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Abstract

The main focus of this thesis is the study of a special class of bicritical rational maps

of the Riemann sphere. This special property will be called clustering; which infor-

mally is when a subcollection of the immediate basins of the two (super-)attracting

periodic orbits meet at a periodic point p, and so the basins of the attracting peri-

odic orbits are clustered around the points on the orbit of p. Restricting ourselves

to the cases where p is fixed or of period 2, we investigate the structure of such maps

combinatorially; in particular showing a very simple collection of combinatorial data

is enough to define a rational map uniquely in the sense of Thurston. We also use

the language of symbolic dynamics to investigate pairs (f, g) of polynomials such

that f ⊥⊥ g has a fixed or period two cluster point. We find that that the internal

addresses of such maps follow very definite patterns which can be shown to hold in

general.
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Chapter 1

Introduction

1.1 Overview

Complex dynamics emergence as a popular subject for mathematical research came

about as a result of the rediscovery of the early 20th Century works of Fatou [Fat19,

Fat20] and Julia [Jul18]. After a comparably quiet period, the subject was given

a new life in the 1980s. Perhaps the most notable contributions were supplied by

A. Douady and J. Hubbard, whose “Orsay lecture notes” [DH84, DH85] provide a

number of enlightening and amazing results about the behaviour of such systems.

A lot of the work has been motivated by the many pictures of the various objects

found in this topic, not least the Mandelbrot set.

The focus of this thesis is the study of rational maps which have a cluster

cycle. Clustering is a property found in some bicritical rational maps - that is,

rational maps with precisely two critical points. We define clustering informally

below and more formally in Chapter 3. One way of constructing maps with this

property is by mating together monic unicritical polynomials (polynomials with

only one finite critical point) of the form zd+ c. We outline the general structure of

the thesis, and emphasise some of the main results found during the research. We

will use some terms and notions which are defined more formally in the main body

of the thesis, but we will endeavour to outline these notions in this overview.

The first chapter contains standard results and definitions from complex

dynamics. Many of the results are stated without proof, since they are general

folklore, or references are provided. A lot of the notation and terminology that will

be used in the thesis is introduced here. One particular feature of this chapter is the

discussion of external rays. External rays are an important tool in the construction

of matings of polynomials (see Chapter 2), and we discuss in this section some of
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the properties we require for the definition of a mating (as defined in the thesis) to

make sense. We also introduce some notions from symbolic dynamics - for example,

the internal address - since we will be making use of this theory throughout the

thesis.

Let ΩF be the set of critical points of a map. Recall that a map is postcriti-

cally finite if the set

PF :=
⋃

n>0

F ◦n(ΩF )

is a finite set. PF is called the postcritical set of the map F . In Chapter 2, we

focus on the study of postcritically finite branched self-coverings of a topological

sphere. A map f : X → Y is called a branched covering if there exists a finite set

Z ⊂ Y such that the restricted map f : X \ f−1(Z) → Y \Z is a covering map. The

branched coverings in this chapter will, in the main, be constructed by “mating” two

degree d (the degree of a branched covering is the number of pre-images - including

multiplicity - of each point in the image) monic polynomials f1 and f2. There are

actually a number of different definitions of mating, and we endeavour in Chapter 2

to outline the differences and connections between them. We also discuss some

properties of matings that will be useful in later chapters.

One of the most important results in the theory of branched coverings is the

notion of Thurston equivalence. It gives a condition for checking whether or not two

branched coverings are, in some sense, the same. Furthermore, Thurston’s Theorem

realises the full power of this equivalence, by showing that each equivalence class

contains only one rational map, up to Möbius transformation. We will find two uses

of the theorem in the thesis. Firstly, it will allows us to discuss, in general, when

a branched self-covering of the sphere constructed by a mating is equivalent to a

rational map. Secondly, we will use it in the chapters on clustering to discuss the

equivalence of rational maps which have clusters of the same period; more on this

later.

Suppose F is a type D rational map, that is, the two critical orbits belong

to (super)attracting orbits with the same period. We will define a cluster point to

be a point in J(F ) which is the endpoint of the angle 0 internal rays of at least one

critical orbit Fatou component from each of the two critical cycles, see Figure 1.1.

We split the theory of clustering into three separate chapters, though one of these,

Chapter 3 is quite short and contains only the results which are applicable to clusters

of arbitrary period. However, this chapter will contain results which apply for all

periods. In particular, it focuses on the actual structure of a cluster: how the

Fatou components are arranged around the cluster point. We also outline in this
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chapter the notion of combinatorial data of a cluster, which will be made up of a

pair (ρ, δ), where ρ is the combinatorial rotation number and δ will be called the

critical displacement.

Figure 1.1: An example of a map with a cluster point.

We then consider the case when the cluster is fixed (Chapter 4). Some of the

content of this chapter is perhaps already known by those who have studied matings

in some detail. However, many of the techniques in this chapter will be useful when

considering the period two cluster case, and it is often easier to understand the

methods when applied to the simpler, fixed cluster case. Furthermore, it has been

found that comparisons with the two cluster case draw up some interesting contrasts,

and so it was felt necessary to include this case to aid the discussion in the following

chapter. We investigate which combinatorial data are actually obtained by rational

maps. The main theorem in this chapter is Theorem 4.3.5. We show that the

combinatorial data of a fixed cluster is enough to classify a degree d rational map

in the sense of Thurston.

3



The other focus of this chapter is on the properties of polynomials f1 and f2,

such that the mating F ∼= f1 ⊥⊥ f2 has a fixed cluster cycle. We will show that we

able to be quite specific about one of the maps: precisely one of them has to be an

n-rabbit; that is, a map which belongs to a hyperbolic component that bifurcates

off of the unique period one component in parameter space. This is unsurprising;

when one looks at the Julia set of a map with a fixed cluster cycle, one can often

“see” the Julia set of an n-rabbit inside it. For example, one notices the shape of the

rabbit polynomial in Figure 1.1. The properties of the “complementary” map - the

fi which is not an n-rabbit - are a little more difficult to study. However, we are still

able to carry out a classification to some extent. To do this, we take advantage of

the fact that the combinatorial rotation number of the α-fixed point of the n-rabbit

in the mating will force an ordering of the angles of the rays landing at the root

point of the critical orbit Fatou components of the complementary map. We then

show that the maps that have the “correct” angular ordering are precisely those

that create a rational map with a fixed cluster point when mated with an n-rabbit.

Combined with the result on Thurston equivalence, we get the following theorem.

Theorem 4.0.3. Suppose that F is a bicritical rational map with a fixed clus-

ter point and the combinatorial rotation number is p/n. Then F is the mating of an

n-rabbit with angled internal address 1p/n → n and another map h. In the degree 2

case, h has an associated angle with angular rotation number (n− p)/n.

Finally the case where the cluster is of period 2 is discussed in Chapter 5. This

case, unsurprisingly, is more complicated than when the cluster is fixed, and a num-

ber of the results found were perhaps a priori unexpected after one has considered

only the fixed cluster case. In this chapter we will compare and contrast the two

cases. In Appendix F we will also discuss some examples with clusters of higher

period, showing why an increase in period beyond two creates a number of com-

plications that makes studying this phenomenon much more involved. Again, the

main theorem of this chapter (Theorem 5.3.2) shows that the combinatorial data is

once again enough to classify the rational map in the sense of Thurston, at least in

the quadratic case. We also discuss the difficulties of extending this result to the

general case for degree d bicritical maps with a period two cluster cycle.

As with the previous chapter, we also investigate the properties of f1 and

f2 under the assumption that F ∼= f1 ⊥⊥ f2 is a rational map with a period two

cluster cycle. In this case we restrict ourselves to the quadratic case. It is simple

to show that precisely one of the maps must belong to the (1/3, 2/3)-limb of the
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Mandelbrot set. The results in the one cluster case may lead us to conjecture

that the map belonging to the (1/3, 2/3)-limb would have to be a map belonging

to a hyperbolic component which bifurcates off of the period two component of

the Mandelbrot set. However, in the two cluster case, we are no longer able to

make out the shape of these “double rabbits” (maps which belong to hyperbolic

components which bifurcate off of the period two component of the Mandelbrot set)

in the Julia sets of these maps (see Figure 1.2). Indeed, we will show it is no longer

true that one of the maps has to belong to a bifurcation component. There is a

secondary component of period 2n, which belongs to the limb of the Mandelbrot

set beyond these bifurcation components of 2n. It turns out that, in certain cases,

this secondary map can be mated with another polynomial to create a map with a

period two cluster cycle.

Figure 1.2: An example of a map with a period 2 cluster cycle.

This increase in complexity outlined above means there is now much more

to investigate with regards to the matings. Firstly, assuming that one of the maps
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is a double rabbit, we can ask what we can say about the properties of the map h

if we know that h mates with a double rabbit to form a rational map with a period

two cluster cycle. A similar technique as that used in the fixed cluster case again

yields a necessary condition on the complementary maps. Furthermore, we can ask

what conditions are needed on the complementary map h in order for this secondary

map to be able to create a rational map with a period two cluster cycle when mated

with h? Again, we discuss this problem combinatorially, and see that there is a very

simple restriction on the combinatorial data of the rational maps constructed in this

way.

The other aspect of this thesis is the study of progressions of internal ad-

dresses and Hubbard trees. For example, in the fixed cluster case, we know from

the work of Chapter 4 that one of the maps is an n-rabbit. Therefore, most of the

study into the properties of the maps in the matings that create maps with fixed

cluster cycles is into the properties of the complementary map. In the appendices,

we have given the internal addresses of these complementary maps for given com-

binatorial data. It turns out that there are a number of progressions which seem

to follow some sort of set pattern. We prove these progressions - in simple cases -

hold for arbitrarily large periods. The author is confident that more patterns in the

progressions could be found in more complicated cases.

As well as cataloguing these complementary maps, the appendices also in-

clude the Hubbard trees of the complementary maps in cases of low degree. Though

not necessarily vital to the exposition, these trees give the raw data that was used

in the formulation of a number of the results and again, in some cases, the reader

will see that in some sense there are patterns followed by the Hubbard trees as the

period increases, at least in simple cases. Finally, we include an appendix discussing

the increased complexity found as the period of the clusters goes from two to three,

and towards even higher periods. There is very little formal discussion in this final

appendix, but conjectures are made as to what the author expects to happen for

higher periods.

A standard reference for complex analysis may be useful. For this purpose,

the author heartily recommends either [Ahl78] or [Con78].

1.2 Preliminaries

In what follows, we will use the standard notation C = {a + bi : a, b ∈ R}. A lot

of the time we will want to consider the one point compactification of C by adding

a point at infinity. We call C ∪ {∞}, given an appropriate analytic structure, the
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Riemann sphere and denote it by C. When we wish to use the complex numbers

with the circle of directions at infinity, we will write Ĉ = C ∪ {∞ · e2πis : s ∈ R};

this space is homeomorphic to the closed unit disk.

1.2.1 Notation and terminology

If, for some n ≥ 1 and w ∈ C we have f◦n(w) = w, then we say w is a periodic

point. If, furthermore, n is the smallest such integer satisfying this property, we say

the period of w is n. If w has period 1 we call it a fixed point of f .

Now suppose w is a periodic point of period n. Then the multiplier, µ, of f

at w is defined to be

µ = (f◦n)′(w) =
n−1∏

k=0

f ′(f◦k(w)).

We can now classify periodic points according to the modulus of their multipliers.

Definition 1.2.1 (Classification of periodic points). A periodic point is called

• superattracting if µ = 0.

• attracting if |µ| < 1.

• rationally indifferent (or parabolic) if µ = e2πiθ, θ ∈ Q.

• irrationally indifferent if µ = e2πiθ, θ ∈ R \Q.

• repelling if |µ| > 1.

