \)'s, there is an identity

\[\lambda_1^{(0)} F_1^{\nu_1} + \lambda_2^{(0)} F_2^{\nu_2} + \lambda_3^{(0)} F_3^{\nu_3} \equiv 0. \]

The most general \(G \)-invariant set is then defined by a product of \(F_1, F_2, F_3 \) and \(\lambda_1 F_1^{\nu_1} + \lambda_2 F_2^{\nu_2} \) where \(F_3^{\nu_3} \) can be eliminated wherever it occurs by means of the above identity:

\[F_1^\alpha F_2^\beta F_3^\gamma \prod_{i} (\lambda_1^{(i)} F_1^{\nu_1} + \lambda_2^{(i)} F_2^{\nu_2}). \]

(\(\alpha, \beta, \gamma \), positive integers, \(\lambda_1^{(i)} : \lambda_2^{(i)} \) arbitrary parameters).

To obtain \(F_1, F_2, F_3 \) explicitly it is easiest to obtain them geometrically as forms corresponding to the vertices etc. of the appropriate regular solid. It is also possible, once one has been determined, to find the remaining two by means of the theory of...
invariants of binary forms. The knowledge of covariants of a given form proved just capable of producing enough forms from a given one to solve the problem at hand and of characterizing them within the terms of theory of invariants. But it could only do so once the answer was already known, and this must have further strengthened Klein's enthusiasm for his group-theoretic and geometric methods. The advantage of invariant-theory is that it is thoroughly computational, new forms are produced almost mechanically by systematic multiplication and differentiation of old ones. The disadvantage, however, is a lack of conceptual clarity: it is difficult to be sure one has produced all forms of a given type and, on occasion, even difficult to produce any.

The invariant forms in each case, however obtained, are as follows (in Klein's somewhat ad hoc notation):

For the dihedron (N = 2n) \(F_1 = \frac{Z_1^n + Z_2^n}{2}, F_2 = \frac{Z_1^n - Z_2^n}{2}, \)
\(F_3 = Z_1 Z_2. \) \(F_1 \) represents the mid-edge points, \(F_2 = 0 \) the vertices, and \(F_3 = 0 \) the north and south poles. The identity is evidently \(F_1^2 - F_2^2 - F_3^2 = 0. \)

For the tetrahedron

\[
\begin{align*}
\phi &= z_1^4 + 2i/3 z_1^2 z_2^2 + z_2^4 \\
\psi &= z_1^4 - 2i/3 z_1^2 z_2^2 + z_2^4 \\
t &= z_1 z_2 (z_1^4 - z_2^4)
\end{align*}
\]
\(\phi = 0 \) represents the vertices,
\(\psi = 0 \) represents the mid-face points,
\(t = 0 \) represents the mid-edge points,

the identity satisfied is \(12i/3 t^2 - \phi^3 - \psi^3 = 0. \) In invariant-theoretic terms \(48i/3 \psi \) is the Hessian of \(\phi, \)
i.e. \[\begin{vmatrix} \frac{\partial^2 \phi}{\partial z_1^2} & \frac{\partial^2 \phi}{\partial z_1 \partial z_2} \\ \frac{\partial^2 \phi}{\partial z_2 \partial z_1} & \frac{\partial^2 \phi}{\partial z_2^2} \end{vmatrix} \]

and \(32i\sqrt{3}t \) is the functional determinant or Jacobian of \(\Phi \) and \(\Psi \)

i.e. \[\begin{vmatrix} \frac{\partial \phi}{\partial z_1} & \frac{\partial \phi}{\partial z_2} \\ \frac{\partial \psi}{\partial z_1} & \frac{\partial \psi}{\partial z_2} \end{vmatrix} \]

For the octahedron

\[t = z_1 z_2 (z_1^4 - z_2^4) \]
\[W = z_1^8 + 14z_1^4 z_2^4 + z_2^8 \]
\[\chi = z_1^{12} - 33z_1^8 z_2^4 - 33z_1^4 z_2^8 + z_2^{12} \]

\(t = 0 \) represents the vertices,
\(W = 0 \) represents the mid-face points,
\(\chi = 0 \) represents the mid-edge points,

the identity satisfied is \(108t^4 - W^3 + \chi^2 = 0 \).

\(t \) and \(W \) are easily found by considering the tetrahedron and its dual embedded in the octahedron, and \(\chi \) is the functional determinant of \(t \) and \(W \).
For the icosahedron

\[f = z_1 z_2 (z_1^{10} + 11 z_1^5 z_2^5 - z_2^{10}) \]

\[H = -(z_1^{20} + z_2^{20}) + 228(z_1^{15} z_2^5 - z_1^5 z_2^{15}) - 494 z_1^{10} z_2^{10} \]

\[T = (z_1^{30} + z_2^{30}) + 522(z_1^{25} z_2^5 - z_1^5 z_2^{25}) - 10005(z_1^{20} z_2^{10} + z_1^{10} z_2^{20}) \]

\(f = 0 \) represents the vertices,

\(H = 0 \) represents the mid-face points

\(T = 0 \) represents the mid-edge points, and

\[T^2 + H^3 - 1728 f^5 = 0 \]

\(H \) is the Hessian of \(f \), \(T \) the functional determinant of \(H \) and \(f \), up to a constant in each case.

From a group-theoretic stand-point it is enough to show the only finite subgroups of the sphere are the cyclic, dihedral, and regular solid groups, a task which had essentially been accomplished by Schwarz although Schwarz did not mention groups. From an invariant-theoretic standpoint the forms \(f, \Phi, \tau \) were variously characterized as the only binary forms whose fourth transvectant vanishes identically [Wedekind 1876] or as the only forms all of whose covariants of lower degree vanish identically [Fuchs 1875] [Gordan 1877]. This illustrates the comparative strengths and weaknesses of the two approaches.

To find a rational function invariant under \(G \) it is enough to produce a suitable quotient of these forms in each case, say \(Z = R(z) \). Any other such invariant function will then be a rational function of \(Z \), for, if \(\tilde{R} \) is another, and \(\sigma \) is some orbit under \(G \), \(R \) and \(\tilde{R} \) are constant on orbits and so are algebraic functions one of another which
are also single-valued. Thus \(R \) is a rational function of \(Z = R(z) \).

Furthermore, \(Z \) is uniquely determined up to a Möbius transformation

\[
Z' = \frac{\alpha Z + \beta}{\gamma Z + \delta}
\]

and may be normalized so that the following canonical functions are obtained:

- **For the cyclic group:**
 \[
 Z = \left(\frac{z_1^n}{z_2^n} \right)
 \]

- **For the dihedron:**
 \[
 Z : Z - 1 : 1 = \left(\frac{z_1^n - z_2^n}{z} \right) : \left(\frac{z_1^n + z_2^n}{z} \right) : -(z_1z_2)^n
 \]

- **For the tetrahedron:**
 \[
 Z : Z - 1 : 1 = \psi^3 : -12i\sqrt{3}t^2 : \phi^3
 \]

- **For the octahedron:**
 \[
 Z : Z - 1 : 1 = \chi^2 : 108t^4
 \]

- **For the icosahedron:**
 \[
 Z : Z - 1 : 1 = \Pi^3 : -T^2 : 1728t^5.
 \]

Klein called the form-problem the problem of finding the inverse function to \(Z = R(z) \), i.e. \(z = z(Z) \). He introduced an intermediate variable \(X = \frac{F_2F_3}{F_1} \) so that each \(F_i \) could be easily expressed as a function of \(X \) and \(Z \). As \(Z \) runs over the complex plane \(z \) runs over the sphere. The branch points of \(t \) are at 0, 1, and ∞ and are of orders \(v_1, v_2, v_3 \) respectively. For, if \(Z = \frac{z_1 z_2}{\psi(z_1, z_2)} \), then the branch points of \(z \) are given by the vanishing of the functional determinant

\[
\left(\frac{\partial \phi}{\partial z_1} \frac{\partial \psi}{\partial z_2} - \frac{\partial \phi}{\partial z_2} \frac{\partial \psi}{\partial z_1} \right),
\]

and \(\mu \)-fold zero at \(z = z_0 \) corresponding to a \((\mu + 1)\)-fold branch point at \(Z_0 = z_0 \) of \(Z = z(Z) \). Where \(F_1 \) is always the functional determinant of \(f_2 \) and \(f_3 \) this general result reduces to studying

\[
\frac{v_1 - 1}{F_1} \cdot \frac{v_2 - 1}{F_2} \cdot \frac{v_3 - 1}{F_3} = 0.
\]
for which the roots of \(F_1 = 0 \) correspond to \(Z = 1 \), of \(F_2 = 0 \) to \(Z = 0 \), and of \(F_3 = 0 \) to \(Z = \infty \). It follows that \(z \) maps the upper and lower half \(Z \) planes onto circular triangles with vertices taken one each from the sets \(F_1 = 0, F_2 = 0, F_3 = 0 \) and having angles \(\frac{\pi}{\nu_1}, \frac{\pi}{\nu_2}, \frac{\pi}{\nu_3} \) and each triangle can be taken as the fundamental domain for the extended symmetry group of the appropriate regular solid. As \(Z \) makes a circuit of \(0, 1, \) or \(\infty \) the image of the function \(z \) appears in various different regions of the sphere corresponding to a rotation about the appropriate vertex, so \(z \) is transformed to some \(\frac{az + \beta}{yz + \delta} \). The differential equation for \(z(Z) \) is therefore obtained by eliminating the ratios \(\alpha : \beta : \gamma : \delta \) from the expression for \(Z \) and is accordingly a Schwarzian equation

\[
\frac{\eta''''}{\eta''} - \frac{3}{2} \left(\frac{\eta''}{\eta'} \right)^2 = f(Z),
\]

for a suitable \(f(Z) \). Its solution is a quotient \(\frac{y_1}{y_2} \) of solutions to a second order equation

\[
y'' + py' + qy = 0
\]

for functions \(p \) and \(q \) which satisfy \(f(Z) = 2q - \frac{1}{2p^2} - p' \). In particular \(p \) can be chosen to be rational and this last constraint determines \(q \). But \(f(Z) \) must now be determined. The branch points behaviour and singularities of \(z(Z) \) are known, and \(f(Z) \) can be found from calculating the Schwarzian derivative directly. It turns out that

\[
f(Z) = \frac{\nu_1^2 - 1}{2\nu_1^2(Z - 1)^2} + \frac{\nu_2^2 - 1}{2\nu_2^2Z^2} + \frac{\frac{1}{\nu_1^2} + \frac{1}{\nu_2^2} - \frac{1}{\nu_3^2} - 1}{2(Z - 1)Z}
\]

Accordingly the second order equation can be taken as

\[
y'' + \frac{y_1}{Z} + \frac{y}{4(Z - 1)^2Z^2} \left(-\frac{1}{\nu_2^2} + \frac{\nu_1}{\nu_2} - \frac{1}{\nu_2} - \frac{1}{\nu_3} + 1 \right) - \frac{Z^2}{\nu_3^2} = 0
\]
where Klein chose $p = \frac{1}{z}$. The solutions he then gave were in terms of Riemann's P function:

$$z_1 = P(\beta), \quad z_2 = P(\beta'),$$

being special cases of the P-function $P \begin{pmatrix}
\frac{1}{2\nu_2} & \frac{1}{2\nu_3} & \frac{1}{4} \\
\frac{-1}{2\nu_2} & \frac{-1}{2\nu_3} & \frac{3}{4}
\end{pmatrix} z$.

finally $z(z) = \frac{z_1(z)}{z_2(z)}$.
Appendix 3 Other responses to Riemann's theory of Abelian functions.

Riemann's work gradually elicited significant responses outside the immediate circle of his students. Carl Neumann, in his Vorlesungen über Riemann's Theorie der Abelschen Integrale, 1865, followed Riemann's ideas closely but amplified them usefully, making explicit, for example, Riemann's use of the sphere to represent the domain of the complex numbers augmented by a point at infinity. He gave a careful discussion of the connectivity of a Riemann surface and concluded by using Riemann's θ-function to solve the Jacobi inversion problem. In his other book published the same year, Das Dirichlet'sche Princip in seiner Anwendung auf die Riemann'schen Flächen he applied Dirichlet's principle to obtain the fundamental existence theorems of Riemannian function theory, without questioning its validity. In a later work [1878] he solved Dirichlet's problem for quite a range of boundary conditions without using Dirichlet's principle, see [Monna 1975, 44].

Clebsch and Gordan's Theorie der Abelschen Functionen [1866] was the most important response for its influence on algebraic geometry. In their foreword they described the difficulties of Riemann's "immortal works" as deriving from the same source as made them so remarkable: the great generality of the idea of a function and the consequently indirect methods used to study them. Accordingly they had sought a new approach, based on the theory of algebraic functions, and couched in the style of the new algebra "... which seems definitely to be at the centre of all new mathematical development," for the sake of completeness a very brief description of this work must be attempted.

They considered an curve defined by an algebraic equation $f(x,y) = 0$ of order n, meeting a curve $\phi = 0$ of order m in mn points ξ, and another curve $\psi = 0$ of order m at mn points η, and showed that the
sum of \(\sum_{i} \int_{\xi_i}^{n_i} \) of the third kind had the value
\[
\log \frac{\psi(n) \phi(\xi)}{\phi(n) \psi(\xi)}
\]
So in particular the sum of such integrals of the first kind is zero, and so is the sum of the integrals of the third kind which are only infinite at double points of the curve. Since for them an integral of the first kind is obtained by integrating an everywhere finite integrand and so, in particular, from certain kinds of rational function, it was a straightforward matter of geometry to show there are
\[
\rho = \frac{(n - 1)(n - 2)}{2} - d - r
\]
integrals of the first kind, where \(d \) is the number of double points of \(f = 0 \) and \(r \) the number of its cusps. They showed directly that this number is a birational invariant, and that there are \(2p \) independent closed paths on the curve. Finally they used \(\theta \)-functions to obtain the Abel and Jacobi theorems. Their \(\theta \)-function \(V = e^{-u} \) is introduced at the end of a long preliminary discussion about sums of integrals, but agrees eventually with Riemann's.

One notices the absence in this discussion of the questionable Dirichlet's principle and of the topological ideas of cuts and connectivity. Also missing is any mention of the Riemann–Roch theorem, which Clebsch said in a letter to Roch that he could not understand, see Kline [1972, 934] and any discussion of the existence of functions with prescribed poles on the curve \(f = 0 \). This omission was repaired by Brill and Noether, in their article [1874]. They argued that the Riemann–Roch theorem was really an algebraic theorem since it was about algebraic curves, and gave it an algebraic proof by introducing the important notion of an adjoint curve to a given curve. A curve \(f \) of degree \(n \) with \(\alpha_i \) i-fold points \((i > 1) \) has as adjoint curve any curve passing \((i - 1)\) times through each of its i-fold points. They showed an adjoint curve has degree \(n - 3 \). It meets the given curve \(f \) in other, movable, points which may be used to parametrize families of adjoint curves, and if each curve a family of adjoint curves depends linearly on the parameters they called the family.
a linear family. In this formulation the Riemann-Roch theorem appears as a theorem about the dimension of a so-called special family of dimension q of adjoint curves passing through Q points, where $q = -p + 1 - r$, p is the genus of f, and $0 < r < p - 1$. The theorem asserts that any adjoint curve to f taken from this family meets f again in $R = 2p - 2 - Q$ points which in turn are common to an r dimensional family of adjoint curves. Their proof depends on their version of Abel's theorem, called the Restsatz. For a modern treatment of the Riemann Roch theorem along these lines see [Hartshorne 1977]. They also gave an algebraic definition of the moduli.

Weierstrass lectured in Berlin on algebraic functions in 1863, 1866, 1869, and again in 1874/5. The lectures of 1869 occupy volume IV of his Werke and were published in 1902, edited by G. Hettner and J. Knoblauch, who had earlier circulated a version of these lectures in 1875 - 1877 with the help of H.V. Mangoldt, F. Schottky, and F. Schur. It is not possible even to summarize them adequately here, but discussions of them can be found in Brill and Noether's Die Entwicklung der Theorie der algebraischen functionen (Abschnitt VII), and more recently in C. Houzel [1? 7C1. I refer the reader to those articles for a thorough discussion and extract somewhat brusquely the topic most relevant to the present discussion: Weierstrass points.
Weierstrass took an algebraic curve (algebraische Gebilde) \(f(x, y) = 0 \), where \(f \) is an irreducible algebraic equation, as his starting point, and studied pairs \(x = \phi(t), y = \psi(t) \), where \(\phi \) and \(\psi \) are power series, convergent in some domain, and \(f(\phi(t), \psi(t)) = 0 \).

The point \((\phi(0), \psi(0)) = (a, b)\) he called the midpoint (Mittelpunkt) of \((\phi(t), \psi(t))\) which he called an element (Element), and he considered two elements to be equivalent if they have the same midpoint and agree on some neighbourhood of it. The genus of the curve he defined to be the least number \(k \) such that, given any set of \(k + 1 \) distinct points on the curve, there is a function infinite to the first order at precisely those points (IV, p69), and he denoted the genus (Rang) by \(\rho \). He showed that it is invariant under rational transformations of the curve, and that there are \(\rho \) linearly independent holomorphic integrands on the curve (IV, Ch IV). He gave two methods of calculating the genus:

in Chapter V he showed

\[2\rho = s - 2(n - 1), \]

where \(s \) is the total branch point order of \(f \) and \(n \) the degree of \(y \) in the equation \(f(x, y) = 0 \). In keeping with his desire to prefer algebraic or analytic reasoning to geometric arguments, Weierstrass did not use the phrase 'branch point', instead he spoke of repeated roots of \(f(x, y) = 0 \) at certain points, defined the Ordnungszahl \(s_\lambda \), of such a point as the number of repeated roots, and \(s \) the sum, over all such points, of

\[\sum_{\lambda} (s_\lambda - 1) + 1 = s + 1 \quad (p \, 123). \]

This formula recalls Riemann's part of the Riemann-Hurwitz formula.

Then he showed (p. 125):

\[2\rho = (r - 1)(r - 2) - \sum_{\lambda} k_\lambda \]
where r is the degree of $f(x, y) = 0$, the sum is taken over all singular points of the curve, and k_λ is defined as follows:

$$
\frac{d}{dt} \xi_\lambda = a'_\lambda t^{-k_\lambda} + a''_\lambda t^{-k_\lambda + 1} + \ldots
$$

for an element $\phi(\xi, \eta)$ with midpoint the λ-th singular point. Thus formula can be re-written to incorporate m, the degree of x in $f(x, y) = 0$ (P 172):

$$
\rho = (m - 1)(n - 1) - \frac{1}{4} \sum k_\lambda.
$$

recalling Riemann's formula of (his) [1857c] §11.

Weierstrass paid particular attention to the case where the singular points of a function on the curve are made to coincide. For $k > \rho$ any point can be the unique infinity (of the kth order) of the function defined on the curve and finite everywhere else. Only certain points can be the unique infinity to the kth order of a function when $k \leq \rho$. To show this, Weierstrass argued as follows. A function with a single infinity at (a, b) of order σ is necessarily of the form

$$
F(x, y) = C_0 + C_1 H_0 (x, y) + \ldots + C_\sigma H_{\sigma-1}(x, y)
$$

where each $H_\mu(x, y)$ is infinite to the first order at ρ points $(a_1, b_1), \ldots, (a_\rho, b_\rho)$ and infinite to the $(\mu + 1)$-th order at (a, b). In a neighbourhood of (a_μ, b_μ) $H_\mu(x(t), y(t), a, b) = t^{-\mu-1} + \text{higher powers of } t$, where $x(t), y(t)$ are local coordinates near (a, b) (assumed to be different from all the (a_α, b_α)). In terms of local coordinates near (a_α, b_α), say (x_α, y_α), where x_α and y_α are functions of t, say, $H_\mu(x_\alpha(t), y_\alpha(t), a, b) = -t - \sum_{i=0}^{\infty} h_\alpha t^i + \text{higher powers of } t$, since H_μ has a simple infinity at $(x_\alpha(0), y_\alpha(0) = (a, b))$.
So the simple infinities at \((a_a, b_a)\) cancel out provided one can solve the system of equations for \(C_1, \ldots, C_\sigma\)

\[h_{a1}C_1 + h_{a2}C_2 + \ldots + h_{a\sigma}C_{a\sigma} = 0 \quad a = 1, 2, \ldots, \rho\]
in a non-trivial way. In general, if \(\sigma > \rho\) then \(C_{\rho+1}, \ldots, C_\sigma\) determine the \(C_1, \ldots, C_\rho\), for in general the determinant \(\det h_{a\beta}\), \(1 \leq a, \beta \leq \rho\), is non-zero and one has \(\rho\) equations in \(\sigma\) unknowns. But if \(\sigma \leq \rho\) then in general there are no solutions. However, if the determinant vanish, then non-trivial solutions can again occur. In each case, if \(C_k\) is the first non-zero solution in the sense that all systems of equations for \(C_1, \ldots, C_{i-1}\) \(i < k\) can only be solved trivially, but the system of order \(k\) has a non-trivial solution, then there is a function whose only infinity is one of order \(k\) at \((a, b)\). At point \((a, b)\) at which \(k \leq \rho\) is nowadays called a \textit{Weierstrass point}.

