References: |
Arnold, B. C. (1983), Pareto Distributions, USA: International Co-operative Publishing House. Arnold, B. C. and Press, S. J. (1983), Bayesian inference for Pareto populations, Journal of Econometrics, 21, 287–306. Arnold, B. C. and Press, S. J. (1989), Bayesian estimation and prediction for Pareto data, J. Amer. Statist. Assoc., 84, 1079–1084. Bartlett, M. S. (1957), Comment on “A statistical paradox” by D. V. Lindley, Biometrika, 44, 533–534. Beibel, M. (1996), A note on Ritosv’s Bayes approach to the minimax property of the cusum procedure, The Annals of Statistics, 24, 1804–1812. Berger, J. O. and Bernardo, J. M. (1992), On the development of reference priors, Bayesian Statistics 4 (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.), Oxford: University Press, pp. 35–60. Berger, J. O. and Pericchi, L. R. (2001), Objective Bayesian methods for model selection: Introduction and comparison, Model Selection, Lecture Notes, vol. 38 (P. Lahiri, ed.), Institute of Mathematical Statistics, pp. 135–207, (with discussion). Berger, J. O. and Selke, T. (1987), Testing a point null hypothesis: The irreconcilability of p-values and evidence, J. Amer. Statist. Assoc., 82, 112–139, (with discussion). Bernardo, J. M. (1979), Reference posterior distributions for Bayesian inference, J. Roy. Statist. Soc. B, 41, 113–147. Bernardo, J. M. (1982), Contraste de modelos probabilísticos desde una perspectiva bayesiana, Trabajos de Estadística, 33, 16–30. Bernardo, J. M. (1985), Análisis bayesiano de los contrastes de hipótesis paramétricos, Trabajos de Estadística, 36, 45–54. Bernardo, J. M. (1999), Nested hypothesis testing: The Bayesian Reference Criterion, Bayesian Statistics 6 (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.), Oxford: University Press, pp. 101–130. Bernardo, J. M. and Bayarri, M. J. (1985), Bayesian model criticism, Model Choice (J. P. Florens, M. Mouchart, J. P. Raoult and L. Simar, eds.), Bruxelles: Pub. Fac. Univ. Saint Louis, pp. 43–59. Bernardo, J. M. and Juárez, M. A. (2003), Intrinsic estimation, Bayesian Statistics 7 (J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith and M. West, eds.), Oxford: University Press, pp. 465–475. Bernardo, J. M. and Rueda, R. (2002), Bayesian hypothesis testing: A reference approach, International Statistical Review, 70, 351–372. Carlin, B. P., Gelfand, A. E. and Smith, A. F. M. (1992), Hierarchical Bayesian analysis of changepoint problems, Appl. Statist., 41, 389–405. Carlstein, E. (1988), Nonparametric change-point estimation, The Annals of Statistics, 16, 188–197. Chernoff, H. and Zacks, S. (1964), Estimating the current mean of a Normal distribution which is subjected to changes in time, The Annals of Statistics, 35, 999–1018. Cobb, G.W. (1978), The problem of the Nile: Conditional solution to a changepoint problem, Biometrika, 65, 243–251. Dawid, A. P., Stone, M. and Zidek, J. V. (1973), Marginalization paradoxes in Bayesian and structural inference, J. Roy. Statist. Soc. B, 35, 189–223, (with discussion). DeGroot, M. H. and Rao, M. M. (1963), Bayes estimation with convex loss, The ann. of Math. Stat., 34, 839–846. Dümbgen, L. (1991), The asymptotic behavior of some nonparametric change-point estimators, The Annals of Statistics, 19, 1471–1495. Edwards, W., Lindman, H. and Savage, L. J. (1963), Bayesian statistical inference for psychological research, Psychological Review, 70, 193–242. Eeckhout, J. (2004), Gibrat’s law for (all) cities, American Economic Review, 94, 1429– 1451. Ferrándiz, J. R. (1985), Bayesian inference on Mahalanobis distance: an alternative approach to Bayesian model testing, Bayesian Statistics 2 (J. M. Bernardo, M. H. D. Groot, D. V. Lindley and A. F. M. Smith, eds.), Amsterdam: North-Holland, pp. 645–654. Gutiérrez-Peña, E. (1992), Expected logarithmic divergence for exponential families, Bayesian Statistics 4 (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.), Oxford university press, pp. 669–674. Hinkley, D. V. (1970), Inference about the change-point in a sequence of random variables, Biometrika, 57, 1–17. Jeffreys, H. (1961), Theory of Probability, 3rd ed., Oxford: University Press. Juárez, M. A. (2004), Objective Bayesian methods for estimation and hypothesis testing, Unpublished PhD thesis, Universitat de Valencia. Kullback, S. (1968), Information Theory and Statistics, New York: Dover. Kullback, S. and Leibler, R. A. (1951), On information and sufficiency, Ann. Math. Stat., 22, 79–86. Lindley, D. V. (1957), A statistical paradox, Biometrika, 44, 187–192. Lorden, G. (1971), Procedures for reacting to a change in distribution, Ann. Math. Statis., 42, 1897–1908. Malik, H. J. (1970), Estimation of the parameters of the Pareto distribution, Metrika, 15, 126–132. Moreno, E., Casella, G. and García-Ferrer, A. (2003), ObjectiveBayesian analysis of the changepoint problem, Working Paper 06-03, Universidad Autónoma de Madrid. Nelson,W. (1982), Applied life data analysis, New York: Wiley. O’Hagan, A. (1995), Fractional Bayes Factors for model comparison, J. Roy. Statist. Soc. B, 57, 99–138. O’Hagan, A. (1997), Properties of intrinsic and fractional Bayes factors, Test, 6, 101– 118. Page, E. S. (1955), A test for a change in a parameter occurring at an unknown point, Biometrika, 42, 523–527. Page, E. S. (1957), On problems in which a change in a parameter occurs at an unknown point, Biometrika, 44, 248–252. Pareto, V. (1897), Cours d’economie Politique, II, Lausanne: F. Rouge. Robert, C. P. (1996), Intrinsic losses, Theory and Decisions, 40, 191–214. Robert, C. P. and Caron, N. (1996), Noninformative Bayesian testing and neutral Bayes factors, Test, 5, 411–437. Rueda, R. (1992), A Bayesian alternative to parametric hypothesis testing, Test, 1, 61–67. Schervish, M. J. (1995), Theory of Statistics, New York: Springer. Selke, T., Bayarri, M. J. and Berger, J. O. (2001), Calibration of p-values for testing precise null hypotheses, The American Statistician, 55, 62–71. Shiryayev, A. N. (1963), On optimum methods in quickest detection problems, Theory Probab. Appl., 8, 22–46. Smith, A. F. M. (1975), A Bayesian approach to inference about a change-point in a sequence of random variables, Biometrika, 62, 407–416. Zipf, G. K. (1949), Human behavior and the principle of least effort, Cambridge, MA: Addison-Wesley. |