It is reassuring to note that the definitions given above (using the multiplier

to describe the behaviour of a periodic point) agree with the usual dynamical (or

topological) definition of attracting. That is to say, a fixed point p is (topologically)

attracting if there exists a neighbourhood U of p such that the iterates f◦n are all

defined in U and they converge to the constant map z 7→ p. A similar equivalence

holds for repelling points.

Given any point z, the orbit of z is defined as the set

O(z0) = {z, f(z), . . . , f◦n(z), . . .}.

Now, given an attracting cycle (we use the terms “cycle” and “periodic orbit”

interchangeably) a natural question to ask is, which points are attracted to it? We

define the basin of attraction of an attracting cycle O of period n to be the open set

A = {z : f◦kn(z) → p for some p ∈ O}. The immediate basin (of attraction) is the

connected component of A which contains a point p in the orbit O.
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Definition 1.2.2. Let z ∈ C. If in any neighbourhood of z, f is not a homeomor-

phism onto its image, then we say z is a critical point of f . In other words, z is a

critical point precisely when the local degree of f at z is greater than 1.

Indeed, in a neighbourhood of a critical point, it is possible to conjugate the

map to a dth power map z 7→ zd, and so a neighbourhood of the critical point maps

in a d-to-1 way onto its image. Conversely, if z is not a critical point then there is

a neighbourhood of z on which f is a homeomorphism.

Note that in the case where f(z) = zd + c, 0 is the only finite critical point

(∞ is a superattracting fixed point) and the critical value is c.

1.2.2 Fatou and Julia Theory

We now outline the basic definitions and results needed in the rest of this thesis.

First of all we restate a standard definition from complex analysis. A good refer-

ence for background material required from complex analysis can be found in, for

example [Ahl78] or [Con78]. We will generally avoid stating well-known results from

complex analysis, except where we deem it relevant or if the statement is required

for emphasis. In what follows, we assume that the function f is rational.

Definition 1.2.3 (Normal Family of Functions). Let U ⊂ C. A family F of

holomorphic functions f : U → C is normal in U if each sequence in F has a

subsequence which converges to a holomorphic function g : U → C.

Note that the function g does not have to be in F . In some sense, normal

families of functions are “well-behaved”. Indeed, if we take F ⊂ Hol(U,C) then

a family is normal precisely when it has compact closure in the function space

Hol(U,C).

Definition 1.2.4. Let f : C → C be a rational map on the Riemann sphere, of

degree at least 2. Consider the family F := {f◦n : n ∈ N}. We now split the

Riemann sphere into two disjoint sets. Let z ∈ C. If there exists a neighbourhood

U ∋ z so that the family F is normal in U , then we say z belongs to the Fatou set

of f , F (f). If z does not belong to the Fatou set, then we say it belongs to the Julia

set of f , which we denote by J(f).

The connected components of F (f) will be called Fatou components. Note in

particular that attracting basins of attracting periodic orbits belong to the Fatou set,

since all orbits in a small neighbourhood of the orbit converge to the orbit. A similar

argument shows that repelling periodic points must belong to J(f). The Fatou
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components which contain points on the critical orbit will play an important role in

the discussion of clustering, and these are given more attention in Definition 3.1.1.

At certain points, especially when we are dealing with the dynamics of polynomials,

it will be important to consider the set of points with bounded orbits. This set

is called the filled Julia set, K(f). Note that we have ∂K(f) = J(f), and the

components of K(f) \ J(f) are the bounded Fatou components. Alternatively, we

can define K(f) as

K(f) : = {z : f◦n(z) 9 ∞}

The sets F (f), J(f) and K(f) are all completely invariant under iteration of f .

Remark 1.2.5. The definition given above is the original one given by Fatou [Fat19,

Fat20]. Gaston Julia gave a different but equivalent definition: the Julia set is the

closure of the set of repelling periodic points [Jul18] . The proof of this equivalence

can be found in [Mil06].

Remark 1.2.6. It can easily be seen that F (f) is an open set in C. It therefore

follows that J(f) is a closed set. Indeed, under the assumption that f is a non-

linear polynomial, J(f) is a closed, compact set with no isolated points. Similarly,

K(f) is closed.

We find that the behaviour of the critical points of a map are very important

in studying the general behaviour of the map.

Theorem 1.2.7 ([Mil06], Theorem 8.6). Suppose f is a rational map of degree

d ≥ 2. Then the immediate basin A0 of every attracting periodic orbit of f must

contain a critical point.

We have the following very important theorem. The (sharp) bound was found

first by Shishikura [Shi87] and a refinement using a different method was given by

Epstein [Eps99].

Theorem 1.2.8. A rational map can have only a finite number of attracting or

indifferent cycles. Indeed, if the degree of the rational map is d > 1, then the

number of attracting or indifferent cycles is at most 2d− 2.

This theorem, in particular, gives us a bound on the number of attracting

cycles that a polynomial can have. The bound is called the Fatou-Shishikura in-

equality. In the case of rational maps with precisely two critical points, which is

the type we will be creating in Chapters 4 and 5, there can only be two attract-

ing periodic orbits. Since we will be assuming further that both critical orbits will

be periodic, this means the only attracting cycles will be the orbits of the critical

points.
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1.3 External rays

An important aspect of dynamical systems is the ability to conjugate the dynamics

of two systems under a change of variable map. In this section, we will use a

conjugacy between the dynamics of f on C \ K(f) and the map z 7→ zd on C \ D

to construct external rays. These rays are an important component in defining the

notion of mating of polynomials in Chapter 2.

We begin with a theorem due to Böttcher [Böt04]. The statement below is

as found in [Mil06], Theorem 9.1.

Theorem 1.3.1 (Böttcher’s theorem). Let f be a holomorphic germ of the form

f(z) = adz
d + ad+1z

d+1 · · ·

with d ≥ 2 and ad 6= 0. Then there is a holomorphic change of co-ordinates w = φ(z)

with the properties that

• φ(0) = 0,

• φ conjugates f to the map w 7→ wd in a neighbourhood of 0.

The map φ is also unique up to multiplication by an (d − 1)st root of unity. In

particular, it is unique in the case where the local degree is 2.

Now suppose that we have a monic degree d (d ≥ 2) polynomial f : C → C,

given by

f(z) = zd + ad−1z
d−1 + · · ·+ a1z + a0.

By considering the local behaviour at infinity (by using the change of co-ordinates

z 7→ 1/z), we see that this map has a superattracting fixed point at infinity, and so

we can apply Böttcher’s theorem there.

The following appears as Theorem 9.5 in [Mil06].

Theorem 1.3.2. Let f be a monic polynomial of degree d ≥ 2. If the filled Julia set

K = K(f) contains all of the finite critical points of f , then both K and J = ∂K

are connected and the complement of K is conformally isomorphic to the exterior

of the closed disk D under an isomorphism

φ̂ : C \K → C \ D,

which conjugates f on C \K to the dth power map w 7→ wd. On the other hand, if

at least one critical point of f belongs to C\K, then both K and J have uncountably
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many connected components. Moreover, the map φ̂ is asymptotic to the identity at

infinity.

From the function φ̂ defined above (which we relabel with φ) we get the

Green’s function for K, which is defined as

G(z) =

{
log |φ(z)|, z ∈ C \K;

0, z ∈ K.

G is strictly positive and harmonic on C\K and continuous everywhere. Trivially, it

is asymptotic to log |φ(z)| at infinity and since φ conjugates f to the map w 7→ wd,

G satisfies the identity G(f(z)) = dG(z).

Let ρ > 0. Then the pre-image G−1(ρ) = {z ∈ C : G(z) = ρ} is a closed

curve which we call the equipotential curve of order ρ (Figure 1.3). Perhaps of more

importance than these equipotential curves (at least in terms of our applications)

are their orthogonal trajectories, known as external rays.

Definition 1.3.3. The external ray of angle θ for a map f , Rfθ , is defined as

Rfθ : = {z ∈ C : arg(φ(z)) = 2πθ}

where φ is the Böttcher co-ordinate at ∞ from Theorem 1.3.1.

We will sometimes omit the function f from the notation if it is arbitrary or

clear in the context.

It should be noted that the external rays are the pre-images of points of

the form re2πiθ for r > 1. A sensible question is therefore to ask: when does

limrց1 φ
−1(re2πiθ) exist? In fact, the limit exists for all rational θ and when the

Julia set is locally connected then it is known that this limit exists for all θ (see

Proposition 1.3.7 below). It is clear from the definition that if limrց1 φ
−1(re2πiθ) = z

then z ∈ ∂K(f) = J(f); we say the external ray Rfθ lands at z.

Theorem 1.3.4. Assume that K(f) is connected. Then every periodic external ray

lands at a periodic point which is either repelling or parabolic. Conversely, every

repelling or parabolic periodic point z0 is the landing point of (at least) one external

ray, which itself must be periodic, with period divisible by the period of z0.

In order to say more than the above, we need to introduce a further condition,

that of local connectivity.

Definition 1.3.5. A Hausdorff topological space X is locally connected if every

point x ∈ X has arbitrarily small connected neighbourhoods.
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Figure 1.3: A “period 4 rabbit”, or 4-rabbit, Julia set with some equipotential
curves.

The following result was originally proved in [Car13], and is stated as found

in [Pom92].

Theorem 1.3.6 (Carathéodory’s theorem). Let f map D conformally onto the

bounded domain G. Then the following three conditions are equivalent:

1. f has a continuous injective extension to D;

2. ∂G is a Jordan curve;

3. ∂G is locally connected and has no cut points.

In our setting, local connectivity is what is required to ensure that all the

rays will land.

Proposition 1.3.7. Suppose f has a connected Julia set. Then the following are

equivalent.
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Figure 1.4: The Douady’s rabbit Julia set (z 7→ z2+(−0.1225 . . .+0.7448 . . . i) with
external rays of the form θ = p/7, 0 ≤ p ≤ 6

1. The Julia set, J(f) is locally connected.

2. The filled Julia set K(f) is locally connected.

3. For every θ, the external ray Rfθ lands at a point (which we denote by γf (θ),

or sometimes γ(θ) if f is clear in the context) on the Julia set. This point

γf (t) depends continuously on the angle θ.

4. Furthermore, the inverse Böttcher map φ−1 can be extended continuously over

the boundary of ∂D, and φ−1(e2πiθ) = γ(θ) for all θ.

In this thesis, we will be assuming that the Julia set is connected, and so

we can apply the above proposition. Suppose that the conditions in the above

proposition are satisfied. Then the newly defined map γ : R/Z → J(f) is called the

Carathéodory semiconjugacy. As the name suggests, it is a semiconjugacy. It maps

13



the circle R/Z onto the Julia set J(f) and satisfies

γ(dθ) = f(γ(θ)), (1.1)

where d is the degree of the polynomial f . The following is well-known, for example

see [Mil00b].

Proposition 1.3.8. Suppose the external ray Rfθ lands at z ∈ J(f). Then Rfdθ lands

at f(z). Furthermore, suppose that there are at least three rays Rfθ1 , R
f
θ2
, . . . , Rfθk

landing at some z 6= 0, then the cyclic ordering of the angles θj on the circle is the

same as the cyclic ordering of the angles dθj on the circle.

1.3.1 Properties of External Rays

The following two results tell us about the behaviour of external rays with respect

to points in the Julia set. Again they can be found in [Mil00b], and are general

folklore.

Proposition 1.3.9. Assume K(f) is connected. If a periodic ray lands at z0, then

only finitely many rays can land at z0 and all rays landing at z0 are periodic of the

same period. In particular, if the period of each ray is p, the denominator of the

angle of the rays is 2p − 1.

In general, we will be dealing with hyperbolic polynomials, which means there

are no parabolic cycles. In that case, the previous theorem says that all periodic

rays land on repelling periodic points.

We now discuss some of the elementary properties of the external rays. First

we take advantage of (1.1) to mark some special points on J(f).