Weierstrass did not discuss the geometric nature of the points, but he did establish the result now called the Weierstrass gap theorem: at any point \(P\) there are \(\rho\) values \(1 = x_1 < \ldots < x_\rho\) such that there does not exist a function finite everywhere but at \(P\) and only infinite to order \(x_i\) at \(P\). In general \(x_i = i, 1 \leq i \leq \rho\), but at a Weierstrass point, after some \(i\), \(x_i > i\).

The remaining two-thirds of the lectures were devoted to Abelian integrals of the three kinds, their periods, and to Abel's theorem; and to Abelian functions and their representation as quotients of the theta-functions. Houzel's essay, already mentioned, must stand in place of any discussion of these important topics here.
Appendix 4, On the History of non-Euclidean Geometry.

Throughout the nineteenth century geometries were developed which differed from Euclid's. The most prominent of these was projective geometry, whether real or complex; n-dimensional geometries were also increasingly introduced. However, these geometries were considered to be mathematical constructs generalizing the idea of real existing Space which could still be regarded as a priori Euclidean. The overthrow of Euclid is due to the successful development of what may strictly be called non-Euclidean geometry: a system of ideas having as much claim as Euclid's to be a valid description of Space, but presenting a different theory of parallels. In non-Euclidean geometry, given any line l and any point P not on l there are infinitely many lines through P coplanar with l but not meeting it. The consequences of this new postulate (together with the other Euclidean postulates, which are taken over unchanged) include: the angle sum of a triangle is always less than π, by an amount proportional to the area - so all triangles have finite area; and there is an absolute measure of length. Moreover, a distinction must be made between parallel lines (which are not equidistant) and the curve equidistant to a straight line (which is not itself straight).

As is well-known, non-Euclidean geometry was first successfully described by Lobachevskii [1829] and J. Bolyai [1831] independently, although Gauss had earlier come to most of the same ideas. The story is well told in Bonola [1912, 1955], and Kline [1972, Chs. 36, 38]. I have argued elsewhere [Gray 1979a, b] that the crucial step taken by Lobachevskii and Bolyai was the use of hyperbolic trigonometry. Their descriptions of non-Euclidean geometry are in this sense analytic, it is the power and wealth of their formulae which convinces the reader.
that non-Euclidean geometry must exist, for its existence is in fact taken for granted. Hyperbolic trigonometry, in turn, was successful because it allowed for a covert use of the differential geometric concepts of length and angle in a more flexible way than earlier formulations of the problem would permit. Moreover, the problem of parallels was not taken to be one of the mere logical consistency of a set of postulates. Saccheri, Lambert, and Taurinus, three of its most vigorous investigators, knew that spherical geometry differed from Euclid's, but regarded it as irrelevant. For them the problem had to do with the nature of the straight line and the plane (which they could not really define), and so broke into two parts: could there be a system of geometry with many parallels? and, if so, could it describe Space? The Lobachevskii - Bolyai system seemed to answer both questions affirmatively, and thus to reduce the nature of Space to an empirical question, one Lobachevskii sought unsuccessfully to resolve by measuring the parallax of stars (which is bounded away from zero in non-Euclidean geometry). However, not everyone was convinced, and for a generation little progress was made. It was not until the hyperbolic trigonometry was given an explicit grounding in differential geometry and non-Euclidean geometry based explicitly on the new, intrinsic, metrical ideas that it could be said to be rigorously established. The central figures in this development are Riemann [1854, 1867] and Beltrami [1868]. From 1868 on, non-Euclidean geometry met with increasing acceptance from mathematicians, if not, predictably, amongst philosophers.

The growth of non-Euclidean geometry from, say, 1854 to 1880, has seldom been described. I shall concentrate on the more purely mathematical developments, chiefly its formulation in projective terms,
for that line leads to Klein and Poincaré, and leave aside the more philosophical aspects, which are well discussed in Radner [1979] Richards [1979], Scholz [1980], and Torelli [1978].

Riemann in his Habilitationsvortrag [1854] "On the hypotheses which lie at the foundations of geometry" does not explicitly mention non-Euclidean geometry, and never mentions the names Bolyai and Lobachevskii. He refers only to Legendre when describing the darkness which he says has covered the foundations since the time of Euclid, and later (Sections II, 5 and III, 1) he describes a homogeneous geometry in which the angle sum of one (and hence of any) triangle is less than \(\pi \) as occurring on a surface of constant negative curvature. This characterization of 3 homogeneous geometries is typical of the formulation of the 'problem of parallels' since Saccheri; it can be found in many editions of Legendre's Eléments de Géométrie, e.g. [1823], and would have alerted any mathematician to the implications for non-Euclidean geometry without its being mentioned by name. On the other hand, not naming it explicitly would avoid philosophical misapprehensions about what he had to say, so one may perhaps ascribe the omission to a Gaussian prudence. It is less certain, however, that Riemann had read Lobachevskii, and very unlikely he had read Bolyai. Only Gauss appreciated them in Göttingen at that time, and it is not known if he discussed these matters with Riemann. Whatever might be the resolution of that small question of Riemann's sources, the crucial idea in Riemann's paper is his presentation of geometry as intrinsic, grounded in the free mobility of infinitesimal measuring rods, and to be expressed mathematically in terms of curvature. This is an immense generalization of Gauss's idea of the intrinsic curvature of a surface [1827], itself a profound novelty. It has the effect of basing any geometry on specific metrical considerations,
and so removes Euclid's geometry from its paramount position as the geometry of space and the source of geometrical concepts which are induced onto embedded surfaces.

Riemann did not seek to publish these ideas. They were somewhat further developed in his Paris Prize entry of 1861, also unpublished until 1876, and first appeared in 1867, after his death. By then Beltrami had independently discovered the import of Gauss's ideas for non-Euclidean geometry. Beltrami's famous 'Saggio' [1868] begins with an account of geometry as based upon the notion of superposability of figures and thus existing on a surface of constant curvature. Beltrami modified the metric on the sphere to obtain a metric with negative curvature $K = -1/R^2$ and a coordinate system in which straight lines had linear equations. This enabled him to map the geometry, which Beltrami said resided on the surface of a pseudosphere (p.290) a point with polar coordinates $(r,0)$ is, in the non-Euclidean metric, $\rho = \frac{R}{2} \log \frac{a + r}{a - r}$ away from the (Euclidean) centre of the disc. This metric allows him to derive the formulae of non-Euclidean trigonometry, and he observed that they agreed with the trigonometric formulae of Minding [1839] and Codazzi [1857] for the surface of constant negative curvature, as well as those of Lobachevskii. Beltrami also sketched an account of non-Euclidean three-dimensional geometry - the original starting point of Lobachevskii and Bolyai's descriptions - but his grasp of higher dimensional differential geometry was not yet sufficiently certain.

Beltrami described the relationship between non-Euclidean geometry and its image in the disc as one in which approximate or qualitative Euclidean pictures are given of non-Euclidean figures. He discussed the way in which such pictures, necessarily distorted, may mislead the mind
if features proper to the one geometry (such as points at infinity) are illicitly transposed to the other. He did not state that the non-metrical projective properties of non-Euclidean geometry are represented exactly in the disc - a point made soon afterwards by Klein - and he did not indicate that this gave a projective proof of the existence of the new geometry - for him the new geometry was grounded in differential geometric considerations.

In a paper published soon afterwards, \[1868b\], Beltrami was able to extend his reasoning to \(n \) dimensions and give a thorough account of three dimensional non-Euclidean space. This paper, but not the earlier one, makes extensive reference to Riemann's recently published Habilitationsvortrag, so it seems that Beltrami only learned of them after his first paper was finished. His source for Lobachevskii's work was Houel's translation of some of it \[1866\], but he does not seem to have known of Houel's French translation of Bolyai's Tentamen \[1867\].

The Italians had become very interested in non-Euclidean geometry, Battaglini and Forti published reports on it in 1867 and Battaglini also translated Bolyai into Italian in 1868. The French, led by Houel, were discovering the new geometry too, and in 1866 Germany interest awakened by the publication of the Gauss-Schumacher correspondence\[Gauss 1860\], was decisively quickened by Helmholtz's essays \[1866\] and, more important, \[1868\]. Christoffel's first works on differential geometry \[1868, 1869a,b\] also appeared at this time, on the subject of transformations of differential expressions like \(\sum_{ij} g_{ij} dx_i dx_j \) (which represent Riemannian metrics). The English, notably Cayley, were an anomalous case and require separate discussion.
The generally accepted view of these developments is that only ignorant philosophers and elderly mathematicians refused to accept the new geometry, but this view has been claimed to be historically inexact by Toth [1977, 144]. However, Toth's criticism of philosophers seems to be that they were not ignorant (and so had no excuse), and the mathematicians he assembles are a mixed bunch. In Russia, Ostrogradski and Rumiakovskii; in England Dodgson (= Lewis Carroll), de Morgan, and Cayley; and in Hungary the astonishing case of Wolfgang Bolyai, the father of Janos. The Russians' furious criticism of Lobachevskii dates from the 1830's and 1840's (when Gauss taught himself Russian so as to be able to follow it) and so predates the acceptance of differential geometric concepts as suitable foundation for geometry. Without it Lobachevskii's work is indeed open to criticism, and in other works [1829, 1837] Lobachevskii made unsuccessful attempts to ground his geometry in something more basic than his intuitive ideas of lines and surfaces. As for Wolfgang Bolyai, Toth cites no evidence for his claim, and I can find none to support it in the two volumes written by Stäckel on the Bolyai's [Stäckel, 1913], so it must be set aside.

Dodgson's and de Morgan's importance should not be greatly stressed, so Toth's argument rests on only one major mathematician, Cayley, and cannot really be accepted. Once a grave weakness in the Bolyai-Lobachevskii approach had been repaired, non-Euclidean geometry commanded widespread acceptance among mathematicians, as can be seen from the annual reviews in Fortschritte, if depressingly little amongst philosophers (Frege amongst them). The case of Cayley is interesting, however, and has recently been ably treated by Richards [1979]. She argues that Cayley accepted non-Euclidean geometry as a piece of mathematics, but refused to accept differential geometry as the foundations of geometry.
because of its empiricist philosophical undertones. Cayley preferred to regard the new geometry as an intellectual construct based ultimately on projective or even Euclidean geometry given \textit{a priori}. Richards also cites Jevons [1871] who gave a related argument, endorsed by Cayley, that the geometry on the tangent space to the surface of constant negative curvature is Euclidean. Their absolutism was opposed by Clifford precisely because Clifford wanted to entertain empiricism elsewhere, in religion, morality, and politics, whereas conservatives saw mathematics as an example of \textit{a priori} reasoning which endorsed such reasoning on those other issues. So the English debate on non-Euclidean geometry became embroiled in other contemporary debates which gradually advanced science at the expense of religious orthodoxy.

Cayley's purely mathematical papers made a more secure contribution. In his "A Sixth Memoir upon Quantics" [1859] he described how a metrical geometry may be defined with respect to a fixed conic which he called the 'Absolute' in (complex) projective space. He first developed the projective geometry of such a space, taking as the points of the geometry all the points of projective space. He then introduced a metric by considering two points \((x, y)\) and \((x', y')\) as defining a line which met the Absolute in two points, and defining equidistance in terms of cross-ratio (making it a projective invariant). The additivity of distance led him to define the distance between the given points as

\[
\cos^{-1} \left(\frac{\mathbf{a}, \mathbf{b}, \mathbf{c} \mathbf{x}, \mathbf{y}, \mathbf{x}', \mathbf{y}'}{\sqrt{(a, b, c \mathbf{x}, y)^2 \sqrt{(a, b, c \mathbf{x}', y')^2}} \right) \quad (§211)
\]

His notation is:

\((a, b, c \mathbf{x}, y) \mathbf{x}, \mathbf{y}) := ax' + b(xy' + x'y') + by'\)

\((a, b, c \mathbf{x}, y)^2 := ax^2 + 2bxy + cy^2\)
and the equation of the Absolute is \((a,b,c)(x,y)^2\). In the simplest general case (§225) the absolute is \(x^2 + y^2 + z^2 = 0\) (in homogeneous form), and the distance between \((x,y,z)\) and \((x',y',z')\) is

\[
\frac{\cos^{-1} \frac{xx' + yy' + zz'}{\sqrt{(x^2 + y^2 + z^2)(x'^2 + y'^2 + z'^2)}}}{\sqrt{(x^2 + y^2 + z^2)(x'^2 + y'^2 + z'^2)}}
\]

He defined angles dually. What Cayley considered most important was the distinction between a proper conic as the Absolute and a point-pair as Absolute. The choice of proper conic led to spherical geometry, the choice of the point-pair to Euclidean geometry (§225).

Cayley did not consider non-Euclidean geometry at all in this paper. Subsequently, in [1865], he quoted Lobachevskii's observation that the formulae of spherical trigonometry become those of hyperbolic or non-Euclidean trigonometry on replacing the sides \(a,b,c\) of the spherical triangle by \(a_1, b_1, c_1\) respectively [Lobachevskii 1837], and went on to say "I do not understand this; but it would be very interesting to find a real geometrical interpretation [of the equations of hyperbolic trigonometry]" (Cayley's italics). Such an interpretation was soon to be given by Felix Klein.

In early 1870 Felix Klein was in Berlin with his new friend Sophus Lie, attending the seminars of Kummer and Weierstrass on geometry. Weierstrass was interested in the Cayley metrics, and Klein raised the question of encompassing non-Euclidean geometry within this framework, but Weierstrass was sceptical, preferring to base geometry on the idea of distance and to define a line as the curve of shortest length between its points. Klein was later to claim that during seminars he and Lie had had to shout their views from the back, and he was not deterred by Weierstrass's views. Spurred on by his friends, notably
Stolz, who had read Lobachevskii, Bolyai, and von Staudt (which Klein admitted he could never master [1921, 51-52]) he continued to work on his view of geometry. It became crucial to his unification of mathematics behind the group concept, and his *Erlanger Programm* [1872] reflects his satisfaction at succeeding. His first paper on non-Euclidean geometry [1871] presents the new theory. The space for the geometry is the interior of a fixed conic (possibly complex) in the real projective plane. Klein called the geometries he obtained hyperbolic, elliptic, or parabolic according as the line joining any two points inside the conic meets the conic in real, imaginary, or coincident points (§2). Non-Euclidean geometry coincides with hyperbolic geometry, Euclidean geometry is Cayley's special case of a highly degenerate conic. In the hyperbolic case the distance between two points is defined as the log of the cross-ratio of the points and the two points obtained by extending the line between them to meet the conic (divided by a suitable real constant (§3)). This function is additive, since cross-ratio is multiplicative, and puts the conic at infinity. Angles were again defined dually. The Cayley metric yields a geometry for which the infinitesimal element of length can be found, and in this way Klein showed that the geometry on the interior of the conic was in fact non-Euclidean (§7). Klein showed that his definition of distance gave Cayley's formulae when \(c = i/2 \) and the conic is purely imaginary. Klein then considered the group of projective transformations which map the conic to itself, showed that these motions were isometries, and interpreted them as translations or rotations (§9). He also considered elliptic and parabolic geometry, and extended the analysis to geometries of three dimensions. In a subsequent paper [1873] he developed non-Euclidean geometry in n dimensions.
Klein's view of non-Euclidean geometry was that it was a species of Projective geometry, and this was a conceptual gain in that it brought harmony to the proliferating spread of new geometries which Klein felt was in danger of breaking geometry into several separate disciplines (see the Erlanger Programm, p4). In particular it made clear what the group of non-Euclidean transformations was, and Klein regarded the group idea as the key to classifying geometries. But this view was perhaps less well adapted to understanding the new geometry in its own right than was the more traditional standpoint of differential geometry.

The most brilliant exponent of the traditional point of view was Poincaré. It would be interesting to know how he learned of non-Euclidean geometry, but we are as ignorant of this as we are of the details of most of his early career. He might have read Beltrami's [1868], perhaps in Hoüel's translation [Beltrami 1869] published in the Annals of the École Normale Supérieure, or any of Hoüel's articles, or the papers [J. Tannery 1876, 1877] or [J.M. de Tilly 1877]. He might have learned of it from Hermite, or have been introduced to the works of Helmholtz and Klein (he could read German, and Helmholtz had been translated into French), but in any case did not say. The description he gave of non-Euclidean geometry is a novel one. In it geodesics are represented as arcs of circles perpendicular to the boundary of a circle or half plane. The group of non-Euclidean proper motions is then obtained as all matrices \(\begin{pmatrix} a & b \\ b & \bar{a} \end{pmatrix} \), \(a\bar{a}-\bar{b}b = 1 \), if the circle is \(|z| = 1 \), or as all matrices \(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \), \(ad-bc = 1 \), \(a, b, c, d \in \mathbb{R} \), in the half-plane case. In each case a single reflection \(z \mapsto \bar{z} \) or \(z \mapsto iz \), respectively) will then generate the improper motions. Poincaré's representation of non-Euclidean geometry is conformal, and may be obtained from Beltrami's as follows. Place a sphere, having the same radius as the Beltrami disc, with its South pole at the centre of the
disc, and project vertically from the disc to the Southern hemisphere.
Now project that image stereographically from the North pole back onto
the plane tangent to the sphere at the south pole. The first projection
maps lines onto arcs of circles perpendicular to the equator, and since
stereographic projection is conformal, these arcs are then mapped onto
circular arcs perpendicular to the image of the equator. To see that
the groups correspond it is enough to show that they are triply transitive
on boundary points and that the map sending any given triple to any other
is unique, which it is. The metric may be pulled back from the one
representation to the other, or calculated directly from the group. (It
is particularly simple in the half-plane model:

$$ds^2 = \frac{dx^2 + dy^2}{y^2}.$$

Since the elements of the group are all compositions of Euclidean inversions
in non-Euclidean lines they are automatically conformal.

The main text of this chapter describes how Poincaré published his
interpretation of non-Euclidean geometry. To my knowledge, there is no
account of how he came to discover it.
Appendix 5, Fuchs's inversion problem.

Fuchs proved the results described in Chapter VII as follows. He assumed all singular point of 7.1.5 are actual (i.e. not accidental), in which case at each finite singular point the roots of the determinantal fundamental equation (i.e. the indicial equation) may be taken to be real, rational, different from one another, and lying between 0 and -1, and s_1 and s_2 were likewise be taken to be different, real, rational, and greater than 1. This ensures u_1, u_2 are finite when z_1 and/or z_2 take singular values. He then supposed that u_1, u_2 moved along independent pathes in \mathbb{C} from 0, in which case (z_1, z_2) moves away from (ζ_1, ζ_2) in \mathbb{C}^2 and varies holomorphically until it becomes infinite or at least one of $\frac{f(z_1)}{\Delta}, \frac{f(z_2)}{\Delta}, \frac{\phi(z_1)}{\Delta}, \frac{\phi(z_2)}{\Delta}$, becomes infinite or undetermined ($\Delta = f(z_1)\phi(z_2) - f(z_2)\phi(z_1)$). This can only happen if either z_1, z_2 or both take singular values, or $\Delta(z_1, z_2) = 0$. The following cases can arise:

(i) $z_1 = a$, singular and possibly ∞, $z_2 = b$, nonsingular, $\Delta(a, b) \neq 0$;
(ii) $z_1 = a_1$, singular and possibly ∞, $z_2 = a_2$, singular, $\Delta(a_1, a_2) \neq 0$;
(iii) $\Delta(z_1, z_2) = 0$. This case divides into
(a) $\Delta(b, b) = 0$, b singular;
(b) $\Delta(a, a) = 0$, a singular;
(c) $\Delta(\infty, \infty) = 0$.

The cases of non-trivial solutions to $\Delta(z_1, z_2) = 0$ can be excluded as not permitting z to be a meromorphic function of ζ, as will be seen presently.

The strategy for the first two cases is basically the same. The matrix
\[
\begin{pmatrix}
\frac{\partial u_1}{\partial z_1} & \frac{\partial u_1}{\partial z_2} \\
\frac{\partial u_2}{\partial z_1} & \frac{\partial u_2}{\partial z_2}
\end{pmatrix}
\]
is the Jacobian of the mapping $(z_1, z_2) \mapsto (u_1, u_2)$, and its inverse
\[
\begin{pmatrix}
\frac{\partial z_1}{\partial u_1} & \frac{\partial z_1}{\partial u_2} \\
\frac{\partial z_2}{\partial u_1} & \frac{\partial z_2}{\partial u_2}
\end{pmatrix}
\]
the Jacobian of the inverse map. Provided it is not singular at a given point, i.e. its determinant does not vanish, the mapping is locally one-one, and will be holomorphic if the coefficients are holomorphic (this is essentially the inverse function theorem).

To allow for branch points in z_1 or z_2 it was necessary to express the partial derivatives in terms of appropriate local uniformizing variables. Note that, from the definitions of u_1 and u_2,
\[
\frac{\partial u_1}{\partial z_1} = f(z_1), \quad \frac{\partial u_1}{\partial z_2} = f(z_2)
\]
\[
\frac{\partial u_2}{\partial z_1} = \phi(z_1), \quad \frac{\partial u_2}{\partial z_2} = \phi(z_2),
\]

so the Jacobian of the mapping \((z_1, z_2) \rightarrow (u_1, u_2)\) is just
\[
\Delta = f(z_1)\phi(z_2) - f(z_2)\phi(z_1)
\]
\[
= \frac{\partial u_1}{\partial z_1} \phi(z_2) - f(z_2) \frac{\partial u_2}{\partial z_1} + \frac{\partial u_2}{\partial z_2} \phi(z_1) + f(z_1) \frac{\partial u_2}{\partial z_2}
\]

To proceed to cases, Fuchs took each of the above cases in turn.

Case (i) [Fuchs ref, §3]: he set \(z_1 - a = \omega_1, \ z_2 - b = \omega_2\).

Near \(a\), \(f(z_1) = c_{11} \omega_1 g_1(\omega_1) + c_{12} \omega_1^2 g_2(\omega_1)\)
\(\phi(z_1) = c_{21} \omega_1^2 g_1(\omega_1) + c_{21} \omega_1^2 g_2(\omega_1)\)

where \(g_1, g_2\) are holomorphic and non-zero near 0. Near \(b\),
which is not a singular point,
\(f(z_2) = \gamma_0 + \gamma_1 \omega_2 + \gamma_2 \omega_2^2 + \ldots\)
\(\phi(z_2) = \gamma_1' \omega_2 + \gamma_1' \omega_2^2 + \ldots\)

Accordingly \(\Delta(\omega_1, \omega_2) = \omega_1^r G_1(\omega_1, \omega_2) + \omega_1^r G_2(\omega_1, \omega_2),\) where
\(G_1, G_2\) are holomorphic in \(\omega_1, \omega_2\) near \((0,0)\). Without loss of generality
\(r_2 > r_1\), so
\(G_1(0,0) = g_1(0) \left[c_{11} \gamma_0 - c_{21} \gamma_0 \right] \neq 0\),
and
\(\lim_{\omega_1, \omega_2 \to 0,0} \Delta(\omega_1, \omega_2) \omega_1^r \neq 0, \infty\)
Fuchs set \(r_1 = -k_1/n \), \(r_2 = -k_2/n \), \(k_1, k_2 < n \), and \(\omega_1 = t^n \), and, differentiating \(A \) to obtain expressions for \(\frac{\partial u_1}{\partial t} \) and \(\frac{\partial u_i}{\partial \omega_j} \), \(i, j = 1, 2 \), he found

\[
\Delta(z_1, z_2) = \phi(z_2) \frac{\partial u_1}{\partial z_1} - f(z_2) \frac{\partial u_2}{\partial z_2}
\]

\[
nt^{n-1}\Delta(z_1, z_2) = \phi(\omega_2 + b) \frac{\partial u_1}{\partial t} - f(\omega_2 + b) \frac{\partial u_2}{\partial t}, \text{ and}
\]

\[
\Delta(z_1, z_2) = f(z_1) \frac{\partial u_1}{\partial z_2} - \phi(z_1) \frac{\partial u_2}{\partial z_2}
\]

\[
\Delta(z_1, z_2) = \left(c_{11} \frac{\partial}{\partial t} g_1(t^n) + c_{12} \frac{\partial}{\partial z_2} g_2(t^n) \right) \frac{\partial u_1}{\partial \omega_2} - \left(c_{21} \frac{\partial}{\partial t} g_1(t^n) - c_{22} \frac{\partial}{\partial z_2} g_2(t^n) \right) \frac{\partial u_1}{\partial \omega_2}
\]

so \(\frac{\partial u_1}{\partial t}, \frac{\partial u_2}{\partial z_2} \) \(j = 1, 2 \) and also \(\frac{\partial t}{\partial u_j}, \frac{\partial z_2}{\partial u_j} \) \(j = 1, 2 \) are holomorphic, as required.

The cases \(z_1 = a_1, z_2 = a_2 \) and \(z_1 = \infty \) were dispatched similarly (§4), and the conclusion reached that near branch points for which \(\Delta \neq 0 \), \(z_1 \) and \(z_1 \) will be single valued functions of \(u \) provided the exponents at \(a_i \neq \infty \) are of the form

\[
r_1^{(i)} = -1 + \frac{1}{r_i} \quad r_2^{(i)} = -1 + \frac{k_i}{n_i}, \quad n_i, k_i > 1
\]

and at \(\infty \) are of the form

\[
s_1 = 1 + \frac{1}{n}, \quad s_2 = 1 + \frac{k}{n}, \quad n, k > 1.
\]

These are the conclusions drawn from conditions \((A) \).
To discuss the behaviour of the quotient \(\frac{f(z)}{\phi(z)} = \zeta \), as a function of \(\zeta \) Fuchs made the further assumption (§5) that no logarithmic terms arise in the solution to the differential equation (1). Then \(z = z(\zeta) \) will be holomorphic provided its derivative does not vanish or become infinite, and perhaps even then. This derivative has a reciprocal, \(\frac{d\zeta}{dz} \), which equals \(\frac{\phi(z)f'(z) - \phi'(z)f(z)}{\phi^2} = F \), where \(F(z) = Ce^{-\int P dx} \) and \(C \) is an arbitrary constant, so it is as required unless perhaps \(z \) is a singular point of the equation or \(\infty \). At a singular point, say \(z = a \), \(F(z) = (z - a)^{r_1 + r_2 - 1} \eta(z) \) where \(\eta(z) \) is holomorphic and non-zero at \(a \), so if \(r_2 - r_1 = 1 \), then \(\frac{dz}{d\zeta} = \frac{\phi}{F} = \frac{(z-a)^{-2r_1+1}\phi(z)}{n(z)} \) which is holomorphic. If on the other hand \(r_2 - r_1 \neq 1 \) then, introducing the local uniformizing variable \(t \), where \(t = z - a \),

\[
\frac{dt}{d\zeta} = \frac{t^{2-k}}{n} \frac{\psi(t)}{\eta(t)}
\]

where \(\frac{\psi(t)}{\eta(t)} \) is holomorphic and non-zero at \(t = 0 \), so \(\frac{dt}{d\zeta} \) is satisfactory if \(k = 2 \).

Similar reasoning dealt with \(\zeta = \xi \neq \infty \), \(z = \infty \), and \(z = b \) (nonsingular) \(\zeta = \infty \), and the case \(\zeta = \infty \) when \(z = \infty \) cannot arise. The final conclusions were that if at each finite singular point \(a_i \) the exponents satisfy \(r_i^{(i)} = -1 + \frac{1}{n_i} \) and either \(r_2^{(i)} - r_1^{(i)} = 1 \), or \(r_2^{(i)} - r_1^{(i)} = \frac{1}{n_i} \) and if at infinity \(s_1 = 1 + \frac{1}{n} \) and either \(s_2 - s_1 = 1 \) or \(s_2 - s_1 = \frac{1}{n} \) then \(z = z(\zeta) \) is meromorphic for all values of \(\zeta \). It is immediate from this that \(\zeta = \frac{f(z)}{\phi(z)} \) is one-to-one. These are the conclusions drawn from conditions (B).
If furthermore one assumes that the denominator of r_1 or s_1 is 2 when either $r_2^{(i)} - r_1^{(i)} = 1$ or $s_2 - s_1 = 1$ respectively, then $F(z)$ is also a single valued function of ζ, since $F(z) = (z-a_i)^{r_1^{(i)}} + r_2^{(i)} - 1$. $\eta(z)$, and $\eta(z)$ is holomorphic and non-zero near near a. On these hypotheses $\phi^2(z)$, $\psi^2(z)$ are also single-valued functions of ζ.

It remains to see what happens in the cases (iii)(a) to (iii)(c). First of all (§56), under conditions (B) $\Delta(z_1, z_2)$ has only trivial zeros since $\zeta = \frac{f(z)}{\phi(z)}$ is one-to-one. Suppose then, as in (iii)(a), that $f(b) = \pm f(b)$, $\phi(b) = \pm \phi(b)$ -- recall that f and ϕ are not well defined unless the path is specified. Let Δ and $-\Delta$ denote respectively

$$\begin{vmatrix} f(z_1) & f(z_2) \\ \phi(z_1) & \phi(z_2) \end{vmatrix} \quad \text{and} \quad \begin{vmatrix} f(z_1) & -f(z_2) \\ \phi(z_1) & -\phi(z_2) \end{vmatrix}$$

then Δ and $-\Delta$ have a factor $(z_2 - b) - (z_1 - b) = z_2 - z_1$ on looking locally near b, and the quotients $\frac{\pm \Delta}{z_2 - z_1} = a_0 c_1 - a_1 c_0 \neq 0$ taking $f(z_1) = \sum_{i=0}^{\infty} a_i (z_1 - b)^i$, $\phi(z_1) = \sum_{i=0}^{\infty} (z - b)^i$. The terms $\frac{\partial u_j}{\partial z_i}$ are likewise divisible by $z_2 - z_1$ and the quotients symmetric homogeneous polynomials in $(z_1 - b)$ and $(z_2 - b)$. When $-\Delta$ is considered it turns out that z_1 and z_2 themselves are singlevalued functions of u_1 and u_2, but when $+\Delta$ is considered there is a change of sign and $z_1 + z_2$, $z_1 z_2$ are the singlevalued functions.
Notes on Chapter I

1. The most thorough recent treatment of all these topics is Houzel's essay in [Dieudonné, 1978, II]. Gauss's work on elliptic functions and differential equations is treated in the essays by Schlesinger [Schlesinger 1909a,b] and in his *Handbuch* [Schlesinger 1898, Vol II, 2]. Among many accounts of the mathematics, two which contain valuable historical remarks are Klein's *Vorlesungen über die hypergeometrische Function* [1894] and, more recently, Hille's *Ordinary Differential Equations in the Complex Domain* [1976].

2. An integral form of the solution was also to prove of interest to later mathematicians:

\[f(x) = \int_0^1 u^{b-1}(1-u)^{c-b-1}(1-xu)^{-a} \, du \]

where the integral is taken as a function of the parameter. It is assumed that \(b > 0, \ c-b > 0, \ x<1 \), so that the integral will converge. It is easy to see, by differentiating under the integral, that \(f(x) \) satisfies (1.1.1). To obtain \(f \) as a power series expand \((1-xu)^{-a}\) by the binomial theorem and replace each term in the resulting infinite series of integrals by the Eulerian Beta functions they represent.

An Euler Beta function is defined by

\[B(b+r, c-b) = \int_0^1 u^{b+r}(1-u)^{c-b-1} \, du; \]

it satisfies the function equation or recurrence relation

\[B(b+r+1, c-b) = \frac{b+r}{c+r} B(b+r, c-b), \]

which yields precisely the relationship between successive terms of the hypergeometric series, and so \(f(x) \) is, up to a constant factor, represented by (1.1.2). This argument is given in Klein [1894, 11], see also [Whittaker and Watson, 1973, Ch XII].

4. Biographical accounts of Gauss can be found in Sartorius von Waltershausen, *Gauss zum Gedächtnis* [1856], G.W. Dunnington [1955], and H. Wussing [1979]. Accounts of most aspects of his scientific work are contained in Materialien für eine wissenschaftlichen Biographie von Gauss, edited by Brendel, Klein, and Schlesinger 1911-1920 and mostly reprinted in [Gauss, *Werke X.2, 1922-1933*]. The best introductions in English are the article on Gauss in the Dictionary of Scientific Biography [May, 1972], which is weak mathematically, and Dieudonné [1978].

5. May [1972, 300] reveals that Gauss published 323 works in his lifetime, many on astronomy - matura sed non paucab

7. Later Gauss calculated $M(1, \sqrt{2})$ to twenty decimal places, his usual level of detail, and found it to be 1.19814 02347 35592 20744 [Werke III, 364].

8. Gauss wrote: "Ex hoc theoremate omnes relationes, ques ill. Euler olim multo labore evolvit, sponte demanant" - a remark one may find a little smug.
9. The lemniscate has equation \(r^2 = \cos 2\theta \) in polar coordinates, and arc-length \(\int_0^t \frac{dx}{(1-x^4)^{\frac{1}{2}}} \). Introduced by Jacob Bernoulli in 1694 it had been studied by I'agnano (1716, 1750) who established a formula for the duplication of arc, and by Euler (1752) who gave a formula for increasing the arc \(n \) times, \(n \) an integer. Euler considered the problem an intriguing one because it showed that the differential equation \(\frac{dx}{(1-x^4)^{\frac{1}{2}}} = \frac{dy}{(1-y^4)^{\frac{1}{2}}} \) had algebraic solutions: \(x^2 + y^2 = c^2 + 2xy(1-c^4)^{\frac{1}{2}} - c^2x^2y^2 \).

The comparison with the equation \(\frac{dx}{(1-x^2)^{\frac{1}{2}}} = \frac{dy}{(1-y^2)^{\frac{1}{2}}} \), which leads to \(x^2 + y^2 = c^2 + 2xy(1-c^2)^{\frac{1}{2}} \), guided his researches. (It provides the algebraic duplication formula for sine and cosine.) Gauss observed that, whereas in the trigonometric case the formula for multiplication by \(n \) leads to an equation of degree \(n \), for the lemniscatic case the formula is of degree \(n^2 \), and invented double periodicity on March 19, 1797, see Diary entry #60, to cope with the extra roots. He was fond of this discovery, and hints dropped about it in his *Disquisitiones Arithmeticae* (§335) inspired Abel to make his own discovery of elliptic functions.

10. The Bernoulli numbers are defined by a formula of Euler's

\[
\frac{x}{e^x - 1} = 1 = \frac{x}{2} + \sum_{k=1}^{\infty} \frac{(-1)^{k-1}B_k x^k}{2k!}, \text{ so } B_1 = \frac{1}{6}, \ B_2 = \frac{1}{30}, \ B_3 = \frac{1}{42}, \text{ etc.}
\]

It follows from this definition that they are all rational, and it can be shown that \(\zeta(2k) = \sum_{n=1}^{\infty} \frac{B_k (2\pi)^k}{2k!} \), where \(\zeta \) is the Riemann zeta function.

11. Gauss had discussed the multiple-valued function \(\log x \) in a letter to Bessel the previous year [**Werke** II, 108] and also stated the residue theorem for integrals of complex functions around closed curves. From the discussion in Kline [1972, 632-642] it seems that Gauss was well
ahead of the much younger Cauchy on this topic; see also Freudenthal (1971).

12. For a comparison of the work of Abel and Jacobi see [Krazer 1909] or [Houzel, Dieudonné, 1978, II]. It seems that Abel was ahead of Jacobi in discovering elliptic functions; there is no doubt he was the first to study the general problem of inverting integrals of all algebraic functions. Jacobi's work was perhaps more influential because of his efforts as a teacher and an organizer of research, and also because Abel died in 1829 at the age of 26.

13. The equation \(k(1 - k^2) \frac{d^2y}{dk^2} - (1 + k^2) \frac{dy}{dk} + ky = 0 \)
was studied by Euler [1750], who found the solution for which \(y = 1 \) when \(k = 0 \) to be

\[
y = 1 + ak^2 + bk^4 \ldots + \log (yk^2 + \delta k + \ldots)
\]
(for suitable \(a, b, y, \delta, \ldots \)). This equation is now called Legendre's equation for elliptic integrals of the second kind.

The equation

\[
\frac{\partial}{\partial \mu} \left(1 - \mu^2 \right) \frac{\partial U}{\partial \mu} + \frac{1}{\left(1 - \mu^2 \right)} \frac{\partial^2 U}{\partial \phi^2} + n(n + 1)U = 0
\]

was obtained by Laplace [1782] in a study of potential theory. When \(\phi \) is absent the equation becomes Legendre's equation for elliptic integrals of the first kind. Legendre used this equation (with \(\phi \) absent), which is satisfied by the Legendre polynomials, in the course of his own work on potential theory, [1793].

Legendre introduced the differential equations for elliptic integrals of the first and second kinds in [1785] and, more influentially, in his [1825].
Legendre's elliptic integrals are real, and the modulus $c = \sin \theta$ lies between 0 and 1, [1825, Ch.5]. So they define single-valued functions of their upper end-points which have single-valued inverse functions. Legendre's tables and his accompanying comments make it clear he regarded the problem of inversion as solved (in this case).

In the *Exercises de calcul intégral* ... [1811] he remarked (380):“Les mêmes formules servent à resoudre le problème inverse, c'est à dire, à déterminer l'amplitude ϕ, quand on connaît la fonction $F(c, \phi)$”.

In the *Traité* [1825, 383]: "ainsi étant donnée une valeur quelconque de l'angle ψ, on pourra trouver la valeur correspondante du temps t et réciproquement." Quoted in Krazer [1909, 55n].

14. The expression \[\frac{d \lambda}{dk} \frac{d^3 \lambda}{dk^3} - \frac{3}{2} \left(\frac{d^2 \lambda}{dk^2} \right)^2 \] has come to be known, following [Cayley, 1883], as the Schwarzian derivative of λ with respect to k. Schwarz's use of it is discussed in detail in Chapter IV.

16. Kummer wrote [1836,39 = Coll.Papers II 75]: "Es ist aber diese Abhandlung nur der erste Theil einer grösseren Abhandlung, welche jedoch nicht öffentlich erschienen ist, und namentlich fehlt noch die Vergleichung solcher hypergeometrischer Reihen unter einander, in welchen des letzte Element x verschieden ist. Dies wird daher ein Hauptgegenstand der gegenwärtigen Abhandlung sein; die zahlreichen Anwendungen der gefunden Formeln werden alsdann vorzugsweise die elliptischen Transcendenten betreffen, von denen ein grosser Theil in der allgemeinen Reihe enthalten ist."
17. \[\frac{d^2v}{dz^2} = \left(\frac{dz}{dx} \right)^2 \frac{d^2v}{dx^2} + \frac{dv}{dx} \frac{d^2x}{dz^2} \]
\[= \left(\frac{dz}{dx} \right)^2 \frac{d^2v}{dx^2} - \frac{dv}{dx} \left(\frac{dz}{dx} \right)^3 \frac{d^2z}{dx^2}, \]

since \(\frac{d^2x}{dz^2} = -\left(\frac{dz}{dx} \right)^3 \frac{d^2z}{dx^2} \).

18. Kummer wrote this equation as

\[2 \frac{d^3z}{dx dz^2} - 3 \left(\frac{d^2z}{dz dx} \right)^2 = \left(2 \frac{dp}{dz} + p^2 - 4q \right) \left(\frac{dz}{dx} \right)^2 + \left(2 \frac{dp}{dz} + p^2 - 4q \right) \]

(Equation 12),

using the then customary notation for higher derivatives.

19. In section III Kummer studied the special cases when \(\gamma \) depends linearly on \(\alpha \) and \(\beta \) and quadratic changes of variable produce other hypergeometric series. Typical of his results is his equation 53:

\[F(\alpha, \beta, \alpha - \beta + 1, x) = (1-x)^{-\alpha} F \left(\frac{\alpha}{2}, \frac{\alpha - 2\beta + 1}{2}, \alpha - \beta + 1, \frac{-4x}{(1-x)^2} \right). \]

His results were incomplete and were extended by Riemann [1857a, §4].
Notes on Chapter II.

1. E. Neuenschwander, personal communication concerning Riemann's letters to his family.

2. Klein reported on the early editing of Gauss's Werke on 17 March 1918. He listed the main editors as, initially, W. Weber and Dedekind, and, later, Listing, Schering, Dedekind, and Riemann; and he attributed the touchiness Schering displayed in his obituary of Riemann to the editing of Gauss's work on elliptic functions. Klein's report is in the Handschriften Abteilung N.S.U. Bibliothek, Göttingen, [Gauss, Posthum 7].

3. Historians have only recently begun to study Riemann. Apart from Freudenthal [1975] and Dieudonné [1974, 1978], there are discussions by U. Bottazzini [1977], E. Neuenschwander [1979] who is working on the Nachlass, D.M. Johnson [1979], J.M. Radner [1979], and E. Scholz [1930]. It is a pleasure to thank them for discussions. An English translation of Riemann's Werke is also in progress, Gray and Scholz, [1980+0(1)].

4. Neuenschwander [1979] discusses the limited use Riemann had for the theory of analytic continuation, of which he was certainly aware, see e.g. [1857c, 88-89].

5. For a discussion of Riemann's topological ideas and their implications for analysis see Pont [1974 Ch. II]. Pont does not make as much as he should have done of the distinction between homotopy- and homology-theoretic ideas.

6. Riemann wrote: "Eine veränderliche complexe Grösse υ heisst eine Function einer andern veränderlichen complexen Grösse z, wenn sie mit ihr sich so ändert, dass der Werth des Differentialquotienten \(\frac{dy}{dz} \) unabhängig von dem Werthe des Differentials \(dz \) ist."
7 For a history of Cauchy's Theorem see Brill and Noether [1892-93, Chapter II]. They also discuss Gauss's independent discovery of it.

8 For Weierstrass's counter-example see his Werke [1874, II] quoted in Birkhoff and Merzbach [1973, 390-391], which also contains a translation of Hilbert's paper [pp 399-402]. For a general reference to these matters see Monna [1975].