Definition 1.3.10. The point γ(0), the landing point of the ray R0 is a fixed point of

f , called the β-fixed point of f , or β for short. In the case of quadratic polynomials,

the other (finite) fixed point is called the α-fixed point. If fc(z) = zd + c, then

the rays Rfk/(d−1) (k = 0, 1, . . . , d − 2) land at fixed points. We will label the point

γf (k/(d− 1)) by βk in this case. If there is another finite fixed point of the map fc,

then it will be called the α-fixed point.

For example, the α-fixed point for the Julia set in Figure 1.4 is the landing

point of the external rays of angle 1/7, 2/7 and 4/7. The β-fixed point is the landing

point of the ray of angle 0 = 0/7.

A rational map of degree d has at most d + 1 fixed points. Note that for

polynomials on C, infinity is a superattracting fixed point and so along with the d−1
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βk fixed points and the α-fixed point, these make up all the possible fixed points for

the polynomial fc. We restrict our attention to degree 2 below, but similar results

can be proved in the more general degree d case. Since our applications of these

results will only be in the degree 2 case, it was deemed unnecessary to include the

general result here.

Lemma 1.3.11. Suppose the degree of f is 2. Then the pre-images of β = γ(0) are

itself and the point γ(1/2).

Proof. This is a simple application of equation (1.1). We see that f(γ(1/2)) = γ(0)

and f(γ(0)) = γ(0). Since β has two pre-images (counting multiplicity), these are

the only pre-images.

1.4 The Mandelbrot Set

We now shift our attention to the parameter plane for degree 2 polynomials and

discuss a very important set in the field of complex dynamics. Consider the family

of maps given by z 7→ fc(z) = z2 + c. The Mandelbrot set is defined as

M = {c ∈ C : f◦nc (0) is bounded}

= {c ∈ C : J(fc) is connected}.

The Mandelbrot set is connected, but it is an open problem (and a very

famous one) as to whether it is locally connected. In the sequel we give a quick tour

of the Mandelbrot set, laying out some terminology and describing some well known

results which will be of use later on when we handle matings of quadratic polynomials

of the form z 7→ z2 + c. There are degree d generalisations of the Mandelbrot set

(known as Multibrot sets) which have similar properties to the Mandelbrot set.

It turns out that there is an analogue to external rays (which exist in the

dynamical plane) in the parameter plane. We call these rays parameter rays. To do

this, we simply note that we can map the complement of the Mandelbrot set onto

the unit disk by using the Riemann Mapping Theorem (there is no dynamics in the

parameter plane, and so no need to use Theorem 1.3.2). Furthermore, this Riemann

map Φ can be chosen so that limz→∞(Φ(z)/z) = 1. Furthermore, if we denote the

Böttcher map for the parameter c ∈ C \ M by φc, it was shown by Douady and

Hubbard that this uniformisation is given by Φ(c) = φc(c). Hence there exists a

Green’s function for M, and thus we can construct parameter rays in an analogous

way to how we constructed the external rays for K. We use the notation RM
θ for
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Figure 1.5: The Mandelbrot Set, M

the parameter ray of angle θ. The landing points of these rays are also important,

being the root points of the hyperbolic components of M, as we will describe below.

1.4.1 Structure of the Mandelbrot Set

The Mandelbrot set is contained in the parameter plane for the polynomials z 7→

z2 + c. The interior of the Mandelbrot set contains an infinite number of connected

components, and it turns out that these connected components have properties

shared by all maps contained in them (by which we mean, given one of these con-

nected components H, each map fc : z 7→ z2 + c with c ∈ H has some properties

shared by all the others). The most obvious of these connected components is the

main cardioid, which contains all the parameters c for which z 7→ z2 + c has an at-

tracting fixed point. We will discuss these components in more detail in this section.

A map will be called hyperbolic if the closure of its post-critical set is disjoint from

the Julia set.
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Definition 1.4.1. A period n (hyperbolic) component H of M is a connected

component of the interior of M, for which the set of parameters c are such that the

map fc has a period n attracting orbit.

The term hyperbolic is used since any parameter c belonging to some hy-

perbolic component H must have fc is a hyperbolic map; that is, all critical orbits

converge to an attracting cycle. There is a canonical way of parameterising these

hyperbolic components using the multiplier of the map fc for c ∈ H.

Proposition 1.4.2. Given a hyperbolic component H, there exists a conformal iso-

morphism µ : H → D, and this can be extended to a homeomorphism on the closures.

The value µ(c) is the multiplier of the attracting periodic orbit.

We will call the point c0 = µ(0) ∈ H the centre of the hyperbolic component.

We remark that c0 is the unique parameter in the hyperbolic component such that

the map fc0 has a periodic superattracting cycle.

We will sometimes abuse notation and refer to a function fc as belonging to

a hyperbolic component. By this we mean that the associated parameter c is in the

interior of H. An important feature of the hyperbolic components of M is that the

maps belonging to them are structurally stable.

Definition 1.4.3. Let f be the germ of a local homeomorphism such that f(z0) =

z0. Suppose further that there is an invariant family of arcs Γ = {γ1, γ2, . . . , γn}

(with labelling in terms of the cyclic ordering and γ1 being chosen arbitrarily) such

that each γi has z0 as an endpoint. Then, since cyclic ordering of the rays is

maintained by the homeomorphism, there exists an integer p such that f(γi) ⊂

γi+p mod n. We then define the combinatorial rotation number at z0 to be p/n.

We remark that this is well-defined, and that any system of arcs provides the

same combinatorial rotation number. The following result is folklore.

Proposition 1.4.4. Suppose Γ2 ⊂ Γ1 are two families of invariant arcs. Then the

combinatorial rotation number defined for Γ1 is the same as that defined for Γ2.

We can naturally use this definition to define the notion of combinatorial

rotation number for periodic orbits under homeomorphisms, by considering the first

return maps to each point. With this in mind, suppose that z ∈ J(f) is a periodic

point which is the landing point of at least one external ray. Then the set of external

rays are invariant arcs which meet at a common endpoint, z, which is fixed under

some iterate of the polynomial f . We see that we are in precisely the case where

we can use Definition 1.4.3, and so this point will have a well defined combinatorial
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rotation number. Furthermore, we notice that, since f will be (locally) a homeo-

morphism at f (since we are assuming that the critical points of the polynomial are

contained in the Fatou set), the combinatorial rotation number is the same for each

point in the orbit of z. Thus it makes sense to talk about the combinatorial rotation

number of the orbit of z, O(z).

We now describe the components of the Mandelbrot set in a very natural

way using parameter rays following the construction found in [Mil00b]. Fix c ∈ C

and suppose that z1 is a periodic point of fc of period n, so that O = O(z1) =

{z1, z2, . . . , zn}. Suppose that one of the points of this orbit has a rational external

ray Rp/q landing on it. It can easily be shown that each point zi in O has a finite,

non-empty set of external rays landing on it. For each zi, denote this set of angles

by Ai. We then call the collection {A1, . . . , An} the orbit portrait P = P(O) of the

orbit O. Call the number of elements in each Ai the valence v of the portrait. In

other words, the valence is the number of rays landing at each point on the orbit

O. If none of the zi are critical points, then the same number of rays land at each

zi and so the valence is well defined.

If v ≥ 2 then the v rays landing at an orbit point zi must split the plane

up into v disjoint open regions, which we will call sectors. The angular width of a

sector bounded by Rfcθ1 and Rfcθ2 (with θ2 > θ1) will be defined as θ2− θ1. The width

of a sector in the parameter plane is defined similarly, by using the distance between

the angles of the two parameter rays bounding it.

We state an important fact about parameter rays which land at a common

point in M. Informally, it says that if two rays RM
θ1

and RM
θ2

land together at a

point in M, then the external rays Rfcθ1 and Rfcθ2 land at a common point in J(fc)

if and only if the rays RM
θ1

and RM
θ2

separate c from the origin (note we have no

assumption that J(fc) be connected here, although in practice it will be). First we

need a preliminary result to define the critical value sector.

Theorem 1.4.5 ([Mil00b], Theorem 1.1). Let O be an orbit of period p ≥ 1 for

f . If there are v ≥ 2 external rays landing at each point of O, then there is one

and only one sector based at some point z1 ∈ O which contains the critical value

c = f(0), and whose closure contains no point other than z1 of the orbit O. This

critical value sector can be characterised, among all of the pv sectors based at the

points of O, as the unique sector of smallest angular width.

Given c0 ∈ C, let fc0 be a polynomial which has an orbit O with portrait

P(O) having valence v ≥ 2. Let 0 < θ− < θ+ < 1 be the angles of the two dynamic

rays RKθ± which bound the critical value sector S1 for fc0 .
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Theorem 1.4.6 (Theorem 1.2, [Mil00b]). The two corresponding parameter rays

RMθ± land at a single point rP in the parameter plane. These rays, together with

their landing point rP , cut the plane into two open subsets WP and C \WP with the

following property: a quadratic map fc has a repelling orbit with portrait P if and

only if c ∈WP , and has a parabolic orbit with portrait P if and only if c = rP .

Notice that each wake WP has two associated angles θ− and θ+ which are

the angles used to define it. We can thus change notation slightly and focus on

the angles rather than the portrait by writing WP as W(θ−,θ+) and calling it the

(θ−, θ+)-wake (see Figure 1.6). rP = r(θ−,θ+) will be called the root point of the

wake. If r(θ−,θ+) is on the boundary of a hyperbolic component H and RM
θ−

and

RM
θ+

separate this component from the origin, we say that r(θ−,θ+) is the root point

of H. Hence we see that, for example in this notation, the two rays of angle 1/3

and 2/3 land at the same repelling (necessarily fixed) point in J(fc) if and only if

c ∈W(1/3,2/3).

Theorem 1.4.6 is a very useful result, since it gives an easy way of checking

if two dynamical rays land together on the Julia set of a map. In the sequel, we will

usually be considering the parameters c which lie in M (in other words, parameters

c for which J(fc) is connected), and so it makes sense to define the limbs of M as

follows.

Definition 1.4.7. The set W(θ−,θ+) ∩M is called the (θ−, θ+)-limb of M, and we

denote it by M(θ−,θ+).

The limbs of the Mandelbrot set play an important part in the discussion of

mating later. As well as this, it is a relatively simple way of describing where one

is in the Mandelbrot set, since the landing points of parameter ways are natural

choices of “landmarks” in the Mandelbrot set, especially in the case where they are

the root points of hyperbolic components. We will take advantage of this fact when

discussing internal addresses in Section 1.7.

1.5 Local connectivity of the boundary of Fatou com-

ponents

In this section, we state some results concerning the local connectivity of certain

sets arising from complex dynamics, and what conditions are required in order for

us to be sure that local connectivity holds. Firstly, we state a result from [Mil06].

It will be extremely important in the context of this thesis, since we will be dealing

with hyperbolic maps with connected Julia set.
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Figure 1.6: An example of parameter rays in M. The region bounded by the rays
is the (22/63, 25/63)-wake.

Theorem 1.5.1. The Julia set of a hyperbolic map is locally connected if and only

if it is connected.

Since we will be focussing on bicritical rational maps, we also take advan-

tage of the following result, which tells us the nature of the boundaries of Fatou

components in the rational maps we are studying.

Theorem 1.5.2 (Pilgrim [Pil96]). Let f be a critically finite rational map with

exactly two critical points, not counted with multiplicity. Then exactly one of the

following possibilities holds:

• f is conjugate to z 7→ zd and the Julia set of f is a Jordan curve, or

• f is conjugate to a polynomial of the form zd+ c, c 6= 0, and the Fatou compo-

nent corresponding to the basin of attraction for infinity under the conjugacy

is the unique Fatou component which is not a Jordan domain, or
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• f is not conjugate to a polynomial, and every Fatou component is a Jordan

domain.

The above results are reassuring, as it means that in all the cases we consider

in this thesis - except for the basin of infinity in the case we are talking about

polynomials - the Fatou components of the map will be Jordan domains. However,

even in this exceptional case, the previous theorem shows us that the boundary of

this basin, which is the Julia set, is still locally connected. This means we will not

have any issues with local connectivity of the boundary of these components.