9 These maps are precisely the holomorphic mappings of the domain of \(z \) to itself, and will be further discussed below. They preserve the cross-ratio for four points, which is defined by

\[
CR(z_1, z_2, z_3, z_4) = \frac{(z_1 - z_2)(z_3 - z_4)}{(z_1 - z_3)(z_2 - z_4)},
\]

and any triple of distinct points may be mapped by such a mapping onto any other triple of distinct points. The triple \((z_1, z_2, z_3)\) is sent to \((z_1', z_2', z_3')\) by the map

\[
\frac{(z' - z_1')(z_2' - z_3')}{(z' - z_2')(z_1' - z_3')} = \frac{(z - z_1)(z_2 - z_3)}{(z - z_2)(z_1 - z_3)}.
\]

Permutations of the three branch points induce changes in the variable \(z \) so that the cross ratio \((0, \infty, 1, z)\) is preserved, i.e. if \((0, \infty, 1)\) is mapped to \((\infty, 1, 0)\) \(z \) is replaced by \(\frac{z-1}{z} \) since

\[
CR(0, \infty, 1, z) = CR(\infty, 1, 0, \frac{z-1}{z}) = 1 - z.
\]

In modern terms this represents a group action of \(S_3 \), the permutation group on three symbols, acting in the usual way on the left on \(P_{(\alpha, \beta, \gamma)} \) and by \(z \rightarrow \frac{1}{z} \), \(z \rightarrow 1 - z \), etc. on \(P_{(\ldots, z)} \).

10 Riemann also considered the possible transformations of \(P\)-function which are possible when some of the exponents are equal. The possibilities are

\[
P\begin{pmatrix} 0 & \infty & 1 \\ 0 & \beta & \gamma \\ \frac{1}{2} & \beta' & \gamma' \end{pmatrix} = P\begin{pmatrix} -1 & \infty & 1 \\ \gamma & 2\beta & \gamma /z \\ \gamma' & 2\beta' & \gamma' \end{pmatrix}
\]
where \(\beta + \beta' + \gamma + \gamma' = \frac{1}{2} \), or
\[
\begin{pmatrix}
0 & \infty & 1 \\
0 & 0 & \gamma & z \\
\frac{1}{3} & \frac{1}{3} & \gamma' & \gamma'
\end{pmatrix}
= \rho \begin{pmatrix}
1 & \rho & \rho^2 \\
\gamma & \gamma & \gamma & 3\sqrt{z} \\
\gamma' & \gamma' & \gamma' & \gamma'
\end{pmatrix}
\]
where \(\gamma + \gamma' = \frac{1}{3} \) and \(\rho \) denotes an imaginary cube root of unity.

Riemann computed the number of different representations the same \(P \)-function can have when these possibilities arise, [1857a, pp 78, 83].

Riemann wrote (A), (B), and (C) for A, B, and C respectively.

Riemann wrote (b) for B' and (c) for C'. I have introduced vector notation purely for brevity.

E. Scholz tells me there is evidence in the Riemann Nachlass to show that Riemann had read Puiseux. See also Neuenschwander, [1979, 7]

Riemann wrote \(z_1, z_2, x, \) and \(a \) for \(\gamma_1, \gamma_2, z, \) and \(b \) respectively.

The expression for \(a_2 \) is, up to a constant multiple, the Schwarzian derivative of \(Y \) and so it is invariant under the indicated changes in \(Y \). Consequently it is everywhere an \(n \)-valued function of \(z \) if \(f \) takes every value \(n \) times and has no essential singularity, so it is algebraic. Riemann's whole discussion of this topic is extremely brief, and quite lacking in proofs; Poincaré's rediscovery of it was clearer.
17 See Schlesinger, [1904] and Chapter VII.

18 Riemann assumed, as he may, that \(1 + \alpha' > \alpha > \alpha' \).

19 Riemann has shown that a multiple-valued function \(Y \) defined on \(\mathbb{C} \) with branch points at 0, 1, \(\infty \) can be lifted to a single-valued function on \(\mathbb{H} \), a half plane, by means of the modular function \(k^2 \).

Thus \(Y \) has been globally parameterized by \(k^2 \), for which the term is 'uniformized'.

\[
\begin{array}{c}
\mathbb{H} \\
\downarrow \\
\Phi \to \{0, 1\} \to \mathbb{C}
\end{array}
\]

Interestingly, the following appears in the first edition of volume III of Gauss's Werke [1866, 477]:

"If the imaginary part of \(t \), \(\frac{1}{t} \) lies between \(-i, +i\) then the Real Part of \(\left(\frac{Qt}{Pt} \right)^2 \) is positive

\[
\begin{array}{c}
\text{Space for } t \text{ and } \frac{1}{t}.
\end{array}
\]

"The equation \(\left(\frac{Qt}{Pt} \right)^2 = \Lambda \) has exactly 1 solution in the space \(\alpha \delta - \beta \gamma = 1 \alpha \equiv \delta \equiv 1 \mod 4, \beta, \gamma \text{ even}

\[
t' = i \left(\frac{\alpha t + \beta i}{\gamma t + \delta i} \right) \text{ then } \left(\frac{Qt'}{Pt'} \right)^2 = i \gamma \left(\frac{Qt}{Pt} \right)^2 ."

\(P \) and \(Q \) play the role of theta-functions in Gauss's theory of elliptic functions, and Gauss here described the fundamental domain for the modular function \(t \) but the editor (Schering) missed the point and rendered the arcs as mere doodles. In the second edition the diagrams have been fattened up to represent semicircles, as they should. Had Riemann seen that part of the Nachlass? Certainly he would not have failed to see the import of Gauss's drawings.
Notes on Chapter III.

1 These biographical details are taken from Biermann, [1973b, 68, 94, 103].

2 See Neuenschwander [1978a].

3 Weierstrass [1841]. These series are called Laurent series after Laurent's work, reported on in Cauchy, [1843].

4 Fuchs wrote: "Nach dem gegenwärtigen Standpunkte der Wissenschaft stellt man sich in der Theorie der Differentialgleichungen nicht sowohl die Aufgabe, eine gegebene Differentialgleichung auf Quadraturen zurückzuführen, als vielmehr die, den Verlauf ihrer Integrale für alle Punkte der Ebene d. h. für alle Werthe der unbeschränkt Veränderlichen aus der Differentialgleichung selbst abzuleiten." [1865, 3 = 1904, 111].

5 Singuläre Punkte = singular points, in this case poles of finite order.

6 For example, $\frac{dy}{dx} = -y \log^2 y$ has the solution $y = e^{(x-c)^-1}$, which has an essential singular point at $x = c$, which, furthermore, is independent of the differential equation.

7 In his [1868, §8] Fuchs investigated the singularities more closely, and found that there are exceptional cases when a singular point of a coefficient function does not give rise to a singular point of the solutions. Such a point he called an accidental singular point (ausserwesentlich singulärer Punkt) in contradistinction to the other singular points which he called essential (wesentlich), a term he attributed to Weierstrass. Since 'essential' when applied to singularities now means something different I shall use the word 'actual' for them instead.
A singular point \(x = a \) is accidental if the determinant of a fundamental system vanishes, for, as has been seen (p 79)

\[p_i = -\frac{\Delta_i}{\Delta_0}, \]

so if \(p_i(a) = \infty \) and no solution is infinite at \(x = a \), then \(\Delta_0(a) = 0 \). Fuchs showed that for \(x = a \) to be accidental it is necessary and sufficient:

(i) that the equation have the form

\[
(x - a)^n \frac{d^n y}{dx^n} + (x - a)^{n-1} p_1(x) \frac{d^{n-1} y}{dx^{n-1}} + \ldots + p_n(x)y = 0,
\]

where the \(p_i \)'s are analytic near \(x = a \);

(ii) that \(p_1(a) \) is a negative integer;

(iii) that the roots of the indicial equation at \(x = a \) all be different and are positive numbers or zero; and finally

(iv) that none of the solutions contain logarithmic terms.

8 See Hawkins [1977].

9 I introduce the vector notation purely to abbreviate what Fuchs wrote in coordinate form.

10 See Biermann [1973b, 69-70].

11 Fuchs did not specify the sense in which a circuit of a point is to be taken, but it must be taken in an agreed way each time.

12 Fuchs wrote \(\Gamma_{\rho+1} = r_{\rho+1,1} + r_{\rho+1,2} + 1 = -\frac{\Delta_i}{\Delta_0} \). This is proved as follows:

In the second order case we let \(a = a_i \) be the \(i \)th singular point and suppose \(y_1, y_2 \) are a fundamental system of solutions near \(a \), write

\[
\frac{dy}{dx} = y', \quad \frac{d^2 y}{dx^2} = y'', \text{ and suppress the suffix } i \text{ henceforth.}
\]

So

\[
\begin{vmatrix}
\Delta_0 & \Delta_i \\
1 & 1 \\
1 & 1
\end{vmatrix}.
\]
\[\Delta_0 = \Delta_1^i = \begin{vmatrix} y'_1 & y_1 \\ y'_2 & y_2 \end{vmatrix} = -\Delta_0 \mathcal{P}_1 \]

\[\Delta_0 = \Delta_2^i = \begin{vmatrix} y''_1 & y_1 \\ y''_2 & y_2 \end{vmatrix} = -\Delta_0 \mathcal{P}_2 \]

\(\Delta_k \) = \text{det} R. \(\Delta_k \) and furthermore \(y_1(x-a)^{-r_1} \) and \(y_2(x-a)^{-r_2} \) do not vanish at \(a \). Indeed at \(a \), \(y_1(x-a)^{-r_1} \) is infinite like \(L \), and so is \(y_1'(x-a)^{-r_1+1} \), with similar expressions for \(y_2 \). Consider \(\Lambda_0 = y_1'y_2 - y_2'y_1 \). At \(x=a \) it has a pole of order the order of the pole of \(y_1' \) plus the order of the pole of \(y_2 \), i.e. \(r_1 + r_2 - 1 \). Accordingly \(\Delta_0(x-a)^{-r_1-r_2+1} \) is finite, continuous, non-vanishing, and single valued near \(a \).

13 Schlesinger, [Fuchs1904, 203], notes that Tannery observed that this argument breaks down if \(r_{11} = r_{12} \), but that a correct one can be supplied.

14 Fuchs did not call the \(w \) Eigenwerthe (eigenvalues), and had no special term for them other than 'roots of the fundamental equation'.

15 Strictly, Fuchs has made a mistake: (3.1.13) admits solutions \(n=1, \rho \) arbitrary or \(n=2, \rho=2 \).

16 See Biermann [1973b, 77].

17 If \(\eta_\lambda \) is the period taken along the \(\lambda \)th part, \(\eta_\lambda = \frac{1}{i} \int (\lambda) ydx \), then

\[\frac{d^i \eta_\lambda}{du^i} = \frac{1}{i} \int (\lambda) \frac{\partial^i u}{\partial y^i} dx, \]

where \((\lambda) \) is any appropriate curve. The solutions \(\eta_1, ..., \eta_{n-1} \) of (3.2.2) are regular. Indeed, if \(\Pi \) is the product of the difference of the roots of \(y^2 \), then for each \(\lambda \), \(\Pi \eta_\lambda \) is everywhere finite and non-zero away from \(k_1, ..., k_n \).

\[\tilde{\Pi} = \Pi (k_i - k_j) = \Pi \left[(k_i - x) - (k_j - x) \right] \]

\(i < j \)
$$\sum_{c} \prod_{k} (k_1 - x)^{l_1} (k_2 - x)^{l_2} \cdots (k_{n-1} - x)^{l_n}.$$

where c is an integer, the numbers l_1, l_2, ..., l_n are all taken from the set $\{0, 1, ..., n - 1\}$, and $l_1 + l_2 + \cdots + l_n = \frac{n(n - 1)}{2}.$

The quotient $\prod y$ is a sum of terms of the form

$$(-1)^{n/2} \prod_{k} (k_1 - x)^{l_1-1} (k_2 - x)^{l_2-1} \cdots (k_{n-1} - x)^{l_n-1}$$

is finite even at k_1, ..., k_{n-1}. Near k_1, say, $\tilde{\Pi}$ has the form $(u-k_1)^m \Pi'$ where m is a positive integer and Π' is a finite, continuous, single-valued function of n vanishing at $u = k_1$. This makes the functions η_λ regular.

18 The first generalization of the hypergeometric series is due to Heine [1848, 1847], who studied the series

$$\phi(\alpha, \beta, \gamma, q, x) = 1 + \frac{(1-q)^{\alpha}(1-q^{\beta})}{(1-q)(1-q^{\gamma})} x + \frac{(1-q^{\alpha})(1-q^{(\alpha+1)})(1-q^{\beta})(1-q^{\beta+1})}{(1-q)(1-q^{2})(1-q^{\gamma})(1-q^{\gamma+1})} x^2 + \cdots$$

for α, β, γ, x real or imaginary, and q real. He showed that, as

$$\lim_{q \to 1} \frac{1-q}{1-q^{\lambda}} = \epsilon,$$

the function $\phi(\alpha, \beta, \gamma, 1, x) = F(\alpha, \beta, \gamma, x)$. For particular values of α, β and particular q, Heine's series can represent any of Jacobi's Θ-functions, so it stands in the same relation to elliptic functions as Gauss's series to the trigonometric functions. However, Heine's series satisfies not a differential equation but a difference equation with respect to x. This difference equation was later studied by Thomae [1869] from a Riemannian point of view.
Notes on Chapter IV.

1. There are several alternative forms for the Schwarzian which can be of use. For example

\[
\psi(s, x) = \frac{2s''s''' - 3s''^2}{2s'^2} = \frac{s''}{s'} - \frac{3}{2} \left(\frac{s''}{s'} \right)^2
\]

(where \(s' = \frac{ds}{dx} \), etc) and this can be written in terms of the logarithmic derivative as

\[
\psi(s, x) = \frac{d^2}{dx^2} \left(\log \frac{ds}{dx} \right) - \frac{1}{2} \left(\frac{d^2}{dx^2} \log \frac{ds}{dx} \right)^2.
\]

It had been introduced by Schwarz in earlier papers to study the problem of conformal representation of one region upon another, see his [1867], [1869], and [1870], papers which in part represent an attempt to work out Riemann's ideas in specific cases. In this connection one should also note that Schwarz has been led to consider conformal representations of regular solids upon the sphere and of circular regions upon squares, when it is natural to seek suitable coordinates in the domain and range and thus to eliminate constants from expressions like

\[
s' = \frac{as + b}{cs + d} \quad \text{or} \quad z = \frac{ax + b}{cx + d}
\]

2. There is a change of variable which can simplify the original differential equation and help to make the argument clearer. Set \(y = gu \) where \(g = e^{-\int p \, dx} \), then the differential equation for \(y \) becomes the following equation for \(u \):

\[
\frac{d^2 u}{dx^2} = Pu, \quad \text{where} \quad P = \frac{1}{x^2} - \frac{1}{2} \frac{dp}{dx} - q.
\]

\(P \) is a rational function whose only singularities are those of the original \(p \) and \(q \), and for such equations, if the quotient of two linearly independent solutions is algebraic, then so are all solutions. It was this form of the general second order differential equation that was later studied by Fuchs.
Set \(\eta = \frac{f}{g} \), the quotient of two independent solutions of \(y'' + Py = 0 \). Since \(f'' = Pf \) and \(g'' = Pg \),

\[
f''g - fg'' = 0.
\]

\[
\eta' = \frac{f'g - fg'}{g}, \quad \text{and}
\]

\[
\eta'' = \frac{-(f'g - fg')}{g^2} \quad \text{so}
\]

\[
\eta'' = -\eta' \left(\frac{2g'}{g} \right) \quad (\ast)
\]

\[
\eta''' = -\eta'' \left(\frac{2g'}{g} \right) - \eta' \left(\frac{2g'}{g} \right),
\]

\[
= -\eta'' \cdot \left(\frac{2g'}{g} \right) + 2\eta'(P + \left(\frac{2g'}{g} \right)^2)
\]

\[
= 6\eta' \left(\frac{g'}{g} \right)^2 + 2\eta' P
\]

\[
\eta'''' = \eta' \left(6 \left(\frac{g'}{g} \right)^2 + 2P \right) \quad (\ast\ast)
\]

From (\ast) and (\ast\ast) it follows at once that

\[
\frac{\eta'''}{\eta'} - \frac{3}{2} \left(\frac{\eta''}{\eta'} \right)^2 = 2P
\]

3 Kronecker's example is discussed in Neuenschwander, [1977, 7]
which is based on Casorati's notes of a conversation with Kronecker,
16 October 1864.

5 After characterizing Galois theory in the 1870's as concerned
with the abstract ideas of a group, Klein said of his own work that it
was differently oriented [1922, 261]. "Es handelt sich darum, ob man
Gleichungen gegebener Gruppe unter Festhaltung an dem zunächst zugrunde
gleigten Rationalitätsbereiche auf bestimmte Normalformen reduzieren
kann, oder ob man dem Rationalitätsbereich zuden Zwecke erweitern muss.
Auf alle Fälle werden die algebraisch einfachsten Prozesse gesucht, die
das Verlangte leisten." Gordan pflegte dieses Gesamtgebiet (welches die
Gruppentheorie selbstverständlich als bekannt voraussetzt)
scherzhafterweise als "HypergaZois" zu bezeichnen." (Klein's italics).

6 \[A_m (ju_1)^m + A_{m-1} (ju_1)^{m-1} + \ldots + A_0 = 0, \] and (4.2.2) is irreducible,
so \[\frac{A_{m-i}}{A_m} = \frac{A_{m-i}}{A_m} \cdot j^{-i}, \]
which implies, since \(A_m \neq 0, \)
\[A_{m-i} = 0 \quad 1 \leq i \leq m, \text{ or } j^{-i} = 1. \]
The irreducibility of (4.2.2) precludes \(A_{m-i} = 0 \) for all \(i, \) so \(j \) is a
primitive root of unity.

7 The most general expression which is the root of a rational
function is \(y = (z-a_1)^{a_1} (z-a_2)^{a_2} \ldots (z-a_n)^{a_n} g(z), \) where \(g(z) \) is a
polynomial, and \(a_1, \ldots, a_n \) are rational numbers which can be assumed
not to be positive integers. If \(y \) is to satisfy an \(n^{\text{th}} \) order differential
equation, then the singular points of the equation must be \(a_1, \ldots, a_n \)
and the exponents must be \(a_1, \ldots, a_n. \) When \(y \) is substituted into given
differential equation an equation is obtained for the coefficients of
\(g(z). \) If this equation has solutions then \(y \) is a solution of the
differential equation, and if not, not.

8 Klein wrote [1875/76 = 1922, 276]: "Ich entwickle an ihr, als
einem Beispiel, wie man die ganze Theorie dieser Formen, von Kenntnis
der linearen Transformationen ausgehend, welche dieselben ungeändert
lassen, ohne alle komplizierte Rechnung, nur mit den Begriffen der
Invariantentheorie operierend, ableiten kann."

9 Gordan wrote [1877a, 23]: "Aber die geometrischen Betrachtungen,
deren er sich zu diesem Zwecke bedient, sind sehr abstract und jedenfalls
mit der Fragestellung nicht notwendig verknüpft; ich werde daher im
Folgenden zeigen, wie man diese Aufgabe algebraisch behandeln kann."
10 Suppose g_1, g_2, \ldots, g_N are the elements of G, then

$$\Pi(x) = (x-g_1a)(x-g_2a) \cdots (x-g_na)$$

is a polynomial of order N which vanishes on the orbit of G containing the point a, and any other polynomial with those zeros is a linear multiple of Π. In particular $\Pi(gx)$ has the same zeros, is monic, and so coincides with $\Pi(x)$, and $\Pi(x)$ is said to be G-invariant. Let $\Pi'(x) = (x-g_1a') \cdots (x-g_na')$ be the monic polynomial defining the orbit containing a' and $Q(x)$ a polynomial defining the orbit of a point b. To show $Q(x) = k\Pi(x) + k\Pi'(x)$, consider $Q(x) - Q(a)$. It vanishes when $x = Q$ and is G-invariant, so it is some multiple of $\Pi(x)$, say $Q(x) - Q(a) = \beta\Pi(x)$. Likewise $Q(x) - Q(a') = \beta'\Pi'(x)$, so

$$Q(x)[Q(a') - Q(a')] \beta\Pi(x) - Q(a)\beta'\Pi'(x)$$

or $Q(x) = Q(a')\beta\Pi(x) - Q(a)\beta'\Pi'(x)$

11 Transvectants are a somewhat mysterious collection of invariants of given forms. Let $f(x_1, x_2)$ and $\phi(y_1, y_2)$ be two binary forms, of degrees m and n respectively, and introduce the symbolic operator

$$\Omega = \frac{\partial^2}{\partial x_1 \partial y_2} - \frac{\partial^2}{\partial x_2 \partial y_1}$$

so, e.g. $\Omega(f, \phi) = \frac{\partial f}{\partial x_1} \frac{\partial \phi}{\partial y_2} - \frac{\partial f}{\partial x_2} \frac{\partial \phi}{\partial x_1}$

Then the form

$$\frac{1}{m!n!} \Omega(f, \phi)$$

is the first transvectant of f and ϕ.

The rth transvectant of f and ϕ is similarly defined as

$$\frac{(m-r)!}{m!} \frac{(n-r)!}{n!} \Omega^r(f, \phi).$$

To obtain the rth transvectant of f with itself, one calculates with $f(x_1, x_2)$ and $f(y_1, y_2)$ and then sets $y_1 = x_1, y_2 = x_2$ after the differentiation is over. So, for example, the second transvectant
of f with itself is obtained by first calculating
\[
\left(\frac{1}{m(m-1)}\right) \partial^2 (f.f) = \left(\frac{1}{m(m-1)}\right)^2 \left(\frac{\partial^2 f}{\partial x_1^2} \cdot \frac{\partial^2 f}{\partial y_2^2} - \frac{\partial^2 f}{\partial x_1 \partial y_2} \cdot \frac{\partial^2 f}{\partial x_2 \partial y_2} \right)
\]
and then substituting x_1 and x_2 for y_1 and y_2 respectively, obtaining
\[
\left(\frac{1}{m(m-1)}\right)^2 \cdot \left(\frac{\partial^2 f}{\partial x_1^2} \cdot \frac{\partial^2 f}{\partial x_2^2} - \frac{\partial^2 f}{\partial x_1 \partial x_2} \cdot \frac{\partial^2 f}{\partial x_2 \partial x_2} \right).
\]
This, up to a constant factor, is the Hessian of f. The odd order transvectants of a form with itself all vanish.

12 This problem has recently been studied in great generality in Baldassari and Dwork, [1979] and Baldassari, [1980, to appear]. They regard Klein's method as getting close to solving the recognition problem, although insufficient to deal with the dihedral case, but as not well adapted for the construction of all second order linear differential equations with algebraic solutions and prescribed singular parts.

13 "... die Resultate unmittelbar hervorgehen aus den allgemeinen Regeln, welche ich in meiner Schrift *Über das Formensystem binärer Formen* (Teubner, 1875) entwickelt habe."

14 $H(f)$ is the Hessian up to a constant factor. For $f_6 = y_5 y_2 + y_1 y_2^5$,
\[
H(f_6) = y_1^8 - 14y_1^4 y_2^4 + y_2^8.
\]
For $f_{12} = y_1^{11} y_2 + 11y_1^6 y_2^6 + y_1 y_2^{11}$,
\[
H(f_{12}) = y_1^{20} - 228y_1^{15} y_2^5 + 494y_1^{10} y_2^{10} + 228y_1^5 y_2^{15} + y_2^{20}.
\]

15 "... une faute de calcul, qui d'ailleurs n'infirmé en rien les principes de nos raisonnements, nous a fait omettre l'un de ces groupes ..."
16 Sylow presented his discovery that subgroups of order p^r exist in a group of order n, whenever p is a prime and p^r divides n, in [1872]. Jordan was much impressed with this result, and wrote to Sylow about it; Sylow's letters are preserved in the collection of Jordan's correspondence at the École Polytechnique (catalogue numbers I, 19-22). Sylow's proofs were permutation theoretic, and the history of their reformulation in abstract terms is well traced in Waterhouse [1980]. Jordan himself never published a proof of Sylow's theorems.

17 Jordan called the linear transformations 'substitutions' and the name attached itself to the elements of groups as his theory of groups became progressively more abstract. In matrix form this transformation would be written:

\[
\begin{pmatrix}
 u_1 \\
 u_2
\end{pmatrix}
+ \begin{pmatrix}
 \alpha & \beta \\
 \gamma & \delta
\end{pmatrix}
\begin{pmatrix}
 u_1 \\
 u_2
\end{pmatrix}
\]

18 Hesse's group is a subgroup of the Galois group of the equation of the 9 inflection points on a general cubic. Jordan had first considered the larger group in his Traité, 302-305, where he showed it had order 432 and was the symmetry group of the configuration of the lines joining the inflection points, by treating it as the symmetries of the affine plane over the field of 3 elements. Hesse's group consists of those matrices having determinant 1. The group in (5) above, of order $27 \cdot 2^2 = 108$ is the symmetry group of the Pappus configuration. The group is discussed in Miller, Blichfeldt, and Dickson, Theory and Applications of Finite Groups, Chapter XVIII.
In a letter from Jordan to Klein, 11 October 1878, [N.S.U. Bibliothek zu Göttingen, Klein, cod Ms F Klein, 10, number 11] Jordan wrote:

"Mon cher ami

"Vous avez parfaitement raison. En énumérant les groupes linéaires à trois variables, j'ai laissé échapper celui d'ordre 168 que vous me signalez".

Jordan corrected his mistake, and went on to discuss the group of the modular equation at the prime 11 (PSL (2; 11), of order 660) which Klein had presumably raised in his letter to Jordan. Jordan observed that the group has an element, say A', of order 11, and one, B', of order 5. If it is to be a linear group in three variables which he doubted then, he wrote:

"En supposant qu'il n'y ait que 3 variables, il faudra trouver une substitution C' telle que A', B', C' combinées entre elles ne donnent que 12.11.5 substitutions. Il ne serait pas difficile sans doute de vérifier si la chose est possible, mais je suis trop occupé en ce moment pour pouvoir exécuter ce calcul."

Jordan went on to discuss the Hessian group of order 216, and then congratulated Klein on his good fortune in working with Gordan.

"Je ne me sens pas aucune en état de la suivre sur le terrain des formes ternaires; mais j'ai longuement approfondi sa belle démonstration de l'Endlichkeit der Gründformen des formes binaires..."

Jordan's intuition about PSL (2; 11) was correct, it cannot be represented as a group in three variables, however both he and Klein missed a group of order 360 which can be represented by ternary collineations. This is Valentiner's group(Vallentin, [1889]) which is discussed in Wiman [1896], where it is shown to be abstractly isomorphic
to A_6, the group of even permutations of 6 objects, and, in Klein,
[1905 = 1922, 481-502].

Jordan also published two memoirs on Gordan's finiteness theorem
[1876], [1879] which attempted to calculate the upper bound found by
Gordan.

See Hermite's letter to P. du Bois-Reymond, 3 September 1877, in
Hermite [1916], referred to in Hawkins, [1975, 93n].

Jordan was somewhat imprecise. Poincaré showed [1881, = Oeuvres
III, 95-97] that to each finite monodromy group in three or more
variables there correspond infinitely many differential equations having
rational coefficients and algebraic solutions.

"Malgré l'intérêt considérable qui s'attache aux travaux de ces
éminents géomètres, on pouvait désirer une méthode plus directe pour
résoudre cette question. La determination des groupes cherchés n'est
en effet qu'un problème de substitutions, qui doit pouvoir se traiter
par les seules ressources de cette théorie, sans recourir comme M. Klein
à la géométrie non-euclidienne, ou comme M. Fuchs et Gordan, à la théorie
des formes. La nouvelle méthode qu'il s'agissait de trouver devait
d'ailleurs, pour être entièrement satisfaisante, être susceptible de
s'étendre aux groupes à plus de 2 variables." [1880, I = 1961, II, 177].

Hermite wrote [Halphen Oeuvres III, ix, x]: "Rien n'est plus
intéressante que de voir s'introduire, dans cette recherche de calcul
intégral, les notions algébriques d'invariants qui ont pris naissance
dans la théorie des formes, et ces nouvelles combinaisons faire apparaître
les éléments cachés d'où dépend, sous ses diverses formes analytiques,
l'intégration d'une équation donnée Il y joint une considération
qui joue également dans ses recherches un rôle essentiel, c'est celle
du genre d'une équation algébrique entre deux variables, introduite en analyse par Riemann et qui est si souvent employée dans les travaux de notre époque.
Notes on Chapter V.

1. Hermite wrote: "Vous devez sans doute, au moyen des principes qui vous appartiennent, pouvoir démontrer qu'en posant

\[\frac{K'}{K} = \omega \text{ et: } k = f(\omega) \]

k est une fonction uniforme de \(\omega = x + yi \), dans toute l'étendue des valeurs positives de \(x \), mais ce que je n'aperçois aucunement, et ce qui m'intéresserait beaucoup, ce serait de voir clairement à quoi il tient qu'en posant:

\[\frac{J'}{J} = x + yi \]

on cesse d'avoir une fonction à sens unique. Vos méthodes, je n'en doute pas, doivent immédiatement donner la raison de la différence de nature des fonctions définies par les deux équations."

2. Hermite wrote: "...je juge pour la théorie des fonctions elliptiques de la plus grande importance. Le point vraiment fondamental que la partie réelle de H est essentiellement positive, j'avais vainement tenté de l'établir par une méthode élémentaire, pour ne pas être obligé de recourir aux principes nouveaux découverts par RIEMANN."

3. Hermite wrote: "N'y aurait-il point lieu d'observer qu'en faisant \(x^2 = f(H) \), il résulte de votre analyse que toutes les solutions de l'équation \(f(H) = f(H_0) \) sont données par la formule \(H = \frac{\nu_i + \phi H_0}{\lambda + \nu_i H_0} \), en insistant sur l'extrême importance de ce résultat, pour la détermination des modules singuliers de M. KRONECKER, et en remarquant que les belles découvertes de l'illustre géomètre, sur les applications de la théorie des fonctions elliptiques à l'arithmétique, paraissent reposer
essentiellement sur cette proposition, dont la démonstration
n'avait pas encore été donnée?"

Complex multiplication and singular moduli. The only
maps of a lattice \(\Lambda \) to itself are of the form
\[
\begin{align*}
aw &= \alpha \omega + \beta \omega' \\
aw' &= \gamma \omega + \delta \omega'
\end{align*}
\]
where \(\omega \) and \(\omega' \) are generators of the lattice. Either
\(a = \alpha = \delta, \beta = \gamma = 0, \) or, setting \(\lambda = \omega'/\omega, \beta \tau^2 + (\alpha - \delta) \tau - \gamma = 0, \)
so \(\tau \) is a quadratic imaginary. In this case the lattice is said
to possess a complex multiplication, by \(a. \) The theory of singular
moduli was first developed by Abel [1828] in terms of elliptic
integrals. Each transformation of the lattice gives a holomorphic
map from \(\mathbb{C}/\Lambda \) to \(\mathbb{C}/\Lambda, \) Abel sought values of \(a \) for which the
differential equation
\[
\frac{dy}{\sqrt{(1 - y^2)(1 + \alpha y^2)}} = \frac{dx}{\sqrt{(1 - x^2)(1 + \mu x^2)}}
\]
has algebraic solutions, and found that \(a \) is either rational or a
quadratic imaginary \(\sqrt{m + ni}, m, n \) rational. This occurs only for
certain \(\nu \) which he called the singular moduli, and which he
conjectured satisfied an algebraic equation solvable by radicals.
The conjecture was proved by Kronecker [1857].

seemed to be born in his mind in some mysterious way".

5. Hermite wrote [Oeuvres, II, 20-21] "... ne me contente point:
elle est longue, indirect surtout; elle repose en entier sur le
hasard d'une formule de Jacobi, oubliée et comme perdue parmi tant
de découvertes dues à son génie".
See also Dugac [1976], Mehrtens [1979].

Compare Lang [1976], Serre [1973], or Schoeneberg [1974].

I cannot find that he ever took an opportunity to do this.

Dedekind remarked (§6) "... alle Substitutionen \(\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \) sich aus den beiden Substitutionen \(\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \) and \(\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \) zusammensetzen lassen, ...".

Hermite wrote: "... aucune autre voie pour parvenir aux équations modulaires ne s'est encore offerte que celle qui a été donnée par les fondateurs de la théorie des fonctions elliptiques." (Hermite's emphasis).

Galois wrote (25): "Mon cher ami, J'ai fait en Analyse plusieurs choses nouvelles. Les unes concernent la théorie des équations; les autres, les fonctions intégrales."

(26): "Si ces groupes ont chacun un nombre premier de permutations, l'équation sera soluble par radicaux; sinon, non".

(27): "On sait que le groupe de l'équation qui a pour racines les sinus de l'amplitude des \(p^2 - 1 \) divisions d'une période est celui-ci:

\[
\begin{pmatrix} x_k & x'_{ak+bz} \\ ck+dz \end{pmatrix}
\]

par conséquent l'équation modulaire correspondante aura pour group

\[
\begin{pmatrix} x_k & x'_{ak+bz} \\ k & ck+dz \end{pmatrix}
\]

dans laquelle \(k \) peut avoir les \(p + 1 \) valeurs \(0, 1, \ldots, p - 1 \).

(29) "Ainsi, pour le cas \(p = 5, 7, 11 \), l'équation modulaire s'abaisse au degré \(p \)."
"En toute rigueur, cette équation n'est pas possible dans les cas plus élevés."

12 The implicit isomorphism between $\operatorname{PSL}(2, \mathbb{Z}/5\mathbb{Z})$ and A_5 was made explicit by Hermite [1866 = Oeuvres, II, 386-387].

13 Galois wrote (30): "On traite à la fois toutes des intégrales dont la différentielle est une fonction de la variable et d'une même fonction irrationnelle de la variable, que cette irrationnelle soit ou ne soit pas un radical, qu'elle s'exprime ou ne s'exprime pas par des radicaux.

On trouve que le nombre des périodes distinctes de l'intégrale la plus générale relative à une irrationnelle donnée est toujours un nombre pair.

Soit $2n$ ce nombre, on aura le théorème suivant:

Une somme quelconque de termes se réduit à n termes, plus des quantités algébriques et logarithmiques.

Les fonctions de première espèce sont celles pour lesquelles la partie algébrique et logarithmique est nulle.

Il y en a n distinctes.

Les fonctions de seconde espèce sont celles pour lesquelles la partie complémentaire est purement algébrique.

Il y en a n distinctes".
Kronecker wrote: "... Es seien
\(\theta', \theta'', \theta''', \ldots \)

Elemente in endlicher Anzahl und so beschaffen, dass sich aus je zweien derselben mittels eines bestimmten Verfahrens ein drittes ableiten lässt. Demnach soll, wenn das Resultat dieses Verfahrens durch \(f \) angedeutet wird, für zwei beliebige Elemente \(\theta' \) und \(\theta'' \), welche auch mit einander identisch sein können, ein \(\theta''' \) existieren, welches gleich: \(f(\theta', \theta'') \) ist. Ueberdies soll:

\[
f(\theta', \theta'') = f(\theta'', \theta')
\]

\[
f(\theta', f(\theta'', \theta''')) = f(f(\theta', \theta''), \theta''')
\]

und aber, sobald \(\theta'' \) and \(\theta''' \) von einander verschieden sind, auch \(f(\theta', \theta'') \) nicht identisch mit \(f(\theta', \theta''') \) sein. Dass vorausgestellt, kann die mit \(f(\theta', \theta'') \) angedeutete Operation durch die Multiplikation der Elemente \(\theta' \theta'' \) ersetzt werden, wenn man dabei an Stelle der vollkommenen Gleichheit eine blosse Äquivalenz einführt. - Macht man von dem üblichen Äquivalenzeichen:

\(\sim \) Gebrauch, so wird hiernach die Äquivalenz:

\(\theta'.\theta'' \sim \theta''' \)

durch die Gleichung

\[
f(\theta', \theta'') = \theta'''
\]
definirt."

See Dugac [1976, 73] for a discussion of priorities, and

Dedekind wrote:

"Satz I. Ist \(\theta'' = \phi, \theta'\theta'' = \psi \), so ist \(\phi\theta'' = \theta\psi \), oder kürzer,

\((\theta''\theta)\theta'' = \theta(\theta'\theta') \).

Satz II. Aus je zwei der drei Gleichungen \(\phi = \theta, \phi' = \theta' \), \(\phi\phi' = \theta\theta' \) folgt immer die dritte."
Die nun folgenden Untersuchungen beruhen lediglich auf den beiden soebene bewiesenen Fundamentalsätzen und darauf, dass die Anzahl der Substitutionen eine endliche ist. Die Resultate derselben werden deshalb genau ebenso für ein Gebiet von einer endlichen Anzahl von Elementen, Dingen, Begriffen $\theta, \theta', \theta'' \ldots$ gelten, die eine irgendwie definirte Composition $\theta\theta'$ aus θ, θ' zulassen, in der Weise, dass $\theta\theta'$ wieder ein Glied dieses Gebietes ist, und das diese Art der Compositionen den Gesetzen gehorcht, welche in den beiden Fundamentalsätzen ausgesprochen sind."

17 Klein [1926, I, 366] - strictly, a description of work on automorphic function theory.

18 Freudenthal wrote:

"F. Klein reconnut immédiatement l'importance du groupe d'automorphismes d'une géométrie donnée pour l'entendement plus profond de cette géométrie. Il vit que ces groupes d'automorphismes donnaient un moyen puissant de mettre un ordre classificateur dans la multitude des géométries qui s'étaient développées depuis le début du siècle. Il discerna les liens avec la théorie déjà classique des invariants dont la surestimation fut responsable de l'identification kleinéenne de géométrie et de théorie des invariants. Il découvrit le changement de l'élément géométrique suggéré par des isomorphismes <groupaux>. Mais l'intérêt de Klein concernant les groupes restait toujours restreint à ceux qui dérivaient de géométries bien connues, des polyédres réguliers, ou du plan non-euclidien. Jamais son point de départ n'a été un groupe auquel il aurait associé une géométrie - opération dont l'exploitation sera réservée à E. Cartan. De plus en plus l'activité de Klein concernant les groupes rappelle celle d'un peintre de nature morte."
This highly transitive group inspired Mathieu to look for others, and so led to his discovery of the simple, sporadic groups which bear his name, Mathieu [1860, 1861].

Kronecker wrote: "Dieß letztere zu beweisen, scheint indessen schwierig zu sein; wenigstens haben mich die Untersuchungen, welche ich zu diesem Zwecke vor zwei Jahren angestellt habe, als ich mich mit dem Gegenstande der vorliegenden Notiz beschäftigte, nicht zum Ziele geführt."

The multiplier equation associated to a modular transformation describes \(M \) (see Chapter II) as a function of \(k \).

These results were also published in J. A. Serret, *Cours d'Algebra* [4th ed, 1879, 393-412].

Klein wrote: "Bei Kronecker oder Brioschi wird nirgends ein allgemeiner Grund angegeben, weshalb die Jacobischen Gleichungen sechsten Grades als die einfachsten rationalen Resolventen der Gleichungen fünften Grades anzusehen sind; ..." (Klein's emphasis.)

Jacobi resolvents are defined in Chapter VI, n.7.

Gordan made a study of quintics in his [1878], discussed in Klein [1922, 380-4].

Notes of Weierstrass's lectures were presumably available, see Chapter VII n.4. Klein based his approach to the modulus of elliptic functions on the treatments in Müller [1867, 1872 a, b] which I have not seen. Hamburger's report on them in *Fortschritte*, V, 1873, 256-257, indicates that they are based on Weierstrass's theory of elliptic functions and the invariants of of biquadratic forms.
In modern language $\Gamma = \text{PSL}(2; \mathbb{Z})$ does not act freely on H, but it has a subgroup $\Gamma(2)$ which does, and $\Gamma/\Gamma(2) \cong S_3$.

Klein wrote. "Bei $n = 3, 4, 5$ haben wir dieselbe Verzweigung, welche die Tetraeder-, Oktaeder-, Ikosaedergleichung aufweisen. Diese sind aber die einfachsten Gleichungen, welche diese Verzweigung besitzen, insofern in ihnen die Größe n als unbekannte eingeführt ist, durch die sich alles rational ausdrückt ($\S2$). Es sind also diese Gleichungen die einfachsten Formen, welche man der Galoisschen Resolvente der Transformationsgleichung für $n = 3, 4, 5$ erteilen kann. Hiermit ist die Bedeutung, welche zumal die Ikosaedergleichung, auf welche ich in dieser Arbeit meine besondere Aufmerksamkeit richte, für die Transformationstheorie besitzt, so scharf gekennzeichnet, als man verlangen kann." (Klein's emphasis.)
Notes on Chapter VI.

1. The plane is generally the complex rather than the real plane, but early writers e.g. Cayley are ambiguous. Later writers, like Klein, are more careful.

2. If 4 or more inflection points were real they would all have to be, since the line joining two inflection points meets the curve again in a third. But then they would all lie on the same line, which is absurd. The configuration of inflection points on a cubic coincides with the points and lines of the affine plane over the field of 3 elements, an observation first made, in its essentials, by Jordan, \textit{Traité} 302.

3. H.J.S. Smith [1877] pointed out that Eisenstein used the Hessian earlier, in 1844. Eisenstein's 'Hessian' is the Hessian of the cubic form $ax^3 + 3bx^2y + 3cxy^2 + dy^3$, i.e. $(b^2 - ac)x^2 + (bc - ad)xy + (c^2 - bd)y^2$, see Eisenstein [1975, I, 10].

4. It takes two to tango.

5. In a subsequent paper on this topic, [1853], Steiner was led to invent the Steiner triple system. However, these configurations had already been discovered and published by Kirkman [1847], as Steiner may have known, see the sympathetic remarks of Klein, \textit{Entwicklung}, 129.