1.6 Filled Julia sets

In this section, we briefly describe some terminology which allows us to discuss the

structure of Julia sets. Some of this will be a preliminary to the study of Hubbard

trees in Section 1.7.

1.6.1 Internal rays

In this section we describe how to construct an analogue to external rays that exist

inside the Fatou components of a rational map. We assume f is a rational map with

(pre)periodic critical points.

Let

φa(z) =
z − a

1− āz
(|a| < 1).

We remark that φa will map the unit disk onto itself. We say that a map of the

form

f(z) = e2πitφa1(z)φa2(z) · · · φad(z) (t ∈ [0, 1)) (1.2)

is a Blaschke product of degree d. We then have the following ([Mil06], page 162).

Lemma 1.6.1. A rational map of degree d carries the unit disk onto itself if and

only if it is a Blaschke product.

We use this result to construct internal rays inside the Fatou components of

a degree d bicritical rational map F with disjoint periodic superattracting cycles.

The construction can be carried out in more general cases but we restrict ourself

only to the result required in this thesis. Given a periodic Fatou component U , the

first return map F ◦n to the component is a degree d covering with precisely one

critical point cU . There exists a Riemann map Φ: D → U such that Φ(0) = cU .
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Then we have a commutative diagram

U

F ◦n

��

D
Φoo

B=Φ−1◦F ◦n◦Φ

��
U D

Φ
oo

.

The map B is a rational map which will map the unit disk onto itself by a degree

d covering, and so by Lemma 1.6.1 it is a Blaschke product, and so has the form

(1.2). Furthermore, the only fixed point is 0, so φaj = z for j = 1, . . . , d and

so B(z) = e2πitzd for some t ∈ [0, 1). We can normalise (by composition with a

rotation) so that B is in fact equal to the map z 7→ zd on the disk. Define the radial

arcs

rθ = {re2πiθ : 0 ≤ r < 1} ⊂ D.

Then the internal ray of angle θ is the arc Φ−1(rθ) ⊂ U .

We make some observations about internal rays. Firstly, each internal ray has

the centre as an endpoint, and the internal ray of angles k/(d−1), k = 0, 1, . . . , d−2

will be fixed under the first return map to the component, F ◦n. Assuming the

boundary of U is locally connected (which it will be in all cases we will consider),

we can also discuss the landing of internal rays in the same way as with external

rays. These landing points will belong to the Julia set of the map F .

Given a periodic cycle of superattracting basins, we can define the internal

rays of each basin individually. However, we can construct the rays in such a way so

that, if F (U) = V in the cycle, then the internal ray of angle θ in U will map onto

the internal ray of angle θ in V . This can be done by, if necessary, composing the

Blaschke products with rotations so that this agreement is achieved. Furthermore,

if U ′ is a pre-periodic Fatou component that maps onto a periodic superattracting

basin, then there exists an integer k so that F ◦k(U ′) is a member U of the periodic

superattracting cycle. The map F ◦k|U ′ is a homeomorphism, and so we can define

the internal ray of angle θ in U ′ to be the pre-image (under F ◦k) of the internal ray

of angle θ in U . Since all Fatou components are pre-periodic for hyperbolic rational

maps, this defines the notion of internal rays for all Fatou components.

Now suppose that z is a periodic point in J(F ) of period p which lies on

the boundary of the periodic Fatou components U1, U2, . . . , Un. Then z will be the

landing point of precisely one internal ray from each Ui. The map F ◦p is a local

homeomorphism and maps z to itself, and so Definition 1.4.3 means we can define
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the combinatorial rotation number at z. Furthermore, if z is also the landing point

of external rays, the combinatorial rotation number defined for internal rays is the

same as that defined for external rays (Proposition 1.4.4).

1.6.2 Regulated arcs

Suppose f is a polynomial with locally connected (and hence path connected) Julia

set. Sometimes we will want to construct paths in the filled Julia set K(f). It will

aid us if we have a canonical way of making these paths. If we have J(f) = K(f),

then the path between two points x, y in J(f) is uniquely defined. However, if this is

not the case, we need to decide how we will define the arc [x, y]. The problem occurs

when we pass through the Fatou components, but fortunately the internal rays give

us a way of passing through them in a way which can be consistently defined.

Definition 1.6.2. Let x, y ∈ J(f). The arc [x, y] will be called regulated if, for each

Fatou component U , U ∩ [x, y] is contained in the union of (at most) two internal

rays of U .

1.7 Symbolic Dynamics

In this section, we discuss how to encode complex dynamics in a symbolic form. This

very powerful theory has come about from the work of Schleicher and Bruin [BS01],

and more recently, Kaffl. The external rays from Section 1.3 play an important role

here, since they are the device used to encode the dynamics.

One extremely surprising observation is that the objects defined in this sec-

tion give us information in both the dynamical and parameter planes. For example,

the internal address of a map fc can be considered as being defined equivalently in

a number of different ways; by looking at the internal address of the parameter c, or

by looking at the positioning of periodic points in J(fc). Such a connection is just

another example of the strong link between the dynamic and parameter planes, as

already seen in Theorem 1.4.6. Furthermore, in a very simple sense, the symbolic

dynamics allows us to focus almost entirely on the behaviour of the critical orbit of

fc, once again showing the important role played by the behaviour of critical points

when studying dynamical systems.

The exposition of this section will be mainly concerned with the quadratic

case. However, as shown in the work of Eike Lau and Dierk Schleicher (see for

example [LS94],[Sch99]), many of the results will hold in the higher degree case. We

start by giving the definition of itineraries and kneading sequences in the degree 2
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case. It is possible to define this more generally for higher degrees, but we will not

require the general case in this thesis.

Definition 1.7.1 (Itinerary and Kneading sequence). Let θ be an external angle in

the dynamical plane. We define the itinerary of φ with respect to the angle θ to be

the sequence νθ(φ) = ν1ν2ν3 . . . where the νi satisfy the following:

νi =





0 if θ+1
2 < 2i−1φ < θ

2 ,

1 if θ
2 < 2i−1φ < θ+1

2 ,

∗ if 2i−1φ ∈ {θ2 ,
θ+1
2 }

where the inequalities are with respect to the natural (cyclic) ordering on the unit

circle. The most interesting type of itinerary is the case where θ = φ. Because of

this, we give the itinerary νθ(θ) a special title; it is called the kneading sequence of

the angle θ.

Here we include some examples to show the definition in action.

Example 1.7.2 (θ = 1/7). Suppose that we take θ = 1/7. On the Mandelbrot set, this

angle (and its partner, θ̃ = 2/7) lands at the base point of the period 3 component

which contains the parameter for Douady’s rabbit. The interval (θ/2, (θ + 1)/2) =

(1/14, 4/7) The orbit of θ is given by

1

7
→

2

7
→

4

7
→

1

7
.

Now, from the definition given above, we see that the kneading sequence ν 1
7
= 11∗.

This has period 3, which is also the period of the landing point of the 1/7-ray.

Let H be a hyperbolic component of the Mandelbrot set. Then it is well-

known that there are precisely two parameter rays landing at the root point of

this component (Theorem 1.4.6). The kneading sequence of the angles of these two

parameter rays are equal (Theorem 12.2, [BS01]). Hence, even though kneading

sequences are defined for angles, it is natural to associate these kneading sequences

with the maps f that belong to H, by saying that the kneading sequence of f is the

kneading sequence of the two angles that land at the root point of H. It is clear

that this is well defined - all maps in the same hyperbolic component will have the

same kneading sequence.

Definition 1.7.3 (ρ-function). Given a kneading sequence, define the ρ-function
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(ρν : N → N ∪ {∞}) to be

ρν(n) = inf{k > n : νk 6= νk−n}.

From this function, we construct the internal address.

Definition 1.7.4. The internal address of an angle θ is the orbit of n = 1 under

the ρ-function.

Iθ = 1 → ρ(1) → ρ◦2(1) → ρ◦3(1) → · · · .

Note that, if for some n, we have ρ(n) = ∞ in the internal address, then we cut the

internal address so that it reads

Iθ = 1 → ρ(1) → ρ◦2(1) → · · · → ρ◦n(1).

We call this a finite internal address.

Similarly to the case with kneading sequences, we sometimes abuse notation

and refer to the internal address of a function fc(z) = z2 + c. When we say this,

we are referring to the internal address of the angles landing at the base of the

hyperbolic component containing c.

It turns out there is a very nice interpretation of the internal address of an

angle. Bearing in mind the abuse of notation outlined above, the internal address in

some respects represents the periods of the hyperbolic components that one “passes

through” when travelling to the parameter c from the main cardioid. We postpone

a more formal treatment of characterisations of I until Section 1.7.2.

1.7.1 Hubbard Trees

The Hubbard tree can be constructed via an algorithm due to Schleicher and Bruin

[BS01]. It is useful because it gives us a visual representation of the dynamics of a

polynomial, without us having to calculate the Julia set. It also encodes, in a nice

pictorial way, the critical orbit of a polynomial. The following definitions are those

found in [BS01].

Definition 1.7.5. A tree T is a finite connected graph with no loops. Given a point

x ∈ T , the (global) arms of x are the connected components of T \{x}. A local arm

at x is the intersection of a global arm with a sufficiently small neighbourhood of x

in T . x will be called an endpoint of T if it has only one global arm, and a branch

point if it has three or more arms.

25



Given two points x, y in a tree T , there exists a unique closed arc in T which

connects x and y. We denote this arc by [x, y] and its interior (x, y). Compare these

arcs with the notion of regulated arcs found in [Zak00] and the previous section.

We will first give the definition of a Hubbard tree in a manner which does

not require the tree to be associated with a particular polynomial.

Definition 1.7.6 (Hubbard Trees). A (quadratic) Hubbard tree (T, f) is a tree T

along with a map f : T → T and a marked point, the critical point x0, which satisfies

the following:

1. The map f : T → T is continuous and surjective (in particular, T is forward

invariant under f).

2. Every point in T has at most two pre-images on T .

3. If x is not the critical point, f is a local homeomorphism at x.

4. All endpoints belong to the critical orbit {cn = f◦n(x0) : n ≥ 0}.

5. The critical point is periodic or preperiodic, but not fixed (since this would

give a trivial tree with no branches by the previous property).

6. The expansivity condition. If x and y are distinct branch points or points on

the critical orbit, then there is an n ≥ 0 such that x0 ∈ f◦n([x, y]).

We sometimes refer to the Hubbard tree (T, f) by just T , to ease notation.

In this thesis, all Hubbard trees will be considered to have periodic critical orbits.

We will say that a Hubbard tree is admissible if it is the Hubbard tree of

some degree 2 polynomial fc(z) = z2 + c. In this case, it is well known that the

Hubbard tree is made up of the convex hull of the critical orbit in the filled Julia

set of the map, with the paths through the Fatou components being made up of

internal rays. Most of the time we will only be considering Hubbard trees which are

derived from polynomials, so this second definition will be the one used.

Given a Hubbard tree, there is a natural way of dividing the tree into two

disjoint sets. Denote the critical point by c0. Then the set T \ {c0} is made up of

(at most) two connected components. The first contains the critical value and will

be denoted T1, the second (possibly empty) will be labelled T0. Given a Hubbard

tree (not necessarily that derived from a polynomial), it is then possible to define a
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kneading sequence ν = ν1ν2 . . ..

νi =





0 if f◦i(c0) ∈ T0,

1 if f◦i(c0) ∈ T1,

∗ if f◦i(c0) = c0.

Lemma 1.7.7. Given a (quadratic) Hubbard tree (T, f) with period n critical orbit,

there exists k such that the points c1, . . . , ck−1 have only one local arm, and the

points ck, . . . , cn−1 have precisely two local arms, except for the case where all points

on the critical orbit have precisely one local arm.

Proof. The exceptional case is clear, since if all points have only one local arm, then

k = n. So suppose ck is a point on the critical orbit with two local arms. Then

f(ck) = ck+1 must also have two local arms, by forward invariance and the fact that

f is a local homeomorphism away from the critical point. Inductively, all the points

ck, ck+1, . . . , cn = c0 will have two local arms, again by forward invariance and f

being a local homeomorphism. However, by definition, c1 = f(c0) only has one local

arm, and so there must exist some minimal integer k satisfying the lemma.

1.7.2 Characterisation of the Internal Address

The internal address, defined as it is, does not appear (at first glance) to tell us

anything about the dynamics of the map it represents. However, the following

proposition shows that this is not the case, and the internal address reveals some

useful data about the behaviour of periodic points. Most of what follows is from

[BS01].

Informally, the internal address gives a list of components which tells how

to find a hyperbolic component or Misiurewicz point in the Mandelbrot set (though

to define a component uniquely we need to use the angled internal address which

includes more information). However, the following theorem shows that the internal

address can also tell us some facts about the dynamics of a map. First we need a

definition.

Lemma 1.7.8 ([BS01], Lemma 4.1). Let (T, f) be the Hubbard tree with kneading

sequence ν. Let O = {z1, z2, . . . , zn = z0} be a periodic orbit which contains no

endpoint of T .

Then there are a unique point z ∈ O and two different components of T \{z}

such that the critical value is contained in one component and 0 (the critical point)

and all the other zk ∈ O belong to the other component.
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Definition 1.7.9 ([BS01], Definition 4.2). The point z defined in the previous

lemma is called the characteristic (periodic) point of O.

We are now ready to discuss the different interpretations of the internal

address, and how it reflects properties found both in the parameter plane and in the

dynamic plane. The relevant characterisations are (cf. [BS01]):

1. The internal address associated to the kneading sequence ν using the ρ-map

(see definition 1.7.4).

2. The internal address of closest characteristic periodic points is the sequence

of exact periods Sk of characteristic periodic points pk such that there is no

periodic point of lower or equal period on [pk, c1] (including periodic points

with 2 local arms).

3. The internal address in parameter space. For a hyperbolic component or Misi-

urewicz point A consider all the hyperbolic components B on the interval [0,A]

which have the property that no hyperbolic component on the interval [B,A]

has period less than or equal to the period of B. With respect to the ordering

of these components on the interval [0,A], their periods form an increasing

sequence of integers starting with 1 (which represents the main cardioid).

Corollary 1.7.10. If 2 appears in the internal address, there is a period 2 point on

the arc between α and c1. Conversely, if 2 does not appear in the internal address,

then there cannot exist a period 2 point on [α, c1].

Proof. The first claim is an obvious restatement of the third interpretation of the

internal address. To prove the second, suppose that there is a period 2 point w in

[α, c1] but 2 does not appear in the internal address. Then we must have a fixed

point in the arc (w, c1) ⊂ (α, c1), by the second characterisation of the internal

address. However, a quadratic rational map has only two fixed points, α, which is

not equal to w by assumption, and β, which is an endpoint of the Julia set and so

cannot be contained in any open arc (z1, z2) ⊂ J .

It is immediately clear that the map from hyperbolic components to internal

addresses is not injective (nor is it surjective, but that is another story, compare

[BS01]). An easy way to see it is not injective is to note there are two period

3 components bifurcating from the main cardioid (the rabbit component and the

anti-rabbit component), which must have internal address 1 → 3. However, there is

a way to modify the internal address so it uniquely defines a component in M.
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Definition 1.7.11. We define the angled internal address as follows. Consider the

third characterisation of the internal address (the internal address in the parameter

plane). This gives a sequence

1 → S1 → S2 → · · · → Sn,

where the Si represent the periods of hyperbolic components. To each of these we

add some additional information: the (internal) angle pi/qi at which one leaves the

hyperbolic component of period Si. This will provide a new sequence

1p0/q0 → (S1)p1/q1 → · · · → Sn.

This new sequence is the angled internal address.

Again referring back to the characterisations of the internal address, this

angled internal address has another interpretation. Recall that the entries in the

internal address can also represent the positions of characteristic periodic points in

the Hubbard tree. Then the subscripts from the angled internal address now tell us

the combinatorial rotation number at these characteristic periodic points. Again,

this observation can be found in [BS01], Definition 12.13.

We see that this new definition fixes the problem of injectivity of the internal

address [BS01].

Proposition 1.7.12. The angled internal address (if it is admissible) uniquely de-

fines the hyperbolic component H.

It turns out that the denominators in the angled internal address are depen-

dent only on the Si.

Lemma 1.7.13. In an angled internal address (S0)p0/q0 → · · · → (Sk)pk/qk →

(Sk+1)pk+1/qk+1
→ · · · , the denominator qk in the bifurcation angle is uniquely de-

termined by the internal address S0 → · · · → Sk → Sk+1 → · · · as follows: let ν be

the kneading sequence associated to the internal address and let ρ be the function as

defined in the definition of the internal address. Let r ∈ {1, 2, . . . , Sk} be congruent

to Sk+1 modulo Sk. Then

qk :=





Sk+1−r
Sk

+ 1 if Sk ∈ orbρ(r),

Sk+1−r
Sk

+ 2 if Sk /∈ orbρ(r).

Obviously, the numerators of the angles are not dependent on the Si. Using
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the same notation, Schleicher proved the following ([Sch08], Lemma 2.1). The proof

holds for any degree.

Lemma 1.7.14. If Sk+1 is a multiple of Sk, then the component of period Sk+1 is

a bifurcation from that of period Sk.

1.8 Rabbit components in M

We now prove some results about angles (and components) in M which will be

useful when considering cluster points in Chapters 3, 4 and 5. We first consider

the rabbit components of M; that is, maps belonging to the hyperbolic components

which bifurcate directly off of the main cardioid.

Proposition 1.8.1. A hyperbolic component has internal address 1 → n if and only

if it is a rabbit component.

Proof. If H is a rabbit component of period n then it bifurcates from the main

cardioid. Then there are no other hyperbolic components on the combinatorial

arc between H and the main cardioid and so the internal address (using the third

characterisation) is 1 → n.

Now suppose H has internal address 1 → n. Then by Lemma 1.7.14, since

n is divisible by 1, H must be a bifurcation from a component of period 1, which is

the main cardioid.

Lemma 1.8.2 (See also [Wit88], Claim 10.1.1). Let f be an n-rabbit. Then z ∈ J(f)

is biaccessible iff it is a pre-image of the α-fixed point.

Recall that the width of a sector is defined to be the difference between the

angles of the two parameter rays bounding it. The following result is Proposition

2.4.3 of [Sch94]. The width of a hyperbolic component will be the width of the wake

which is formed by the two parameter rays landing at its root point.

Proposition 1.8.3. Given a hyperbolic component of period m and width δ, the

width of its p/n-subwake is
(2m − 1)2

2nm − 1
δ. (1.3)

Corollary 1.8.4. The wakes of an n-rabbit component is narrow. That is, the width

must be 1/(2n − 1).

30



Proof. The rabbit component will bifurcate off of the main cardioid by Proposi-

tion 1.8.1, and lie in the p/n-subwake. Hence it has width

(2− 1)2

2n − 1
=

1

2n − 1
.

The following corollary will be of use in Chapter 5, as it tells us which maps

have a period two orbit with a given combinatorial rotation number.

Corollary 1.8.5. Let H be a period 2n hyperbolic component which bifurcates off

of the period 2 hyperbolic component of M. Then there exists precisely one period

2n component H′ in the wake of H

Proof. We first calculate the width δH of the wake of the hyperbolic component H.

The width of the period 2 component is 1/3, and so 1.3 gives us

δH =
(22 − 1)2

22n − 1
·
1

3
=

3

22n − 1
.

Therefore there are precisely two rays of angle with denominator 22n − 1 between

the rays landing at the base of H. Hence there must exists precisely one period 2n

component H′ in the wake of H.

By considering the limbs which bifurcate off of the period 2 component, we

realise we have enough information to calculate the angled internal address of the

second component H′ that lies in the wake of the component of period 2n which

bifurcates off of the period 2 component.

Proposition 1.8.6. Let H be a period 2n hyperbolic component with angled internal

address

11/2 → 2p/n → 2n,

with p coprime to n. Then the other component H′ of period 2n which is contained

in the wake of H has angled internal address

11/2 → 2p/n → (2n− 1)1/2 → 2n.

Proof. Since H′ is contained in the wake of H, we know that the angled internal

address begins

11/2 → 2p/n → (S2)p2/q2 → · · · .
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We will now show that S2 = 2n − 1, which will prove the proposition. Note that

if S2 = 2n then, by Lemma 1.7.14, H′ bifurcates from the period 2 hyperbolic

component, contradicting the assumption on H′ being in the wake (and not equal

to) the component H which bifurcates from the period 2 component. If S2 = 2m

for some m 6= n, then this would represent a bifurcation of the period 2 component

into the period 2m component (Lemma 1.7.14), which contradicts the assumption

that H′ is in the wake of the period 2n component. It follows that S2 is odd.

Since S2 is odd, it is congruent to 1 mod 2. Furthermore, we notice that

2 ∈ orbρ(1). Now using Lemma 1.7.13, we can substitute in what we already know

to get

n =
S2 − 1

2
+ 1,

which when rearranged yields

S2 = 2(n − 1) + 1 = 2n − 1

as required.

Lemma 1.8.7. If (T, f) is the Hubbard tree of an n-rabbit f , then all the points in

the critical orbit of f are endpoints of T .

Proof. The proof is trivial. f has internal address 1p/n → n, so the Hubbard tree

contains a fixed point with n global arms. Each of these global arms has an endpoint,

which must belong to the critical orbit. But there are only n elements in the critical

orbit, so each one must be the endpoint of one of these global arms.

1.8.1 Higher Degree Cases

In Chapter 4, it will be necessary to generalise the notion of a n-rabbit to higher

degree cases. A lot of terminology from the symbolic dynamics of quadratic poly-

nomials carries over the higher degree case, as was shown by Lau and Schleicher in

[LS94]. In this section we will briefly state the results we need.

We first comment that a Multibrot set Md will be the connectedness locus

of polynomials of the form z 7→ zd + c, as an analogous definition to M. That is

Md = {c ∈ C : zd + c has connected Julia set}.

Figure 1.7 shows the degree 3 Multibrot set. We note that, in the non-quadratic

case, the current characterisations of the (angled) internal address is not enough to

uniquely define the hyperbolic components. For example, the degree 3 multibrot
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set contains two degree 2 components, which each have angled internal address

11/2 → 2. To fix this problem, we need to introduce the concept of “sectors” of

hyperbolic components. Since we are not concerned with uniqueness in this thesis,

we omit this discussion.

Figure 1.7: The degree 3 Multibrot set.

The hyperbolic components in Md have d−1 root point. One of these is the

landing point of precisely two parameter rays; this will be known as the principal

root point. The other root points will be the landing point of one parameter ray,

and will be called non-principal root points.

Recall that an n-rabbit was defined to be a map belonging to a hyperbolic

component which bifurcates off of the cardioid in M. We will similarly define an

n-rabbit in degree d to be a map which belongs to a hyperbolic component which

bifurcates off of the (unique) period 1 component of Md. By a similar proof to

Proposition 1.8.1, such a map will have internal address 1 → n. Furthermore, it

has angled internal address 1p/n → n and so, by the characterisation of internal
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addresses, has a fixed point with combinatorial rotation number p/n.

Figure 1.8: A degree 3 rabbit (corresponding to the parameter rays 1/26 and 3/26)
and the external rays landing on the two β-fixed points and the α-fixed point.

Suppose f is a degree d n-rabbit. Then the landing point of the external

rays of angles k/(d − 1) will be fixed points. There exists one more (finite) fixed

point, which will be called the α-fixed point, in keeping with the terminology from

the quadratic case. Figure 1.8 shows a degree 3 rabbit.