6. Henceforth it will be understood that each quadric belongs to the appropriate system; in this case the cone passes through the seven given points.
7. Aronhold [1864] showed that seven lines being given a quartic can be found having these lines as bitangents, and that the remaining bitangents depend linearly on these seven. This quartic is the only one for which no three bitangents lie in the same grouping. I have only seen the partial translation into French [Aronhold, 1872] of Aronhold’s paper, which, however confirms the description in Salmon Higher Plane Curves, 234-240, and Weber [1876].

8. To go from the quadric to the cubic, let the quadric be
\[x^T A x = 0, \quad x = (x_1, x_2, x_3, x_4) \] and let \(F = 0 \) be the equation of a cone (of the system) with vertex \(P \). The coordinates of \(P \) satisfy \(U x = 0 \), where \(U = (u_{ij}) \) say, and \(\det U = \Delta \). Form the matrix \(V = \left(\frac{\partial \Delta}{\partial u_{ij}} \right) = (U_{ij}) \), so \(U_{ij} \) is the cofactor of \(u_{ij} \) and is a cubic in \(\lambda_1, \lambda_2, \) and \(\lambda_3 \). Since
\[x_1: x_2: x_3: x_4 = U_{k1}: U_{k2}: U_{k3}: U_{k4} \] for \(1 \leq k \leq 4 \), one finds ten equations for the ten terms \(x_i x_j = \rho U_{ij} \), where \(\rho \) is an arbitrary constant. In this way the equation of the quadric \(x^T A x = 0 \) is transformed into a cubic equation in \(\lambda_1, \lambda_2, \) and \(\lambda_3 \). The process can be reversed.

9. Hesse listed the 36 rearrangements in (§14).

10. Geiser [1869] argued that given a cubic surface \(S \) and a point \(P \) not on it, the tangents through \(P \) to \(S \) form a cone of degree 6 (any plane through \(P \) cuts \(S \) in a cubic curve, to which there are \(n(n - 1) = 6 \) tangents from \(P \)). If \(P \) is on \(S \) the cone becomes the tangent plane, \(E \), at \(P \) to \(S \) and a quartic surface, \(Q \). Any plane through \(Q \) cuts it in a quartic curve, take the plane \(E \) and consider the curve \(C = E \cap Q \). If \(g \) is one of the 27 lines on \(S \) then any plane \(e \) through \(g \) meets \(S \) again in a conic which meets \(g \) in two points, \(P_1 \) and \(P_2 \). The lines \(PP_1 \) and \(PP_2 \) lie in \(Q \), and define a plane which, furthermore, cuts \(E \) in a line that is a bitangent to \(C \).
In this way the 27 lines on S give rise to 27 bitangents on C, the 28th is obtained from the principal tangents to S at P. A more complicated argument enabled Geiser to show that the 27 lines can be obtained from the 28 bitangents.

It has proved impossible to survey the literature of these wonderful configurations. For some historical comments see Henderson [1911, 1972], who also describes how models of the 27 lines may be constructed. For modern mathematical treatments see Griffiths and Harris [1978], Hartshorne [1977], and Mumford [1976]. For their connection with the Weyl group of E7 see Manin [1974]. The existence of a finite number of lines on a cubic surface was discovered by Cayley [1849], and their enumeration is due to Salmon [1849].

11. Riemann spoke of functions being infinitely small of the νth order ("unendlich klein der νten Ordnung"), infinitely great of the νth order ("unendlich gross der νten Ordnung") (§2), and of having ν-fold branch points (ufacher Windungspunkt) (§6). The abbreviated terms I employ were in use elsewhere at the time.

12. The notation means that $F(\frac{n}{s}, \frac{m}{z})$, as a polynomial in s, is of degree n and as a polynomial in z is of degree m.

13. In fact all branchpoints are birationally equivalent to these.

14. A zero of Q is a multiple point of the surface, but such a point is not always a branch point. Riemann only considered the case of double points.
15. This matrix is important in the study of Weierstrass points.

16. On the curve $F(s, z) = 0$ one has $F_s ds + F_z dz = 0$, so $\frac{dz}{F} = - \frac{ds}{F_s}$ and $\phi \frac{dz}{F} = - \phi \frac{ds}{F_z}$ is a typical holomorphic integral. If this curve is put into homogeneous form by writing $s = \frac{x_1}{x_0}, z = \frac{x_2}{x_0}$ and $f(x_0, x_1, x_2) = x_0^n F(s, z)$ (where f is of degree n), then $f_x = \frac{\partial}{\partial x_2} (x_0^n \frac{x_1}{x_0}, \frac{x_2}{x_0}) = x_0^{n-1} F_s$ and $dz = \frac{x_0^2 x_2 dx_2 - x_2 dx_0}{x_0^n (x_0 dx_2 - x_2 dx_0)}$ so $F = f$ and $z = \frac{\phi(x_0, x_1, x_2)}{x_0}$ is of degree $n-3$, so $\phi(x_0, x_1, x_2) = x_0^{n-3} \phi(s, z)$ and $\phi dz = \phi(x_0 dx_2 - x_2 dx_0)$.

17. Riemann wrote: "... dass ein beliebig gegebenes Größensystem (e_1, \ldots, e_p) immer einem und nur einem Größensysteme von der Form $(\frac{\partial}{\partial_1} \delta_1 \alpha_1(v), \ldots, \frac{\partial}{\partial_p} \delta_1 \alpha_p(v))$ congruent ist, wenn die Function $\theta(u_1 - e_1, \ldots, u_p - e_p)$ nicht identisch verschwindet; denn es müssen dann die Punkte η die p Punkte sein, für welche diese Function 0 wird."

This becomes clearer in modern dress, if one merely introduces some notation for the domains involved. Jacobi inversion starts with the values of p integrals modulo periods, thus with a p-tuple of complex numbers modulo a lattice, Λ, say. So $(e_1, \ldots, e_p) \in \mathbb{C}^p/\Lambda$. Jacobi inversion asks for p points of T which satisfy
Thus for an unordered \(p \)-tuple of points of \(T \). A convenient notation for the set of all unordered \(p \)-tuples in \(T \) is \(S^p T \), which is \(T \times \ldots \times T \) (\(p \) times) factored out by the obvious action of \(S^p \), the symmetric group on \(p \)-elements. This space is birationally equivalent to \(C^p / \Lambda \) but is not biholomorphic to it. Note that \(\Theta \) is not really defined on \(C^p / \Lambda \).

There is a map \(F_p : S^p T \rightarrow C^p / \Lambda \) given by

\[
(x_1, \ldots, x_p) \mapsto (\sum_{j=1}^{p} u_1(x_j), \ldots, \sum_{j=1}^{p} u_p(x_j))
\]

its birational inverse is \(G_p : C^p / \Lambda \rightarrow S^p T \)

\[
(e_1, \ldots, e_p) \mapsto \text{zeros of } \Theta(u_1(x) - e_1, \ldots, u_p(x) - e_p).
\]

The map \(F_p \) is generally holomorphic since its Jacobian has maximal rank at all (non-special) divisors \(- p \)-tuples on \(T \) at which no holomorphic integrand vanishes.

The condition that \(\Theta \neq 0 \) was investigated by Riemann in the last paper he published during his life, \([\text{Werke XI}]\); the conclusion he reached is that \(\Theta \) vanishes on a subspace of \(C^g / \Lambda \) of dimension \(g - 1 \). A similar conclusion is suggested in §24 of "Theorie der Abel'schen Functionen".

The \(\Theta \)-functions were also studied by Fuchs [1871a], who developed ideas proposed earlier by Thomae.

18. In other words the complex dimension of the space of functions with precisely \(m \) given poles is \(m + 1 - p \).

19. Roch wrote: "Wird eine Function \(s' \) in \(m \) Punkten unendlich gross erster Ordnung und können in diesen \(m \) Punkten \(q \) Funktionen \(\frac{\partial (s, z)}{\partial s} \)

verschwinden, zwischen denen keine lineare Gleichung mit constanten Coefficienten besteht, so enthält \(s' \) die Zahl \(m - p + 1 + q \) willkürlicher Constanten".
20. Weber originally described the functions $\sqrt{\phi}$ as Abelian, and
[1876, 110] defined a root function as any rational polynomial
expression in the Abelian functions. The term root function is used
in Brill and Noether [1894, IX].

21. To see that there are $2^{p-1}(2^p - 1)$ odd characteristics, argue as
follows. The top row may be any p-tuple other than $(0, 0, \ldots, 0)$, so
there are $2^p - 1$ of these. Let (a_1, a_2, \ldots, a_p) be any non-zero p-tuple,
regarded as a vector in p-dimensional space over the field of 2 elements
$\{0, 1\}$, and regard the bottom row (x_1, x_2, \ldots, x_p) in the same way.
Then evaluating the characteristic
\[
\left(a_1, a_2, \ldots, a_p \right)
\]
taking the inner product of these vectors, and, since (a_1, a_2, \ldots, a_p)
is not zero the kernel of the map
\[
(x_1, x_2, \ldots, x_p) \rightarrow a_1 x_1 + a_2 x_2 + \ldots + a_p x_p
\]
is of dimension $p - 1$ and so contains 2^{p-1} elements. The vectors not
in the kernel must map to 1, so there are 2^{p-1} of these for each
non-zero (a_1, a_2, \ldots, a_p), and therefore $2^{p-1}(2^p - 1)$ in all.

Or, following Roch [1864], one may argue that there is only 1 odd
characteristic when p is 1, namely $\binom{1}{1}$, and 3 even characteristics $\binom{1}{0}$,
$\binom{0}{1}$ and $\binom{0}{0}$. Joining $\binom{1}{1}$ to a characteristic produces a new character-
istic of the opposite parity, but joining $\binom{1}{0}$, $\binom{0}{1}$, or $\binom{0}{0}$ does not
change the parity. So, if α_p characteristics of order p are even and
β_p are odd, then $\alpha_1 = 3$, $\beta_1 = 1$, and $\alpha_{p+1} = 3\alpha_p + \beta_p$, $\beta_{p+1} = 3\beta_p + \alpha_p$
from which one deduces $\alpha_p = 2^{p-1}(2^p + 1)$, $\beta_p = 2^{p-1}(2^p - 1)$.

23. Clebsch wrote (p 189) "Dass solche Anwendungen bisher nicht versucht sind, obgleich wir seit sechs Jahren Riemann's Theorie dieser Funktionen besitzen, ist ohne Zweifel grossentheils den Schwierigkeiten zuzuschreiben, welche dem Verständnisse der betreffenden Abhandlungen noch immer entgegenstehen, und welche auch durch die neueren Bemühungen jungerer Mathematiker nicht ganz gehoben sind."

24. Clebsch wrote (p 190) "Es liegt in der Natur der hier angewandten Methoden, dass alle diese Sätze als ganz spezielle Fälle von anderen, sehr allgemeinen, erscheinen, ..."

25. Weber wrote: "welche den Angelpunkt der ganzen Theorie bilden".

26. Originally Clebsch and Dedekind were to have edited Riemann's Werke, but not much progress was made initially and after Clebsch's death (7 November 1872) Dedekind sought and obtained Frau Riemann's permission to involve Weber. See [Riemann 1953, Vorrede zur ersten Auflage] and Dugac [1976 212, 262]

27. Jacobi [1829 = 1969, I, 249-275] had introduced, in connection with the multiplier equation at the prime p, a class of equations of degree p+1 whose roots depend linearly on \(\frac{p+1}{2} \) quantities \(\alpha_0, ..., \alpha_p \) (see p.261). The p+1 roots take the form

\[
\sqrt{z_\infty} = (-1)^{\frac{p-1}{2}} \cdot p \cdot \alpha_0
\]

\[
\sqrt{z_1} = \alpha_0 + \epsilon \sqrt{\alpha_1} + \epsilon^4 \sqrt{\alpha_2} + ... + \epsilon^{\frac{(p-1)^2}{2}} \sqrt{\alpha_{p-1}}
\]

where \(\epsilon = e^{2\pi i/p} \). Brioschi [1858] was able to show what the general
form of an equation of degree 6 is if it is a Jacobian equation, and to exhibit explicitly the corresponding quintic. The multiplier equation was, he showed, a special Jacobian equation for which the corresponding quintic took Bring's form, so the solution of the quintic by elliptic functions was again accomplished. Kronecker [1858] showed that the general quintic yields rational resolvents which are Jacobian equations of degree 6, and conjectured that equations of degree 7 which were solvable by radicals would likewise be associated with Jacobian equations of degree 8.

Klein [1879 = 1922, 390-425] argued that, since the group of the modular equation of the prime 7 is $G_{168} = \text{PSL}(2; \mathbb{Z}/7\mathbb{Z})$ it is only possible to solve those equations of degree 7 whose Galois group is a quotient of G_{168}, i.e. is G_{168} itself. The general Jacobian equation of degree 8 has Galois group $\text{SL}(2; \mathbb{Z}/7\mathbb{Z})$ so the task of solving every equation of degree 7 by modular functions is impossible. In fact $\text{SL}(2; \mathbb{Z}/7\mathbb{Z})$ can also send each $\sqrt{z_i}$ to $-\sqrt{z_i}$, and each $\sqrt{z_i}$ ($i = 0, 1, \ldots, 6, \infty$) is linear in the A's. Klein took $[A_0 : A_1 : A_3 : A_4]$ as coordinates in \mathbb{CP}^3, so each $\sqrt{z_i} = 0$ defines a plane and (dually) a point. These eight points define a net of quadrics (after Hesse). If the Jacobian equation has Galois group G_{168} then the net contains a degenerate family of conics whose vertices lie on a space sextic (κ, above, p 214) which is the Hessian of a quartic [1879, §9]. Klein also showed that any polynomial equation whose Galois group was G_{168} could be reduced to the modular equation at the prime 7, thus answering affirmatively Kronecker's conjecture about the 'Affect' of such equations.
28. The simplicity of the group emerges from Klein's description of its subgroups without Klein remarking on it explicitly. Silvestri's comments [1979, 336] in this connection are misleading, and he is wrong to say the group is the transformation group of a seventh order modular function: \(G_{168} \) is the quotient of \(\text{PSL}(2; \mathbb{Z}) \) by such a group.

29. In particular, the inflection points of this curve are its Weierstrass points. For example, when the equation of the curve is obtained in the form \(\lambda^3 \mu + \mu^3 \nu + \nu^3 \lambda = 0 \) the line \(z = 0 \) is an inflection tangent at \([0,1,0]\) and meets the curve again at \([1,0,0]\). The function \(g(\lambda, \mu, \nu) = \mu/\nu \) is regular at \([1,0,0]\) but has a triple pole at \([0,1,0]\).

30. Gordan [1880a, b] derived a complete system of covariants for \(f(x_1x_2 + x_2x_3 + x_3x_1 = 0 \) from a systematic application of transvection and convolution (Faltung). Convolution replaces a product \(\alpha_1\beta_1 \) in a covariant by the factor \((\alpha\beta) \), where \((\alpha\beta) := \alpha_1\beta_2 - \alpha_2\beta_1 \), and
\[
\alpha_x = (\alpha_1x_1 + \alpha_2x_2)^n = \sum_{r}^n (\alpha_1x_1-r \cdot x_2^r.
\]
These papers and other related ones by Gordan were summarized by Klein in 1922, 426-438, where it is shown that they lead to a solution of the 'form problem' for \(\text{PSL}(2, \mathbb{Z}/7\mathbb{Z}) \) just as Klein's work had solved the 'form problem' for the Icosahedron. Klein also showed how Gordan's work enables one to resolve Kronecker's conjecture.

31. Halphen's solution appeared as a letter to Klein in [Halphen 1884 = \textit{Oeuvres} IV 112 - 5]. Hurwitz's more general solution was published as [Hurwitz 1836]. He argued that three functions \(\lambda, \mu, \nu \) of \(J \) such that \(\lambda^3 \mu + \mu^3 \nu + \nu^3 \lambda = 0 \) could be found which are the solutions of a 3rd order linear differential equation as follows. Pick 3 linear independent everywhere finite integrals \(J_1, J_2, J_3 \) on
\[\lambda^3 \mu + \mu^3 \nu + \nu^3 \lambda = 0 \] such that \(\frac{dJ_1}{dJ} : \frac{dJ_2}{dJ} : \frac{dJ_3}{dJ} = \lambda : \mu : \nu \). Then Fuchs's methods [Fuchs 1866, esp. 139 - 148] imply that, if \(y_i = \frac{dJ_i}{dJ} \), \(1 \leq i \leq 3 \), then \(y_1, y_2, \) and \(y_3 \) are the solutions of an equation of the form

\[
\frac{d^3y}{dJ^3} + \frac{aJ + b}{J(J - 1)} \frac{d^2y}{dJ^2} + \frac{a'J^2 + b'J + c'}{J^2(J - 1)} \frac{dy}{dJ} + \frac{a''J^3 + b''J^2 + c''J + \lambda''}{J^3(J - 1)^3} y = 0
\]

since the only possible branch points are at \(J = 0, 1, \) and \(\infty \). Klein's [1878/79] establishes that the branching is 7-fold at \(J = \infty, 3 \)-fold at \(J = 0, \) and 2-fold at \(J = 1, \) whence Fuchs's equation for the sum of the exponents yields values for most of \(a, b, \ldots, d'' \). Since the exponent differences are integers at \(J = 1, \) log terms could occur in the solution but they do not, so the differential equation can be found explicitly. It is

\[
j^2(J - 1)^2 \frac{d^3y}{dJ^3} + (7J - 4)J(J - 1) \frac{d^2y}{dJ^2} + \frac{82}{7}J(J - 1) - \frac{28}{9}(J - 1)
\]

\[
+ \frac{3J}{4} \frac{dy}{dJ} + \frac{72.11}{73}(J - 1) + \frac{5}{8} + \frac{2}{63} y = 0.
\]

A study of the invariants associated the curve \(\lambda^3 \mu + \mu^3 \nu + \nu^3 \lambda = 0 \) enabled Hurwitz to show that his differential equation took Halphen's form when the substitution \(y = (J(J - 1))^{-2/3}y' \) is made.
Notes on Chapter VII

1. The Lamé equation is discussed in Whittaker and Watson, Ch.XXIII.

2. The applications of elliptic functions are discussed in Houzel [1978, §15].

3. Halphen defined a single-valued function (fonction uniforme) thus (p4n) "Par ce mot fonction uniforme, j'entends ici une fonction ayant l'aspect d'une fonction rationnelle, c'est-à-dire développable sous la forme

\[(\alpha - \alpha_0)^n [A + B(\alpha - \alpha_0) + C(\alpha - \alpha_0)^2 + ...],\]

dans laquelle n est un nombre entier, positif ou négatif."

4. I have not seen [Mittag-Leffler, 1876] which is in Swedish.

A propos of the Weierstrassian theory Halphen commented [69n]: "Il existe des tableaux de formules lithographiées qui ont été rédigées d'après les leçons de M. Weierstrass, et qui sont entre les mains de presque tous les géomètres allemands."

5. This information is taken from Darboux, Éloge Historique d'Henri Poincaré, printed in Poincaré, Oeuvres, II, vii-lxxi.

7. Poincaré wrote: "Mais il ne me paraît évident qu'il en soit de même dans le cas général. . . ."

"Dans le cas où ces points singuliers ne sont qu'au nombre de deux je trouve que la fonction que vous avez définie jouit de propriétés fort remarquables et comme j'ai l'intention de publier les résultats que j'ai
obtenus, je vous demanderai la permission de lui donner le nom de fonction fuchsiennne puisque c'est vous qui l'avez découverte."

8. Poincaré wrote: "On aurait ainsi une classe d'équations beaucoup plus étendue que celle dont vous vous occupé et auxquelles votre théorème s'appliquerait. Malheuresement l'objection que j'ai soulevée exige une étude plus approfondie de la question; et cette étude, je n'ai pu la faire dans le cas où il n'y en a que deux points singuliers à distance finie.

"C'est cette fonction nouvelle que j'ai appelée fonction fuchsiennne et à l'aide de cette transcendante nouvelle et d'une autre qui s'y rattache j'intègre l'équation différentielle du deuxième ordre à deux points singuliers finis, non seulement quand \(q_1, q_2, q_3 \) sont parties aliquot de l'unité; mais quand \(q_1, q_2, q_3 \) sont des quantités commensurables quelconques.

"La fonction fuchsiennne a beaucoup d'analogies avec les fonctions elliptiques; elle n'existe que dans l'intérieur d'un cercle et reste meromorphe à l'intérieur de ce cercle. Elle s'exprime par le quotient de deux séries convergentes dans tout ce cercle."