One final important point should be borne in mind. In the quadratic case, all

root points of Fatou components are principal, meaning they are the landing point

of two or more external rays. However, in the higher degree d case, we find that

each Fatou component has d− 2 non-principal root points. If the Fatou component

U is periodic, there exists d− 1 fixed points on the boundary of U . One of these is

principal and the other d − 2 are called non-principal and are the landing point of

only one external ray. We will find that this extra complication makes the discussion

slightly more difficult in Chapter 4 and also allows us to construct the example
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constructed in Appendix E.

1.9 Some Useful Algorithms

There is an algorithm in [BS01] (Algorithm 11.2) which allows us to construct the

Hubbard tree from the (angled) internal address. This will allow us to construct

some Hubbard trees in chapter 3. We give the algorithm below, omitting the un-

necessary steps required to deal with non-admissible Hubbard trees.

Algorithm 1.9.1. Let ν be a ∗-periodic kneading sequence and 1 → S1 → . . .→ Si

be its internal address. Write ν = ν1ν2 . . . νSi∗. We inductively define the Hubbard

tree as follows.

If the internal address is 1 → S1, then the Hubbard tree is an S1-star with a

fixed central vertex (this is the α-fixed point) and all the S1 arms at this point are

permuted cyclically. The critical point is the endpoint of one of the arms and has

period S1.

For the inductive step, suppose we have constructed the Hubbard tree (T, f)

for the internal address 1 → . . . → Sk. We now construct the Hubbard tree (T̃ , f̃)

with internal address 1 → . . .→ Sk → Sk+1.

Step 1. Replace the critical point c0 by a closed arc [−p0, p0] where p0 is adjacent to

the νSk-side of T . Rename the points c1, . . . , cSk−1 as p1, . . . , pSk−1. Let f(pSk−1) =

p0, f(p0) = f(−p0) = p1 and leave the action on p1, . . . , pSk−2 as well as on the

other points (the branch points) unchanged.

This gives the point p1 the itinerary ν1 . . . νSk (indeed, this point p1 will be the

characteristic periodic point of period Sk for the Hubbard tree we are constructing

as defined in definition 1.7.2) and the action of f is defined on all the branch points

and endpoints of T ∪ (p0,−p0) and their orbits. Extend f homeomorphically to the

arcs connecting these points, except for (−p0, p0).

Finally, define a new critical point c0 = cSk+1
on the arc (−p0, p0).

Step 2. Write Sk+1 = aSk + r (1 ≤ r ≤ Sk) and let

q =




a+ 1 if Sk ∈ orbρ(r),

a+ 2 if Sk /∈ orbρ(r).

• If q > 2 then set d = (q − 2)Sk and go to step 3.

• If q = 2 then set d = 0 and go to step 4.

Step 3. Attach d = (q − 2) closed arcs to each of the points p0, . . . , pSk−1
. Map the
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interval (−p0, p0) in a 2-to-1 fashion onto one of the arcs attached to p1 so that its

endpoint is c1 = f(c0). Extend the function f as follows: let f map [p1, c1] homeo-

morphically onto one of the new arcs at p2, thus making c2 = f(c1) the endpoint of

this new arc. Continue in a similar vein by mapping [p2, c2] homeomorphically onto

one of the new arcs at p3, so the new arc has endpoint c3 = f(c2).

Continue this until we have defined the point cd = c(q−2)Sk is defined, being

the endpoint of the last remaining arc at p0. This means f is defined on T with all

its attached arcs, save for the arc (p0, cd]. Now go to step 4.

Step 4. We now create the points ci for i ∈ {Sk+1 − 1, . . . , d + 1}. Find ySk+1−1

on the νSk+1−1 side of the tree created so far so that f(ySk+1−1) is closest to c0 =

cSk+1
. In the case that f(ySk+1−1) = c0 then we set cSk+1−1 = ySk+1−1. Otherwise

attach an arc [ySk+1−1, cSk+1−1] to ySk+1−1 and let f map it homeomorphically onto

[f(ySk+1−1), c0].

Now continue in this way, replacing the Sk+1 − 1 in the above with, consec-

utively, Sk+1 − 2, Sk+1 − 3 and so on, down to when yd+1 and cd+1 are defined.

Step 5. There are two cases, depending on whether or not we skipped step 3.

1. If step 3 is skipped then d = 0. By construction we have p1 ∈ (c1, c0). So map

(−p0, p0) in a 2-to-1 fashion onto (p1, c1) so that f(c0) = c1.

2. If step 3 is carried out then we have d = (q − 2)Sk. By construction we have

p1 ∈ (cd+1, c0). Map (p0, cd) homeomorphically onto (p1, cd+1).

The following algorithm will be very useful when answering the question of

whether a map which can admit a clustered mating will indeed form a clustering.

The algorithm is used to compute the external angle θ1 of a map, given the config-

uration of the iterates 2kθ1 on the unit circle. We will use it in a more general sense

in Chapter 3. It appears as Algorithm 13.9 in [BS01].

Algorithm 1.9.2. Let θ1 ∈ S1 be a periodic angle of exact period n ≥ 2, let θk :=

2k−1θ1 for k = 2, 3, . . . (with θn+1 = θ1) and θ0 := θn+1/2 (the preperiodic preimage

of θ1). Knowing only the cyclic order of θ0, θ1, . . . , θn, the external angle θ1 can be

found as follows:

1. Among the two oriented intervals [θ0, θn] and [θn, θ0], let I1 be the one con-

taining θ1 and I0 be the other one. (This step splits the circle up in the same

way as defined in the definition of the kneading sequence, see definition 1.7.1)

2. Find two consecutive points θi, θj ∈ I0 such that (θi+1, θj+1) ⊃ (θi, θj). Mark

an arbitrary point z ∈ (θi, θj) as a fixed point for angle doubling. The chosen

point z will represent the angle 0 ∈ S1, which has kneading sequence 0.
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3. Find two consecutive points θi′ , θj′ ∈ I1 such that z ∈ (θi′+1, θj′+1), and mark

an arbitrary point z′ ∈ (θi′ , θj′). This point z′ corresponds to the angle 1/2,

which is the preperiodic preimage of the angle 0, and has kneading sequence

10.

4. Define two intervals J0 := (z, z′) and J1 := (z′, z) (with respect to the order

inherited from S1). Define the numbers x1, x2, . . . , xn ∈ {0, 1} such that xi = 0

if θi ∈ J0 and xi = 1 if θi ∈ J1. The splitting of the circle into J0 and J1

corresponds to splitting it into those angles less than 1/2 and greater than 1/2

respectively.

5. The binary representation of θ1 ∈ (0, 1) is 0.x1x2 · · · xn.

It should be noted that this algorithm requires the cyclic ordering to be

possible for an angle in S1. If the cyclic ordering is not admissible, it will not yield

a solution. Not all cyclic ordering of kneading sequences are admissible.

The following lemma uses the position of the angles θ0, θ1, θ2, . . . , θn on the

circle as considered in step 1 of the previous algorithm.

Lemma 1.9.3. If the two pre-images of θ1, the angles θ0 and θn, are adjacent in

terms of the cyclic order on S1 then the map is an n-rabbit with internal address

1 → n.

Conversely, if the map is an n-rabbit then the angles θn and θ0 are adjacent

in terms of the cyclic ordering.

Proof. If θ0 and θn are adjacent in terms of the cyclic ordering, then there are no

angles θk in the interior of the interval I0. This means the kneading sequence of θ1

will be 1 · · · 1∗ and so the internal address is 1 → n.

For the converse, suppose that the map is an n-rabbit. Then the kneading

sequence of the angle is 1 · · · 1∗ and so there is no θi in the interior of I0. This means

θn and θ0 are adjacent.

Now suppose that we fix the cyclic ordering of θ1, . . . , θn (the forward iterates

of θ1 on S1). Then we have a choice of n intervals (θi, θj) in which θ0 could lie. By

Algorithm 1.9.2, all of these choices (assuming they are admissible) correspond to

an angle θ1 ∈ S1, and so the configuration corresponds to a quadratic polynomial.

Furthermore, it is clear that two different configurations (in other words, a different

choice of interval into which to place θ0) must give rise to different angles in the

algorithm. We can in fact say slightly more.
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Proposition 1.9.4. Given an ordering of θ1, . . . , θn on S1, the choice of interval in

which θ0 lies uniquely defines the kneading sequence (and so the internal address)

of the angle θ1 calculated in Algorithm 1.9.2, except for the case that the map is an

n-rabbit. In the exceptional case, there are two different choices of intervals which

give the same n-rabbit.

Proof. Choose a configuration for the angles (including θ0) and label them in terms

of anti-clockwise ordering on the circle:

θ1 := θi1 < θi2 < · · · < θin < θin+1(< θ1). (1.4)

In step 1 of the algorithm, θ0 is one of the boundary points of the intervals

I0, I1 ⊂ S1 and by definition θ1 ∈ I1. Since I1 is an interval, the set of angles lying

in I1 must be consecutive in terms of the ordering given in (1.4). Clearly, the angles

in I0 must also be consecutive as well. Let I0 = [θij , θik ], (so ij , ik ∈ {0, n}) then

the angles in I0 are θij+1 , θij+2 , . . . , θik−2
, θik−1

. Since θ1 /∈ I0 by definition, k > j.

We now notice that we can calculate the kneading sequence ν = ν(θ1) =

ν1ν2 . . . νn−1∗, using

νj =




0 for θj ∈ I0 ,

1 otherwise (i.e, when θj ∈ I1) .
(1.5)

If θn and θ0 are adjacent (it doesn’t matter which comes first in the cyclic

ordering), then by Lemma 1.9.3, the map is an n-rabbit. If they are not adjacent,

then the choice of position of θ0 uniquely defines the set of angles in I0, and by (1.5)

each of these sets give a different kneading sequence, and again by Lemma 1.9.3,

the map cannot be an n-rabbit, since I0 is non-empty. Since the kneading sequence

uniquely defines the internal address (Definition 1.7.4), the proposition is proved.

Notice that this result means that, given an ordering of θ1, . . . , θn on S1,

there are exactly n − 2 maps which are not n-rabbits that have this ordering on

the iterates of θ1. This fact will be useful when discussing the classifications of the

maps which admit clustering in later chapters. A similar observation on sets which

are preserved under angle-doubling can be found in [BS94].

We now introduce the notion of a triod, which will help us when discussing

endpoints of Hubbard trees in Chapter 5.

Definition 1.9.5. A triod is a connected compact set homeomorphic to a subset of

the letter Y. It is degenerate if it is homeomorphic to an arc or a point.
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Triods are the natural way to talk about endpoints of Hubbard trees. We

can take a triple of points in the critical orbit of h (or some extension of the critical

orbit, perhaps including branch points in the Hubbard tree)) and check whether

their convex hull forms a triod. Fortunately there is an algorithm in [BS01] that

carries out this task for us. All we need to know is the kneading sequence for the

associated angles of h.

First we recall that if the kneading sequence of a map is ν, then ν is

the itinerary of the point c1. Similarly, representing the shift map by σ (that is

σ(ν1ν2 . . .) = ν2ν3 . . .) the itinerary of ck in the Hubbard tree is given by σ◦(k−1)(ν).

We denote an arbitrary itinerary using the notation s = s1s2 . . . etc.

Algorithm 1.9.6. Given a triple (s, t, u) of itineraries, define the map ϕ by

ϕ(s, t, u) =





(σ(s), σ(t), σ(t)) if s1 = t1 = u1

(ν, σ(t), σ(u)) if s1 6= t1 = u1

(σ(s), ν, σ(u)) if s1 = u1 6= t1

(σ(s), σ(t), ν) if s1 = t1 6= u1.

The triple (σ◦(j−1)(ν), σ◦(k−1)(ν), σ◦(ℓ−1)(ν)) represents the triod formed by (cj , ck, cℓ).

Iterate the map ϕ. We have three cases

1. If the first entries of (σ◦(j−1)(ν), σ◦(k−1)(ν) and σ◦(ℓ−1)(ν)) are the same, (with

∗ considered to be equal to 0 (respectively 1) if the other two entries are equal

to 0 (respectively 1)) then the shifted triple represents the triod formed by

(cj+1, ck+1, cℓ+1).