9. Poincaré wrote: "Ces fonctions présentent avec les fonctions elliptiques les plus grandes analogies et sont susceptibles d'être représentées par le quotient de deux séries convergentes, et cela d'une infinité de manières. Parmi ces séries, il y en a qui sont des séries entières et qui jouent le rôle de fonction Theta. Elles sont convergentes dans toute l'étendue d'un certain cercle et, en dehors de ce cercle elles cessent d'exister, ainsi que la fonction fuchsiennne elle-même. En dehors de ces fonctions, il en est d'autres qui jouent le même rôle que les fonctions Zéta dans la théorie des fonctions elliptiques et grâce auxquelles j'intègre toutes les équations différentielles linéaires d'ordre quelconque à coefficients rationnels toutes les fois qu'il n'y a que deux points singuliers à distance finie et que les racines des trois équations déterminantes sont commensurables. J'ai imaginé aussi des fonctions qui sont aux fonctions fuchsiennes ce que les fonctions abéliennes sont aux fonctions elliptiques et grâce auxquelles j'espère intégrer toutes les équations linéaires quand les racines des équations déterminantes seront commensurables. Enfin des fonctions tout à fait analogues aux fonctions fuchsiennes ma donneront, je crois, les intégrales d'un grand nombre d'équations à coefficients irrationnels.
10. Hermite wrote [Poincaré, *Oeuvres*, II, 73] "... l'auteur traite successivement deux questions entièrement différentes, dont il fait l'étude approfondie avec un talent dont la Commission a été extrêmement frappée. La seconde question ..., concerne de belles et importantes recherches de M. Fuchs, ... Les résultats ... présentaient dans certains cas des lacunes que l'auteur a reconnues et signalées en complétant ainsi une théorie analytique extrêmement intéressante. Cette théorie lui a suggéré l'origine de transcendants comprenant en particulier les fonctions elliptiques et qui permettent d'obtenir, dans des cas très généraux, la solution des équations linéaires du second ordre. C'est là une voie féconde que l'auteur n'a point parcourue en entier, mais qui témoigne d'un esprit inventif et profond. La Commission ne peut que l'engager à poursuivre ses recherches, en signalant à l'Académie le beau talent dont il a fait preuve."

11. When the essay was published in 1923 this figure was incorrectly printed as figure 6, before the one depicting the situation which Fuchs had shown to be impossible. The text refers to the annular case as the second one, which it is in Poincaré's original essay as deposited in the Académie.

12. Poincaré wrote, [1909, 50-53] "Depuis quinze jours, je m'efforçais de démontrer qu'il ne pouvait exister aucune fonction analogue à ce que j'ai appelé depuis les fonctions fuchsiennes; j'étais alors fort ignorant; tous les jours, je m'asseyais à ma table de travail, j'y passais une heure ou deux, j'essayais un grand nombre de combinaisons et je n'arrivais à aucun résultat. Un soir, je pris du café noir, contrairement à mon habitude, je ne pus m'endormir: les idées surgissaient en foule; je les sentais comme se heurter, jusqu'à ce que deux d'entre elles s'accrochassent, pour ainsi dire, pour former une combinaison stable. Le matin, j'avais établi l'existence d'une classe de fonctions fuchsiennes, celles qui dérivent de la série hypergéométrique; je n'eus plus qu'à rédiger les résultats, ce qui ne me prit que quelques heures."
Je voulus ensuite représenter ces fonctions par le quotient de deux séries; cette idée fut parfaitement consciente et réfléchie; l’analogie avec les fonctions elliptiques me guidait. Je me demandai quelles devaient être les propriétés de ces séries, si elles existaient, et j’arrivai sans difficulté à former les séries que j’ai appelées thétaphusianennes.

À ce moment, je quittai Caen, où j’habitais alors, pour prendre part à une course géologique entreprise par l’École des Mines. Les péripéties du voyage me firent oublier mes travaux mathématiques; arrivés à Coutances, nous montâmes dans un omnibus pour je ne sais quelle promenade; au moment où je mettais le pied sur le marche-pied, l’idée me vint, sans que rien dans mes pensées antérieures parût m’y avoir préparé, que les transformations dont j’avais fait usage pour définir les fonctions fushsiennes étaient identiques à celles de la géométrie non-euclidienne. Je ne fis pas la vérification; je n’en aurais pas eu le temps, puisque, à peine assis dans l’omnibus, je repris la conversation commencée, mais j’eus tout de suite une entière certitude. De retour à Caen, je vérifai le résultat à tête reposée pour l’acquit de ma conscience.

13. Je me mis alors à étudier des questions d’arithmétique sans grand résultat apparent et sans soupçonner que cela put avoir le moindre rapport avec mes recherches antérieures. Dégouté de mon insuccès, j’allai passer quelques jours au bord de la mer, et je pensai à tout autre chose. Un jour, en me promenant sur la falaise, l’idée me vint, toujours avec les mêmes caractères de brièveté, de soudaineté et de certitude immédiate, que les transformations arithmétiques des formes quadratiques ternaires indéfinies étaient identiques à celles de la géométrie non-euclidienne.
Étant revenu à Caen, je réfléchis sur ce résultat, et j'en tirai les conséquences; l'exemple des formes quadratiques me montrait qu'il y avait des groupes fuchsiens autres que ceux qui correspondent à la série hypergéométrique; je vis que je pouvais leur appliquer la théorie des séries thétafuchsiennes et que, par conséquent, il existait des fonctions fuchsiennes autres que celles qui dérivent de la série hypergéométrique, les seules que je connaisse jusqu'alors. Je me proposai naturellement de former toutes ces fonctions; j'en fis un siège systématique et j'enlevai l'un après l'autre tous les ouvrages avancés; il y en avait un cependant qui tenait encore et dont la chute devait entraîner celle du corps de place. Mais tous mes efforts ne servirent d'abord qu'à me mieux faire connaître la difficulté, ce qui était déjà quelque chose. Tout ce travail fut parfaitement conscient.

Poincaré presented his ideas on non-Euclidean geometry and arithmetic to l'Association Française pour l'avancement des Sciences at its 10th session, Algiers, 16 April 1881, [Oeuvres V, 267-274].

The ternary indefinite form $\xi^2 + \eta^2 - \zeta^2 = -1$ is preserved by a group of 3×3 matrices (SO(2,1)). If new variables $X := \frac{\xi}{\zeta+1}$ and $Y = \frac{\eta}{\zeta+1}$ are introduced and ζ is taken to be positive (a condition Poincaré forgot to state) then the point (X,Y) must lie inside the unit circle. The linear transformations in SO(2,1) induce transformations of the unit disc, planes through $(\xi,\eta,\zeta) = (0,0,0)$ cut the upper half of the hyperboloid of 2 sheets $(\xi^2 + \eta^2 - \zeta^2 = -1)$ in lines which correspond to arcs of circles in the (X,Y) domain meeting the unit circle at right angles, and the induced transformations map these arcs to other similar arcs. Poincaré showed that the concepts of non-Euclidean distance and angle may be imposed on the disc to yield a conformal map of the geometry and that the induced transformations are then non-Euclidean isometries. His interest in the group SO(2,1) derived from Hermite's
number theoretical work [1854]. I presume that Poincaré's *Comptes Rendus* paper [1881, 11 July] appeared in print before the account of this talk. There is no reason to suppose Poincaré knew of the Weierstrass-Killing interpretation of non-Euclidean geometry in terms of the hyperboloid of 2 sheets [Hawkins, 1980, 297].

14. See [Bottazzini 1977, 32].

The simplest way to refer to the letters is to give their date.

17. Poincaré wrote: "D'ailleurs, s'il est vrai que le point de vue du savant géomètre d'Heidelberg est complètement différent du vôtre et du mien, il est certain aussi que ses travaux ont servi de point de départ et de fondement à tout ce qui s'est fait depuis dans cette théorie."

18. Poincaré wrote: "... il est clair que j'aurais pris une autre dénomination si j'avais connu le travail de M. Schwarz; mais je ne l'ai connu que par votre lettre, après la publication de mes résultats de sorte que je ne peux plus changer maintenant le nom que j'ai donné à ses fonctions sans manquer d'égards envers M. Fuchs."

"Und an dieser Schwierigkeit finde ich mich nun schon lange aufgehalten."

"Dieser Satz, den ich mir übrigens erst in den letzten Tagen völlig zurechtlegte, schließt, soviel ich sehe, alle die Existenzbeweise, von denen Sie in Ihren Noten sprechen, als spezielle Fälle oder leichte Folgerungen ein."

20. Poincaré wrote [Oeuvres, II, 21,22]: "Il existe des fonctions qui ne sont pas altérées par les substitutions de ce groupe et que je propose d'appeler fonctions kleinéennes, puisque c'est à M. Klein qu'on en doit la découverte. Il y aura aussi des fonctions théta-kleinéennes et zéta-kleinéennes analogues aux fonctions thétafuchsiennes et zétafuchsiennes." (Poincaré's emphasis.)

24. The same approach was taken by Picard in proving his celebrated 'little' theorem that an entire function which fails to take two values is constant, Picard [1879a]. He argued that, if there is an entire function which is never equal to \(a, b, \) or \(\infty \) (being entire), then a Möbius transformation produces an entire function, \(G \), say, which is never \(0, 1, \) or \(\infty \). So \(G \) never maps a loop in complex plane onto a loop enclosing \(0, 1, \) or \(\infty \). Now, \(G \) maps a small patch into a region of, say, the upper half plane, and if \(k^2 : H \to \hat{H} \) is the familiar modular function, then composing \(G \) with a branch of the inverse of \(k^2 \) maps the patch into
half a fundamental domain for k^2. Analytic continuation of this composite function cannot proceed on loops enclosing 0, 1, or ∞ (by the remark just made) so the composite $(k^2)^{-1} \circ G$ is single-valued. But it is also bounded, so, by Liouville's theorem, it is constant, and the 'little' theorem is proved. To see that the function is bounded replace the domain of k^2 by the conformally equivalent unit disc; Picard missed that trick and proved it directly. For a nearly complete English translation see Birkhoff and Merzbach, 79-80.

26. Many years later, Mittag-Leffler wrote in an editorial in Acta Mathematica ((39) 1923, iii) that Poincaré's work was not at first appreciated. "Kronecker, for example, expressed his regret to me via a mutual friend that the journal seemed bound to fail without help on the publication of a work so incomplete, so immature and so obscure."

27. The uniformization theorem was first proved by Koebe and Poincaré independently in 1907, after an incomplete attempt by Schlesinger. The validity of the continuity method was a central question in the new theory of the topology of manifolds, and was decisively studied by Brouwer in 1911-12. For a full discussion and references see Scholz [1980, 198-222]. Hilbert raised uniformization as a problem as the 22nd in his famous list, and one should also consult Bers' article on it in Mathematical developments arising from Hilbert Problems, AMS, PSPUM, 28, 1976, 559-609.
Notes on Appendix 4.

1. This presentation therefore contributes to the misrepresentation of Riemann's ideas against which Radner, Scholz and others have fought. There is much more to this paper of Riemann's than a sketch of a theory of differential geometry, and the treatment of non-Euclidean geometry is but a speck.

2. 17 July, 1867 is the date when Dedekind handed the paper over to Weber for final editing [Dugac 1976, 171], and it is the date given in the French edition. The bound edition of the Göttingen Abhandlungen, volume 13, covers the years 1866 and 1867 and was published in 1868. Sommerville [1911] gives 1866 and Fortschritte 1868.

3. I wish this account to replace the misleading one in Gray [1979a]. In particular the reference (p247) to geodesics appearing as circular arcs in the disc is a totally wrong summary of Beltrami's ideas.

4. A brief reference was also made to Gauss's views on non-Euclidean geometry in the biography [von Waltershausen, 1856, 80-81]. Gauss is a difficult case to understand, for he never brought his ideas together in one place, nor did he seem to like the idea. For a detailed discussion see [Reichardt 1976].

5. For a truly stupid piece of philosophizing in a book well received at the time, consider e.g. "The foregoing discussion has brought us to the point where the reader is in a condition, I hope, to realize the great fundamental absurdity of Riemann's endeavour to draw inferences respecting the nature of space and the extension of its concept from algebraic representations of "multiplicities". An algebraic multiple and a spatial magnitude are totally disparate. That no conclusion about
forms of extension or spatial magnitudes are derivable from the forms of algebraic functions is evident upon the most elementary considerations." [Stallo, 1888 = 1960, 278].

6. Cayley solved his problem himself in [1872].

7. Weierstrass's seminar of 1872 seems to be the source of Killing's interest in non-Euclidean geometry. See [Hawkins 1979, Ch. 2].

8. Both Klein and Cayley made an attempt to define distance by (i) saying that if the cross ratio of A, B, C, and D is -1 and D is at infinity, then B is the midpoint of AC, and (ii) somehow passing to the infinitesimal case. The passage (ii) is not clear, nor was it generally accepted. The whole process recalls von Staudt's attempts [1856 - 1860] to define cross-ratio without the concept of distance and then to define distance in terms of cross-ratio. The difficulty is the introduction of continuity into the projective space.
Bibliography.

The following abbreviations have been used:

A. H. E. S. = Archive for the History of the Exact Sciences.

Ann. di Mat. = Annali di matematiche pura e applicata.

Ann. Sci. Mat. Fis. = Annali di scienze matematiche e fisiche,

(ed Tortolini).

Fortschritte = Jahrbuch über die Fortschritte der Mathematik.

H. M. = Historia Mathematica.

J. D. M. V. = Jahrsbericht den Deutschen mathematiker Vereinigung.

J. F. M. = Journal für die reine und angewandte Mathematik (ed. Crelle, Borchardt, ...).

Rev. phil = Revue philosophique.

Tortolini's Ann = Ann. sci. Mat. Fis.
Niels Hendrik Abel (1802 - 1829)

1881 Oeuvres complètes de Niels Hendrik Abel, 2 vols, 2nd ed. edited by Sylow and S. Lie, Christiania.

S. H. Aronhold (1819 - 1884)

F. Baldassarri

F. Baldassarri and B. Dwork

E. Beltrami (1835 - 1900)

1868 Saggio di interpretazione della geometria non-Euclidea, Giornale di Mat., VI, 284 - 312.

1869 Essai d'interpretation de la géométrie non-Euclidienne, Annales Ecole Norm. Sup. VI, 251-288 (translation of previous by Hoßel).

E. Betti (1823 - 1892)

1853 Sopra l'abbassamento delle equazioni modulari delle funzioni ellittiche, Tortolini, Annali, IV, 81 - 100.

K. R. Biermann

1971a (Julius Wilhelm) Richard Dedekind, D. S. B., IV, 1 - 5.

G. Birkhoff and U. Merzbach

J. Bolyai (1802 - 1860)

1832 Science Absolute of Space, trans. G. B. Halsted, published as an Appendix in Bonola [1912].

R. Bonola (1874 - 1911)

A. Brill (1842 - 1935) and M. Noether (1844 - 1921)

1892-93 Die Entwicklung der Theorie der algebraischen Functionen in alterer und neuerer Zeit, J.D.M.V., 3, 107 - 566.

E. S. Bring (1736 - 1798)

1786 Promotionschrift, Lund.

F. Brioschi (1824 - 1897)

1858a Sulla equazioni del moltiplicatore per la transformazione delle Funzioni ellittiche Ann. di Mat. (I), I, 175 - 177 = Opere, I, (no. XLIX), 321 - 324.

1858b Sulla risoluzione delle equazioni del quinto grado Ann. di Mat (I), I, 256-259 and 326-328 = Opere, I, (no. LII), 335 - 341.

1877b Sopra una classe di forme binarie, Ann. di Mat., (II), VIII, 24 - 42 = Opere, II (no. LXII), 157 - 175.

1878/79 Nota alla memoria del sig. L. Klepert "Über die Auflösung der
Gleichungen fünften Grades, Ann. di Mat. (II) IX, 124 - 125 =
Opere II (no. LXXXIV) 189 - 191.

1877c Extrait d'une lettre de M. F. Brioschi à M. F. Klein, M. Ann,
11, 111 - 114.

1883/84 Sulla Teoria delle funzioni ellittiche Ann. di Mat. (II) XII
49 - 72 = Opere II (no. LXXXVI), 295 - 318.

1901 Opere Matematiche, 5 vols.

C. Briot (1817-1882) and J. Bouquet (1814-1885)

1856a Étude des fonctions d'une variable imaginaire, J. Ec. Poly,
vol 21, 85 - 132.

1856b Recherches sur les propriétés des fonctions définies par des
équations différentielles, ibid, 133 - 198.

1856c Mémoire sur l'intégration des équations différentielles au
moyen des fonctions elliptiques, ibid, 199 - 254.

1859 Théorie des fonctions doublement périodiques et, en particulier,
des fonctions elliptiques, Paris.

A. L. Cauchy (1789 - 1857)

1841 Note sur le nature des problèmes que présente le calcul
intégrale, in Exercises d'Analyse et de physique mathématiques, 1,
Bachelier, Paris = Oeuvres complètes (2) 12, 263 - 271.

1840 Mémoire sur l'intégration des équations différentielles in Exercises
d'Analyse et de physique mathématiques, II, Bachelier, Paris =
Oeuvres complètes (2), 11, 399 - 465.

1843 Rapport sur un Mémoire de M. Laurent qui a pour titre: Extension du
théorème de M. Cauchy relatif à la convergence du développement d'une
fonction suivant les puissances ascendantes de la variable x, C. R. 17,
938 - 940 = Oeuvres (1) 8 (no. 233) 115 - 117.

1845 Sur le nombre des valeurs égales ou inégales que peut acquérir
une fonction, etc C. R., 21, 779 - 797 = Oeuvres complètes (1), 9,
323 - 341.

A. Cayley (1821 - 1895)

M. Chasles (1793 - 1880)

1837 Aperçu historique sur l'origine et le développement des méthodes en Géométrie, Bruxelles, Mem. Couronn. XI.

E. Christoffel (1829 - 1900)

R. F. A. Clebsch (1833 - 1872)

R. F. A. Clebsch and P. Gordan (1837 - 1912)

Theorie der Abelschen functionen, Teubner, Leipzig.

G. Codazzi (1816 - 1877)

R. Dedekind (1831 - 1916)

J. Dieudonné

J. Dieudonné, J. Carroll

P. G. L. Dirichlet (1805 - 1859)

P. Dugac

G. W. Dunnington

W. von Dyck (1856 - 1934)

H. M. Edwards

1977 Fermat's Last Theorem, Springer.

F. G. M. Eisenstein (1823 - 1852)

1847 Genaue Untersuchungen der unendlichen Doppelprodukte...
357 - 478.

L. Euler (1707 - 1783)

1794 Specimen Transformationis singularis serierum, Nova Acta Acad Sci

C. Fisher

1966 The death of a mathematical theory A. H. E. S. 3, 137 - 159.

H. Freudenthal

1954 Poincaré et les fonctions automorphes, in Poincaré Oeuvres,
XI, 213 - 219.

1970 L'Algébre Topologique en particulier les groupes topologiques
et de Lie XIIe Congrès International d'Histoire des

R. Fricke

1913 Automorphe Funktionen mit Einschluss der elliptischen

A. R. Forsyth (1858 - 1942)

F. G. Frobenius (1849 - 1917)

1875a Über algebraisch integrirbare lineare Differentialgleichungen

L. I. Fuchs (1833 – 1902)

1866 ibid, J. f. M., 66, 121 - 160 = Werke, I, 159 - 204.

1871a Über die Form der Argumente der Thetafunctionen und über die Bestimmung von \(\theta(0, 0, \ldots, 0) \) als function der Klassenmoduln, J. f. M., 73, 305 - 323 = Werke, I, 321 - 342.

1871b Über die linearen Differentialgleichungen, welchen die Periodicitätsmoduln der Abelschen Integrale genügen, und
über verschiedene Arten von Differentialgleichungen für

\theta(0, 0, \ldots, 0), J. f. M., 73, 324 - 339 = Werke, I, 343 - 360.

1875 Über die linearen Differentialgleichungen zweiter Ordnung,
welche algebraische Integrale besitzen, und eine neue Anwendung
der Invariantentheorie.... Nachr Königl. Ges. der Wissenschaften,

1876a Über die linearen Differentialgleichungen zweiter Ordnung,
welche algebraische Integrale besitzen, und eine neue Anwendung

1876b Extrait d'une lettre adressée à M. Hermite Jde Math, (3), 2,

1876c Sur les équations différentielles linéaires du second ordre

1877a Selbstanzeige der Abhandlung: "Über die linearen Differential-
gleichungen zweiter Ordnung, welche algebraische Integrale besitzen
und eine neue Anwendung der Invariantentheorie". Borchardts
73 - 86.

1877b Sur quelques propriétés des intégrales des équations
différentielles, auxquelles satisfont les modules de périodicité
des intégrales elliptiques des deux premières espèces. Extrait
d'une lettre adressée à M. Hermite. J. f. M. 83, 13 - 37 = Werke,
II, 87 - 114.

1878a Über die linearen Differentialgleichungen zweiter Ordnung, welche
algebraische Integrale besitzen. Zweite Abhandlung, J.f. M.
85, 1 - 25 = Werke, II, 115 - 144.

1877c Extrait d'une lettre adressée à M. Hermite, C. R. 85, 947 - 950 =
Werke, II, 145 - 150.

1878b Über eine Klasse von Differentialgleichungen, welche durch
Abelsche oder elliptische Funktionen integrirbar sind
Nachrichten von der Königl. Gesellschaft der Wissenschaften,
Göttingen 19 - 32; Ann di mat (II), 9, 25 - 35 = Werke, II,
151 - 160.

1878c Sur les équations différentielles linéaires qui admettent des
intégrales dont les différentielles logarithmiques sont des
fonctions doublement périodiques. Extrait d'une lettre à

1879a Selbstzusage der Abhandlung: "Sur quelques propriétés des
intégrales des équations différentielles, auxquelles satisfont
les modulues de périodicité des intégrales elliptiques des
deux premières espèces. Extrait d'une lettre adressée à M.
= Werke, II, 177 - 184.

1880a Über eine Klasse von Funktionen mehrerer Variablen, welche durch
Umkehrung der Integrale von Lösungen der linearen Differential-
gleichungen mit rationalen Coefficienten entstehen. Nachr Königl
Ges. der Wissenschaften, Göttingen 170 - 176 = Werke, II, 185 - 190.

1880b Über eine Klasse von Funktionen mehrerer Variablen, welche durch
Umkehrung der Integrale von Lösungen der linearen Differential-
gleichungen mit rationalen Coefficienten entstehen, J. f. M. 89
151 - 169 = Werke, II, 191 - 212.

1880c Sur une classe de fonctions de plusieurs variables tirées
de l'inversion des intégrales de solutions des équations
différentielles linéaires dont les coefficients sont des
fonctions rationnelles. Extrait d'une lettre adressée
à M. Hermite C. R. 90, 678 - 680 and 735 - 736, = Werke, II,
213 - 218.

1880d Über die Functionen, welche durch Umkehrung der Integrale von
Lösungen der linearen Differentialgleichungen entstehen. Nachr
Königl Ges. der Wissenschaften, Göttingen 445 - 453 = Werke,
II, 219 - 224.
1881a Auszug aus einem Schreiben des Herrn L. Fuchs an C. W. Borchardt

1880d Sur les fonctions provenant de l'inversion des intégrales des
solutions des équations différentielles linéaires...
Bulletin des Sciences mathématiques et astronomiques. (2), 4, 328 - 336 = Werke, II, 229 - 238.

1881b Über Functionen zweier Variablen, welche durch Umkehrung der
Integrale zweier gegebener Functionen entstehen... Abh

1881c Sur les fonctions de deux variables qui naissent de l'inversion
des intégrales de deux fonctions données. Extrait d'une lettre
adressée à M. Hermite C. R. 92, 1330 - 1331, 1401 - 1403 =
Werke, II, 275 - 289.

1881d Sur une équation différentielle de la forme $f \left(u, \frac{du}{dz} \right) = 0$.
Extrait d'une lettre adressée à M. Hermite, C. R. 93, 1063 - 1065 =
Werke, II, 283 - 284.

1882a Über Functionen, welche durch lineare Substitutionen unverändert
bleiben Nachr Konigl. Gesellschaft der Wissenschaften, Göttingen,

1882b Über lineare homogene Differentialgleichungen, zwischen deren
Integralen homogene Relationen höheren als ersten Grades bestehen.
Sitzungsberichte der K. preuss Akademie der Wissenschaften zu

1882c Über lineare homogene Differentialgleichungen, zwischen deren
Integralen homogene Relation höheren als ersten Grades bestehen,
1884a Über Differentialgleichungen, deren Integrale feste Verzweigungspunkte besitzen

1904 Gesammelte Mathematische Werke, ed.

1906 ibid, II.

1909 ibid, III.

E. Galois (1811 - 1832)

1846b Mémoire sur les conditions de la résolubilité des équations par radicaux J. de. Math. 11, 417 - 433.

1897 Oeuvres Mathématiques, ed. E. Picard.

C. F. Gauss (1777 - 1855)

1801 Disquisitiones Arithmeticae = Werke, I.

1812a Disquisitiones generales circa seriem infinitam, Pars prior, Comm. Soc. reg Gött. II = Werke, III, 123 - 162.

1812b Determinatio seriei nostrae per aequationem differentialem secundi ordinis, MS. = Werke, III, 207 - 230.

1839/40 Allgemeine Lehrsatz ein Beziehung auf die im verkehrten Verhältnisse des Quadrats der Entfernung, Resultate aus čen

1863 - 1867 *Werke*, vols I - V.

C. F. Geiser

H. Geppert

C. Gilain

A. Gœpel

P. Gordan (1837 - 1912)

1868 *Beweis, dass jede Covariante und Invariante einer binären Form eine ganze Function mit numerischen Coefficienten einer endlichen Anzahl solcher Formen ist*, J. f. M. 69, 323 - 354.

1880 *Ueber das volle Formen system der terneren biquadratischen Form \(f = x_1^3 x_2 + x_2^3 x_3 + x_3^3 x_1 \)*, Math. Ann. 17, 217-233.

J. J. Gray

1979a *Non-Euclidean Geometry - a re-interpretation*, H. M. 6, 236 - 258.
1979b Ideas of Space, Oxford U. P.

G. Green (1793 - 1841)

J. Hadamard (1865 - 1963)

1920 The Early Scientific Work of Poincaré, Rice Institute Pamphlet, no. 9, 3 111 - 183.

1954 The Psychology of Invention in the Mathematical Field, Dover.

H. Haedenkamp

G. H. Halphen (1844 - 1889)

1881b Sur un système d'équations différentielles, C. R. 92, 1101, = Oeuvres II, 475-7.

M. Hamburger (1838 - 1903)

1873 Bemerkungen über die Form der Integrale der linearen Differentialgleichungen mit veränderlichen Coefficienten J. f. M., 76, 113 - 125.

J. Harkness, W. Wirtinger, R. Fricke

R. Hartshorne

1977 Algebraic Geometry, Springer.

M. W. Haskell
1890 Über die zu der Curve \(\lambda^3 \mu + \mu^3 \nu + \nu^3 \lambda = 0 \) ... American Journal of Mathematics 13, 1 - 52.

T. Hawkins

H. E. Heine (1821 - 1881)

1846 Über die Reihe \(1 + \frac{(q^\alpha - 1)(q^\beta - 1)}{(q^\gamma - 1)} x + \text{etc.} \), J. f. M. 32, 210 - 212.

1847 Untersuchungen über die Reihe \(1 + \frac{(1-q^\alpha)(1-q^\beta)}{(1-q)(1-q^\gamma)} x + \text{etc.} \), J. f. M. 34, 285 - 328.

H. Helmholtz (1821 - 1894)

C. Hermite (1822 - 1901)

1858 Sur la résolution de l'équation du cinquième degré, CR 46, 508 - 515 = Oeuvres II, 5 - 12.

1877-1882 Sur quelques applications des fonctions elliptiques CR 85
- CR 94 passim = Oeuvres, III, 266 - 418.

1905-1917 Oeuvres, 4 vols, Paris

L. O. Hesse (1811 - 1874)

D. Hilbert (1862 - 1943)

1900a Ueber das Dirichlet'sche Prinzip J. D. M. V., VIII, 184-188, trans. in Birkhoff Merzbach, 399 - 402.

E. Hille (1894 - 1980)

A. Hurwitz (1859 - 1919)

C. G. J. Jacobi (1804 – 1851)

W. S. Jevons (1835 – 1882)

D. M. Johnson

C. Jordan (1838 – 1922)

1870 Traité des substitutions et des équations algébriques, Paris.

1877 Détermination des groupes formé d'un nombre fini de substitutions,
C. R. 84, 1446 - 1448 = Oeuvres, II, 7 - 8.

1879 Mémoire sur les covariants des formes binaires, II, J. de
Math (3) V, 345 - 378 = Oeuvres III, 213 - 246.

1880 Sur la détermination des groupes d'ordre fini contenus dans le
groupe linéaire, Atti Accad. Nap 8 no.11 = Oeuvres, II, 177 -
218.

N. M. Katz

1976 An overview of Deligne's work on Hilbert's Twentyfirst Problem,
in Mathematical Developments arising from Hilbert Problems,

L. Kiepert (1846 - 1934)

1876 Wirkliche Ausführung der ganzzahligen Multiplication der

B. M. Kiernan

1972 The Development of Galois Theory from Lagrange to Artin, A. H.
E. S. 8, 40 - 154.

C. F. Klein (1849 - 1925)

1871 Über die sogenannte Nicht - Euklidische Geometrie, I, Math.

1872 Vergleichende Betrachtungen über neuere geometrische Forschungen
(no. XXVII) 460 - 497.

1873 Über die sogenannte Nicht-Euclidische Geometrie, II, Math.

1875/76 Über binäre Formen mit linearen Transformationen in sich

1884 Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom fünften Grade, Teubner, Leipzig (English

1894 Vorlesungen über die hypergeometrische Funktion, Göttingen.

1922 ibid, vol. II.

1923 ibid, vol. III.

M. Kline

L. Koenigsberger (1837 - 1921)

1868 Die Multiplication und die Modulargleichungen der elliptischen functionen, Teubner, Leipzig.

1871 Die linearen transformationen der Hermite'schen φ - function

A. Krazer (1858 -)

1909 Zur Geschichte des Umkehrproblems der Integrale, J. D. M. V., 18, 44 - 75.

A. Krazer, W. Wirtinger

1913 Abelsche Funktionen und allegemeine Thetafunktionen. Enc. Math. Wiss, II. B. 7.,

L. Kronecker (1823 - 1891)

1857 Über die elliptischen Functionen, für welche complexe Multipli-
zu Berlin, 455 - 460 = Werke, II, (no. XVII) 177 - 184.

1858a Über Gleichungen des siebenten Grades, Monatsber, etc. Berlin,

1858b Sur la résolution de l'équation du cinquième degré, (Extrait d'une
Lettre adressée à M. Hermite), CR 46, 1150 - 1152, = Werke,
II, (no. VI), 43 - 48.

1863 Über die Auflösung der Pell'schen Gleichung mittels elliptischer Functionen, Monatsber. etc. Berlin 44 - 50 = Werke II (no. XXI) 219 - 226.

1897 Leopold Kronecker's Werke, II.

E. E. Kummer (1810 - 1893)

G. Lamé (1795 - 1870)

1837 Mémoire sur les surfaces isothermes, etc. J. de. Math. 2, 147 - 183

E. Lampe (1840 - 1918)

1976 Modular Functions, Springer.

A. M. Legendre (1752 - 1833)

1786 Memoire sur les intégrations par les arcs d'ellipse Hist. Acad. Paris, 616 - 644

1814 Exercises de calcul integral, vol II.

1825 Traité des fonctions elliptiques et des Integrales Euleriennes,
3 vols Paris.

J. Liouville (1809 - 1882)

1845 Sur diverses questions d'analyse et de physique mathématique,
J. de Math. 10, 222 - 228.

N. I. Lobachevskii (1792 - 1856)

1829 Ueber die Anfangsgründe der Geometrie Kasan Bulletin.

Ju. Manin

E. Matheiu (1835 - 1890)

1860 Le nombre de valeurs que peut acquérir une fonction quand on y permute ses variables de toutes les manières possibles, J. de Math. 5, 9 - 42.

1861 Mémoire sur l'étude des fonctions des plusieurs quantités...
J. de Math. 6, 241 - 323.

1875 Sur le fonction cinq fois transitive de 24 quantités. J. de Math. 18, 25 - 46.

K. O. May (1915 - 1977)

H. Mehrtens

F. Meyer (1848 - 1898)

1890/91 Bericht über den gegenwärtigen Stand der Invarianten Theorie J.D.M.V. 1, 79 - 288.

F. Minding (1806 - 1885)

1839 Wie sich entscheiden lässt, ob zwei gegebener Krummen

G. Mittag-Leffler (1846 - 1927)

1876 En Metod alt kommer analytiske berittning af de Elliptiska
functionerna, Helsingfors.

1880 Sur les équations différentielles lineaires à coefficients double-
ment périodiques CR 90, 299 - 300.

A. F. Monna

1975 Dirichlet's Principle. A mathematical comedy of errors and its
influence on the development of analysis. Oosthoek, Scheltema
and Holkema, Utrecht.

F. Müller.

1872 Ueber die Transformation vierten Grades der elliptischen functionen,
Berlin.

1873 Beziehungen zwischen dem Moduln der elliptischen functionen, etc,
Schlömilch's Zeitschrift, 18, 280 - 288.

E. Netto (1864 - 1919)

1882 Die Substitutionen theorie und ihre Anwendung auf die Algebra,
Teubner, Leipzig.

E. Neuenschwander

1978a The Casorati-Weierstrass Theorem, H. M. 5, 139 - 166.

1978b Der Nachlass von Casorati (1835 - 1890) in Pavia, A. H. E. S.
19.1, 1 - 89.

1979 Riemann und das "Weierstrassche" Prinzip der Analytischen Fort-

C. A. Neumann (1832 - 1895)

1865 Vorlesungen über Riemann's Theorie der Abel'schen Integrals.
Teubner, Leipzig,

1865 Das Dirichlet'sche Princip in seiner Andwendung auf die Riemann'schen Flachen, Teubner, Leipzig.

I. Newton (1642 - 1727)

E. Papperitz (1857 - 1938)

J. F. Pfaff (1765 - 1825)

1797 Disquisitiones Analyticae, I, Helmstadt.

H. T. H. Piaggio

E. Picard (1856 - 1941)

1879a Sur une propriété des fonctions entières. C. R. 88, 1024 - 1027.

1879b Sur une généralisation des fonctions périodiques et sur certaines équations différentielles linéaires C. R. 89, 140 - 144.

1880a Sur une classe d'équations différentielles linéaires C. R. 90, 128 - 131.

1880b Sur les équations différentielles linéaires à coefficients doublement périodiques C. R. 90, 293 - 295.

J. Plücker (1801 - 1868)

1834 System der analytischen Geometrie, Berlin.

1839 Theorie der algebraischen Curven, Berlin.
L. Pochhammer

1870 Ueber hypergeometrische Functionen 1

H. Poincaré (1854 - 1912)

1880 Extrait d'un Mémoire inédit de Henri Poincaré sur les fonctions

1881a Sur les fonctions Fuchsiennes, C. R., 92, 333 - 335 = Oeuvres
II, 1 - 4.

1881c Sur une nouvelle application et quelques propriétés importantes
des fonctions Fuchsiennes, C. R., 92, 859 - 861 = Oeuvres, V,
8 - 10.

1881d Sur les applications de la géométrie non-Euclidienne à la
théorie des formes quadratiques, Association Française pour
l'avancement des sciences, 10th session, Algiers, 16 April, 1881 =
Oeuvres, V, 267 - 274.

1881e Sur les fonctions Fuchsiennes, C. R., 92, 957 = Oeuvres, II,
11.

1881g ibid, C. R., 92, 1214 - 1216 = Oeuvres, II, 16 - 18.

1881h ibid, C. R. 92, 1484 - 1487 = Oeuvres, II, 19 - 22.

1881k Sur les groupes Kleinéens, C.R., 93, 44 - 46 = Oeuvres, II,
23 - 25.

1881j Sur une fonction analogue aux fonctions modulaires,

1881k Sur les fonctions Fuchsiennes, C. R., 93, 301 - 3 = Oeuvres,
II, 29 - 31.

1881l ibid, C. R., 93, 581 - 582 = Oeuvres, II, 32 - 34.

1881m Sur la théorie des fonctions Fuchsiennes, Mém. Caen for 1882,
3 - 29 = Oeuvres, II, 75 - 91.

1882e Sur une classe d'invariants relatifs aux équations linéaires, C. R. 94, 1042 - 1045 = Oeuvres, II, 47 - 49.

1882k Sur les Fonctions abéliennes, CR 92, 958 - 959 = Oeuvres, IV, 299 - 301.

1907 Sur l'uniformisation des fonctions analytiques, Acta Math. 31, 1 - 63 = Oeuvres, IV, 70 - 139

J. V. Poncelet (1788 - 1867)

J. C. Ent.

V. Puiseux

1850 Recherches sur les fonctions algébriques, J. de Math. 15

1851 Suite, ibid, 16.

W. Purkert

1976 Ein Manuskript Dedekinds über Galois - theorie, N. T. M. 13.2 1 - 16.

J. M. Radner

H. Reichardt

J. L. Richards

Bernhard Riemann (1826 - 1866)

1851 Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen complexen Grösse (Inaugural dissertation) Göttingen.

1857a Beiträge zur Theorie der durch Gauss'sche Reihe $F(a, \beta, \gamma, \alpha)$ darstellbaren Functionen, K. Ges.Wiss.Göttingen = Werke, 67 - 83.

1857b Selbstanzeige der vorstehenden Abhandlung, Göttingen Nachr. no. 1 = Werke, 84 - 87.

1953b Fragmente über die Grenzelfälle der elliptischen Modulfunktionen, MS. = Werke, 455 - 465.

1953c Convergenz der p-fach unendlichen Theta-Reihe, MS. = Werke, 483 - 486.

1953e Nachträge = Werke after 559.

Gustav Roch (1837 - 1866)

1866 Ueber die Doppeltangenten an Curven vierter Ordnung, J. f. M., 66, 97 - 120.
G. Rosenhain (1816 - 1887).

G. Salmon (1819 - 1904)

L. Schläfli (1874 - 1895)

L. Schlesinger (1864 - 1931).
1895 Handbuch der Theorie der Linearen Differentialgleichungen, vol I.
1897 ibid vol II. 1.
1898 ibid vol II, 2.
1909 Bericht über die Ent wicklung der Theorie der linearen Differentialgleichungen seit 1865, J. D. M. V. XVIII, 133 - 267.

E. Scholz

B. Schoeneberg

F. Schottky (1851 - 1935)

H. A. Schwarz (1843 - 1921)
1869a Ueber einige Abbildungsaufgaben, J. f. M. 70, 105 - 120 = Abh II 65 - 83,

1870b "Über die Integration der partiellen Differentialgleichung \(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \) unter vorgeschriebenen Grenz- und Unstetigkeits-be dingungen, Monatsber. K. A. der Wiss. Berlin, 767 - 795 = Abh, II, 144 - 171.

J. P. Serre

1973 A Course in Arithmetic, Springer

J. A. Serret (1827 - 1898)

A. Silvestri

1979 Simple Groups of Finite Order in the Nineteenth Century, A.H.E.S. 20.3, 313 - 357.

H. J. S. Smith (1826 - 1883)

L. A. Sohnke
1834 Aequationes modulares pro transformatione functionum...
J. f. M. 12, 178.

D. M. Y. Sommerville
1911 Bibliography of non-Euclidean Geometry, reprint Chelsea.

T. A. Springer

J. B. Stalp
1888 The Concepts and Theories of Modern Physics, Belknap Press,
Harvard University reprint 1960.

K. G. C. von Staudt (1798 - 1867)
1856-1860 Beiträge zur Geometrie der Lage. 3 vols, Nurnberg.

J. Steiner (1796 - 1863)
1848 Ueber allgemeine Eigenschaften der algebraischen Curven, Berlin
Bericht, 310 - 316.

1852 Ueber solche algebraische Curven, welche einen Mittelpunct haben,...
J. f. M. 47, 7 - 105.

L. Sylow (1832 - 1918)

J. Tannery (1848 - 1910)
1875 Propriété des Intégrales des Équations différentielles linéaires
à coefficients variables, Ann. Sci de l'École Normale Supérieure
ser 2,4,1, 113 - 182.

1876 La géométrie imaginaire et la notion d'espace, Rev. Phil, 2,
433 - 451, 2, 553 - 575.

J. Thomas (1840 - 1921)
1870 Über die höheren hypergeometrischen Reihen, insbesondere über
die Reihe ... M. Ann. 2, 427 - 444.

1874 Integration einer linearen Differentialgleichungen zweiter Ordnung

L. W. Thomé (1841 -)
1972 Zur Theorie der linearen Differentialgleichungen, J. f. M., 74,
193 - 217.

1873 Zur Theorie der linearen Differentialgleichungen, J. f. M.,
J. Tissot
1852 Sur un déterminant d'intégrales définies J. de. Math, 17, 177 - 185.

I. Toth
1977 La révolution non-euclidienne, La Recherche, 75.8, 143 - 151.

H. Valentiner (1850 -)
1889 De endelige Transformations - Gruppers Theori, Danish Academy publications, series V, vol 6.

J. Wallis (1616 - 1703)
1656 Arithmetica Infinitorum Oxford

S. von Waltershausen
1856 Gauss zum Gedächtniss, Leipzig

W. C. Waterhouse

H. Weber (1842 - 1913)
1876 Theorie der Abel'schen Functionen vom Geschlecht 3, Berlin.

L. Wedekind
1876 Beiträge zur geometrischen Interpretation binärer Formen, Math. Ann. 9, 209 - 217.

K. T. W. Weierstrass (1815 - 1897)
1842 Definition analytischer Functionen einer Veränderlichen vermittelst algebraischer Differentialgleichungen, MS. = Werke I, 75 - 84.
Werke, I, 297 - 355.

1894 Mathematische Werke, 7 vols, Olms, Hildesheim.

1902 Vorlesungen "über die Theorie der Abelschen Transcendenten -
Werke, IV.

A. Weil

1974 Two lectures on number theory, past and present, L'Enseignement
Mathématique (2) 20, 87 - 110 = Oeuvres, III, 279 - 302.

1976 Elliptic functions according to Eisenstein and Kronecker, Springer.

1979 Oeuvres Scientifigues, Collected Papers, Springer.

E. T. Whittaker and G. N. Watson

C. U. P.

A. Wiman

W. Wirtinger

1904 Riemanns Vorlesungen "über die hypergeometrische Reihe und ihre
Bedeutung, in Verhandlungen des dritten internationalen Kongresses

1913 Algebraische Functionen und ihre Integrale, Enc.

H. Wussing