2. If the first entries of (σ◦(j−1)(ν), σ◦(k−1)(ν) and σ◦(ℓ−1)(ν)) are 0 (say twice)

and 1 (say once) then we shift the sequences beginning with 0 and replace the

sequence beginning with 1 by ν. This represents cutting off the triod at the

critical point.

3. The first entries of (σ◦(j−1)(ν), σ◦(k−1)(ν) and σ◦(ℓ−1)(ν)) are the set {0, 1, ∗}.

Then ϕ is not defined and the iteration stops. The triod is degenerate and the

sequence with ∗ as its first point is an interior point of the triod.

So beginning with some triple (s, t, u), we continue the iteration until we reach a

loop or the iteration is stopped. If eventually each of the sequences is chopped off

and replaced by ν, the triod is non-degenerate.
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Chapter 2

Mating of Polynomials, Rational

Maps and Branched Covers

The mating operation was first mentioned by Douady in [Dou83]. Informally, the

construction allows us to take two complex polynomials f and g (along with their

filled Julia sets K(f) and K(g)) and paste them together to construct a rational

map on the Riemann sphere. We will informally consider the mating operation to be

a map from the ordered pairs (f, g) of polynomials to the space of branched covers of

the sphere. For further reading on this subject, see (amongst others) [Tan92, Mil04,

Wit88]. Here we will outline the general theory and emphasise the parts which we

will want to use when dealing with clustering in the following chapters.

2.1 Definitions

We start out by outlining the theory of matings of polynomials, as well as giving

some of the definitions from topological dynamics which are required to understand

the phenomena.

We recall the following definitions from the introduction.

Definition 2.1.1. The degree of a rational map R : C → C is the number of pre-

images (up to multiplicity) of each point in the image.

Definition 2.1.2. We denote the set of critical points of a rational map f : C → C

by Ωf . The postcritical set is given by

Pf :=
⋃

n>0

f◦n(Ωf ).
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We say a polynomial is postcritically finite if |Pf | is finite. Similarly, if |Pf | = ∞,

then we say f is postcritically infinite.

Definition 2.1.3. A map f : X → Y will be called a branched covering if there

exists a finite set Z ⊂ Y such that the restricted map f : X \ f−1(Z) → Y \ Z is a

covering map.

Informally, a branched cover is a covering map away from a finite set of

ramified points where the map is not locally a homeomorphism. Clearly, if the

critical points are periodic, the function is postcritcally finite. We will mainly be

concerned with postcritically finite maps in what follows. Indeed, the main focus

will be on unicritical polynomials where the critical point 0 is periodic, and so is part

of a superattracting orbit. There are in fact a few different notions of mating, and

much work has been undertaken to check their equivalence. We consider a couple

of examples of the mating construction.

2.1.1 Formal Mating

Perhaps the simplest method of mating is the formal mating. Let f and g be two

monic degree d polynomials defined on the Riemann sphere. Open out the point at

infinity to turn C into Ĉ and extend f and g to f̂ and ĝ by f̂(∞·e2πiθ) = ((∞·e2πidθ)

and ĝ(∞ · e2πiθ) = ((∞ · e2πidθ). We label these two spaces Ĉf and Ĉg respectively.

The extension defined above is continuous, but not analytic.

Recalling that ⊎ represents a disjoint union, now identify the two circles at

infinity by defining S2
f,g = Ĉf⊎Ĉg/(∞·e2πiθ , f) ∼ (∞·e−2πiθ , g). S2

f,g is a topological

sphere (notice that S2
f,g is not dependent on the maps f and g, the notation is used

purely to serve as a reminder that the polynomials are f and g) and the formal

mating is then defined to be the branched covering f ⊎ g : S2
f,g → S2

f,g such that

f ⊎ g|
Ĉf

= f and

f ⊎ g|
Ĉg

= g.

In other words, the behaviour of f ⊎ g is equal to f on one hemisphere of S2
f,g and

g on the other. The map f ⊎ g is an orientation preserving branched self-covering

of a topological sphere. Trivially, this means it is not a rational map (which require

there to be some analytic structure on the sphere), but in this chapter, with the aid

of Thurston’s theorem (and the notion of Thurston equivalence), we will show that

f ⊎ g can be thought of as equivalent to a rational map in some sense.
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The formal mating is the simplest notion of mating, but in order to discuss

clustering in the later chapters we require a slightly different construction. It is

actually possible to, in some cases, see mating as sticking the filled Julia sets of f

and g together in such a way that the new space created is topologically a sphere.

We discuss this below.

2.1.2 Topological mating

Recalling the definition of external rays, Definition 1.3.3, we construct the topological

mating of two polynomials f1 and f2 as follows. Let f : C → C be a polynomial of

degree n > 1. From Chapter 1 we know that the Julia set, J(f), is the boundary of

the filled Julia set, K(f). Furthermore, if K is connected, then, since we have a su-

perattracting fixed point at infinity, we can use Böttcher’s theorem (Theorem 1.3.2);

the complement of K is conformally isomorphic to the complement of the closed unit

disk. Moreover, we can choose this isomorphism φ so that it conjugates f with the

nth power map on C \ D; in other words

φ(zn) = f(φ(z)).

Let f1 and f2 be monic polynomials - in terms of this thesis, it is enough to assume

that they both are of the form z 7→ zd + c for some d > 1. Assume the Julia sets

J(f1) and J(f2) (equivalently, by Proposition 1.3.7, the filled Julia sets K(f1) and

K(f2)) are locally connected. The topological mating (denoted by f1 ⊥⊥ f2 : K(f1) ⊥

⊥ K(f2) → K(f1) ⊥⊥ K(f2), we define the space K(f1) ⊥⊥ K(f2) below) is an onto,

continuous map.

We now define the ray-equivalence relation ∼ on S2
f,g. The equivalence rela-

tion ∼f on Ĉf is generated by x ∼f y if and only if x, y ∈ R
f
t for some t. Notice that

the closure of the external ray contains both the landing point and the point on the

circle at infinity. Define a similar equivalence relation on Ĉg. Then the equivalence

relation ∼ will be generated ∼f on Ĉf and ∼g on Ĉg. We denote the equivalence

class of x under this relation by [x].

Denote the Carathéodory semiconjugacy derived from fj by γj, so that

γj : R/Z → ∂K(fj). We see that the ray equivalence relation restricts to an equiva-

lence relation ∼′ on the disjoint union of K(f1) and K(f2) by

γ1(t) ∼
′ γ2(−t) for each t ∈ R/Z.

We define K(f1) ⊥⊥ K(f2) to be the quotient topological space S2
f,g/ ∼, where
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every equivalence class is identified to a point. Making use of the fact that γj(2t) =

fj(γ(t)), we can piece together f1|K(f1) and f2|K(f2) to form a continuous map

which we call f1 ⊥⊥ f2, which is the onto, continuous map we require. This is the

topological mating.

The important cases will be when this quotient K1 ⊥⊥ K2 is homeomorphic

to a sphere. When the quotient is not a sphere, we have no hope of the map being

equivalent in any sense to a rational map on the Riemann sphere. It is clear, then,

that it will be necessary to find out the nature of the quotient formed above. We

can make use of the following classical result ([Moo25]).

Theorem 2.1.4. Let ∼ be an equivalence relation on the sphere S2 which is topo-

logically closed. Furthermore, suppose that each equivalence class is connected but

not the whole of S2. Then the quotient space S2/ ∼ is itself homeomorphic to S2

if and only if no equivalence class separates the sphere into two or more connected

components.

In the above, topologically closed means that all pairs (x, y) such that x ∼ y

forms a closed subset of S2×S2. We will improve upon this result later by invoking

results of Mary Rees and Tan Lei. A reasonable way of thinking of the topological

mating is to consider it as the formal mating with the rays “drawn tight” and

the “empty space” containing the external rays between the two filled Julia sets is

collapsed.

2.1.3 Geometric mating

Suppose we have constructed the topological mating f1 ⊥⊥ f2. We say that a rational

map F is the geometric mating of the two monic polynomials f1 and f2 if there exists

a topological conjugacy h which is orientation preserving and holomorphic on
◦
K1

and
◦
K2 satisfying

h ◦ (f1 ⊥⊥ f2) = F ◦ h.

In this case, we will write F ∼= f1 ⊥⊥ f2.

Of course, it is entirely possible that the map F could be equivalent to the

mating of more than one pair of polynomials.

Definition 2.1.5. We say a mating is shared if the resulting rational map comes

about from two different constructions. That is to say

f1 ⊥⊥ f2 ∼= F ∼= g1 ⊥⊥ g2

for different choices of the pairs (f1, f2) and (g1, g2).
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2.2 Thurston’s Theorem

When we carry out the (formal or topological) mating of two polynomials, we want

to know if the branched self-cover we have created is in some sense equivalent to

a rational map, without having to search for a conjugacy to show it is a geometric

mating. Fortunately, there is a nice criterion which tells us when a branched covering

is not equivalent to a rational map. In what follows we take F to be a post-critically

finite branched covering of degree d ≥ 2.

Definition 2.2.1. A simple closed curve γ ⊂ S2 is said to be non-peripheral if it

satisfies the following.

• γ ∩ PF = ∅.

• Each connected component of S2 \ γ contains at least two points of PF .

Definition 2.2.2. Let Γ = {γ1, γ2, . . . , γn} be a collection of curves in S2. If the

γi ∈ Γ are simple, closed, non-peripheral, disjoint and non-homotopic relative to PF

then we say Γ is a multicurve. We say the multicurve is F -stable if for any γi ∈ Γ,

all the non-peripheral components of F−1(γi) are homotopic rel S2 \PF to elements

of Γ.

Given an F -stable multicurve, we can define a non-negative matrix FΓ =

(fij)n×n in the following natural way. For each i, j, let γi,j,α be the components

(these are all simple, closed curves) of F−1(γj) which are homotopic to γi in S
2\PF .

Now define

FΓ(γj) =
∑

i,α

1

degF |γi,j,α : γi,j,α → γj
γi

where deg denotes the degree of the map.

It is a standard result from Perron-Frobenius theory (see, for example [Sen81])

that a non-negative matrix has a leading eigenvalue λ - a non-negative real eigen-

value such that all other eigenvalues have absolute value less than or equal to λ.

Definition 2.2.3. Let λ(Γ) be the leading eigenvalue of the matrix FΓ. Then the

multicurve Γ is called a Thurston obstruction if λ(Γ) ≥ 1.

We are almost ready to state Thurston’s theorem. However, before we do

this, we need to state the definition of an orbifold. Since we will be focussing only

on the case where our Riemann surface is the Riemann sphere, we can restrict our

definition to this case only. For a more general definition of orbifold see e.g [DH93]

or [Mil06], Appendix E.
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Definition 2.2.4 ([DH93]). Let f be a holomorphic branched self-covering of C.

Then we define the ramification function ν : C → N∪{∞} to be the smallest function

satisfying

• ν(z) 6= 1 if z ∈ PF , and

• ν(z) is a multiple of ν(w) · degw(F ) for each w ∈ F−1(z).

Definition 2.2.5. An orbifold will be a pair (S2, ν). In other words, the sphere

paired with a ramification function.

Definition 2.2.6. The Euler characteristic of an orbifold will be given by

χ(ν) = 2−
∑(

1

ν(zi)− 1)

)

where the sum is over all ramified points (and so is in reality a finite sum by the

definition of an orbifold.) The orbifold will be called hyperbolic if χ(ν) < 0.

We note that, if an orbifold is non-hyperbolic, then the size of the postcritical

set is at most 4. In all cases we will consider in this thesis, the postcritical set will

be larger than 4, and so the orbifolds will be hyperbolic.

Before we state Thurston’s theorem, which tells us precisely when a branched

covering is equivalent to a rational map, we need to state exactly what we mean by

equivalent. The notation (f, Pf ) for a branched covering means that the branched

covering is f and its post-critical set is Pf . Note that in applications we can replace

the set Pf by some set Af ⊃ Pf . In this case we can refer to the set Af as the

extended or generalised post-critical set.

Definition 2.2.7 (Thurston Equivalence). Two postcritically finite orientation-

preserving branched self-coverings with labelled critical points (F,PF ) and (G,PG)

of S2 are said to be Thurston equivalent (alternatively, combinatorially equivalent or

just equivalent) if there exists orientation preserving homeomorphisms φ1, φ2 : S
2 →

S2 such that

• φ1|PF = φ2|PF
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• The following diagram commutes.

(S2, PF )
φ1 //

F

��

(S2, PG)

G

��
(S2, PF ) φ2

// (S2, PG)

• φ1 and φ2 are isotopic via homeomorphisms φt, t ∈ [0, 1] satisfying φ0|PF =

φt|PF = φ1|PF for each t ∈ [0, 1].

The final condition is often said as “φ1 and φ2 are isotopic rel(ative to) PF . When

two branched coverings are equivalent in this way, we write F ∼= G.

We are now ready to state:

Theorem 2.2.8 (Thurston’s Criterion). A post-critically finite branched covering

F : S2 → S2 of degree d ≥ 2 with hyperbolic orbifold is equivalent to a rational

map R on the Riemann sphere if and only if for any F -stable multicurve Γ we have

λ(Γ, F ) < 1. In that case the rational function R is unique up to conjugation by an

automorphism of the Riemann sphere C (i.e a Möbius transformation).

Before continuing, the following theorem of Rees [Ree92] draws together the

notion of formal and geometric matings.

Theorem 2.2.9. Assume f1 and f2 are two postcritically finite hyperbolic polyno-

mials. Then the formal mating f1 ⊎ f2 is Thurston equivalent to a rational map

F : C → C if and only if F is a geometric mating of f1 and f2.

Although it in some sense gives a complete classification of which branched

covers of S2 are equivalent to rational maps, Thurston’s theorem has a couple of

problems in applications. Firstly, the proof is non-constructive, and it is not known

in general how to find the rational map in the theorem. It follows that it is not

always clear when two branched coverings are equivalent in the sense of Thurston.

Moreover, it is not always clear whether we have a Thurston obstruction for our

branched cover, since we would a priori have to check every single multicurve.

Even though there are only finitely many homotopy classes of these curves (since

the maps are post-critically finite), it would still take a large amount of time to

check these curves when the size of PF is large. Indeed, Thurston’s theorem is more

regularly used when trying to show that a branched cover is not equivalent to a
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rational map, even though it still takes some effort to find a Thurston obstruction

in many cases. However, in the degree 2 case (and also the bicritical case), we have

a simpler criterion which we can use.

Definition 2.2.10. A multicurve Γ = {γ1, γ2, . . . , γn} is a Levy cycle if for each

i = 1, . . . , n, the curve γi−1 (or γn if i = 1) is homotopic to some component γ′i of

F−1(γi) (rel PF ) and the map F : γ′i → γi is a homeomorphism.

The full theory requires one to differentiate between the notion of “good”,

“degenerate” and “removable” Levy cycles. However, this problem only arises if

they ray classes contain a point in the post-critical set, or the map is not bicritical.

Since our polynomials will have super attracting orbits and our curves can be chosen

to follow external rays, this terminology will not affect us - all our Levy cycles will

be good Levy cycles. The notion of a Levy cycle allows us to state the following

result, which is the culmination of work by Rees, Shishikura and Tan Lei, which

greatly simplifies the search for Thurston obstructions [Tan92].

Lemma 2.2.11. In the bicritical case, F has a Levy cycle if and only if it has a

Thurston obstruction.

We need to know what conditions are needed for us to be able to carry out

mating and get a rational map. Once again assuming that we are dealing with

polynomials with periodic critical orbits, we have following theorem, due to Mary

Rees and Tan Lei. First of all we state another theorem derived from [Tan92],

Theorem 4.1, which is used to prove Theorem 2.2.13. The original statement in the

reference just states the equivalence of statements 1 and 4, but we will want to make

use of more than this.

Theorem 2.2.12. Let F = f1 ⊥⊥ f2 with α-fixed points labelled as α1 and α2

respectively. Then the following are equivalent.

1. F has a good Levy cycle Γ = {γ1, . . . , γn}.

2. F has a ray-equivalence class τ containing closed loops and two distinct fixed

points.

3. [α1] = [α2]

4. In the quadratic case, f1 and f2 are in conjugate limbs of M.

The upshot of this result (in the case where the degree is 2) is the following.
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Theorem 2.2.13. The mating f1 ⊥⊥ f2 (or f ⊎ g) is Thurston equivalent to a

rational map F if and only if the parameters c1 and c2 do not belong to complex

conjugate limbs of M.

In further work, Tan Lei and Shishikura [ST00] were able to say more. They

proved the following generalisation of the above result.

Lemma 2.2.14. Let F be a mating. Let [x] be a periodic ray class such that [x]

contains a closed loop. Then each boundary curve of a tubular neighbourhood of [x]

generates a Levy cycle.

This eases our task even further, since we now do not even have to check

if a multicurve is a Levy cycle by the usual means, but instead can just check if a

periodic equivalence class [x] contains a loop. The latter is a far easier condition to

check.

2.3 Properties of matings

We now discuss some of the properties of maps that come about as the result of

matings. As this thesis will be focussing in the main on the mating of hyperbolic

polynomials whose filled Julia set is full, we will assume that this is the case in

this section. In other words, the critical points of the polynomials will be contained

inside the Fatou set, and no external ray will ever meet a critical point or a pre-

critical point. We will use the notation [x] to denote the equivalence class of the

point [x] under the ray equivalence relation. We note that in general, the periodicity

of a point may not be the same as the period of its class [x]. However, a slightly

weaker result does hold.

Lemma 2.3.1. Suppose z is a period n periodic point of f1. Then the period of [z]

under the mating f1 ⊥⊥ f2 = F is m, for some m dividing n.

Proof. Here we use the fact that the dynamics is (topologically) preserved under

the mating operation. Furthermore, we see that since f◦n1 (z) = z, by passing to the

equivalence classes induced by mating, we have F ◦n([z]) = [z]. Hence the period of

[z] divides n.

We now study the periodic ray classes of the formal matings (in other words,

we consider the branched cover created by the formal mating before all the ray

classes are identified to a point). We say a mating is obstructed if the branched

covering constructed in the mating has a Thurston obstruction.
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Lemma 2.3.2. Let F = f1 ⊎ f2 be the formal mating of two hyperbolic polynomi-

als which has no Thurston obstruction. Let z0, F (z0) = z1, . . . , F
◦(n−1) = zn−1 be a

period n orbit of f1 which is contained in J(f1) and has combinatorial rotation num-

ber different from 0. Then the periodic ray classes [z0], [z1], . . . , [zn−1] are pairwise

disjoint.

Proof. Suppose there exists k with [z0] = [zk]. Then there exists a path through

external rays γ from z0 to zk. The map F ◦n will take z0 to z0 and zk to zk and takes

the path γ to some path γ′, which is a path from z0 to zk. But γ
′ is not equal to γ,

since the first return map to z0 and zk will permute the external rays landing there.

Hence the union γ ∪ γ′ contains a loop; and so the mating will be obstructed. This

contradiction completes the proof.

Lemma 2.3.3. If the mating of two hyperbolic polynomials is not obstructed, each

periodic ray class contains at most one periodic branch point with non-zero combi-

natorial rotation number.

Proof. Let w0 and z0 be two periodic branch points with non-zero combinatorial

rotation number, such that [w0] = [z0]. We will show that the periods of z0 and

w0 are equal. Let the period of z0 be n. Then the map F ◦n maps z0 to itself,

the periodic ray class [z0] to itself and w0 to wn = F ◦n(w0). Then we must have

[w0] = [z0] = [wn] and so w0 = wn by Lemma 2.3.2. Hence the period of w0 is

divisible by n. An analogous argument shows the period of w0 divides the period of

z0, and so the periods are the same. Denote this common period by n.

Now let γ be a path through external rays from w0 to z0. Since none of the

rays meet a pre-critical point (since the maps f1 and f2 are hyperbolic), the nth

iterate of γ, which we call γ′, will also be a path from w0 to z0. Since the external

rays at w0 and z0 are permuted under the first return map, γ 6= γ′, and so the curve

γ ∪ γ′ contains a loop, and so the mating is obstructed.

2.3.1 A Combinatorial View of Periodic Ray Classes

In a combinatorial sense, we can consider a (periodic) ray class as a finite, connected

(possibly labelled) graph, where the vertex set V ⊂ J(f1)∪J(f2) is the landing points

of the external rays in the class and the edges E are the external rays themselves (in

fact, they are the union of the external ray R1
θ and R2

−θ). It is clear that each edge

must connect a vertex in J(f1) to a point in J(f2). Furthermore, Lemma 2.2.14

tells us that as long as the matings are not obstructed, these graphs are acyclic; in

other words they are trees. Such a visualisation allows us to talk about endpoints
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of periodic ray classes; that is, vertices which are the end of only one edge (in the

literature, these are sometimes called the leaves of the tree). Indeed, such points

can be thought of as endpoints of the Julia set, since they are not cut points of the

Julia set. We will sometimes use this notion when discussing ray classes, particularly

when dealing with the ray classes containing cluster points in Chapters 3, 4 and 5.

Essentially, this is an observation for the formal mating, before the external rays are

“pulled together” and identified to a point in the topological mating. Since formal

matings and topological matings of the same maps are Thurston equivalent to one

another, this viewpoint is valid. We will also attempt to maintain the notion of

cyclic ordering when talking about the graphs, the cyclic ordering being induced by

those of the external rays with common landing points.

For example, suppose we are carrying out the mating of Douady’s rabbit f1

with the airplane f2 and denote the α-fixed point of f1 by α1. The graph of [α1]

is topologically equivalent to the graph in Figure 2.1. This can be seen from the

schematic diagram Figure 2.2.

α1

r1

e1

r2

e2

r3

e3

Figure 2.1: The graph which is topologically equivalent to [α1].

The labellings ei stand for endpoints (which belong to the Julia set of the

rabbit) and ri stand for rootpoints (which are the root points of critical orbit Fa-

tou components of the airplane). As mentioned above, the endpoints are not just

endpoints of the graph, but also, in some sense, endpoints of the Julia set, since the

fact they are endpoints mean they cannot be biaccessible. The rootpoints are so

called because they are the rootpoints of some critical orbit Fatou component. In

Figure 2.2, we have labelled the external rays with their angles. It should be noted
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1/7

5/7

6/7

1/7

2/7

5/7

3/7

e1

e2

e3

r1
r2

r3

α1

4/76/7

3/7

2/7

4/7

E

Figure 2.2: A schematic diagram showing the ray class [α1]. E is the equator.

that the ”star” shape seen in Figure 2.1 occurs in general for the ray class of [α1],

the fixed point of the n-rabbit. We prove and make use of this fact in Section 4.4.

Given a vertex v in the graph Γ, we call the connected components of Γ\{v}

the global arms at v. Note that this is entirely analogous with the definition given

for Hubbard trees, and that this definition makes sense because, by Lemma 2.2.14,

Γ is a tree.

As noted above, the graph has a form of rotational symmetry. This is because

each global arm at α is mapped homeomorphically onto another, and so each global

arm is topologically the same. We will refer to the point α as a central vertex of

the graph (and generalise this terminology to ray classes of higher period). This

terminology is not standard at all, but we use it to represent the fact that α will be

fixed by the first return map to this ray class, and all the global arms are permuted

around it by this first return map - in other words, α (or the point in the graph

corresponding to it) is the centre of rotational symmetry.

This description of a periodic ray class is useful because it allows us to view

each ray class independently. Furthermore, it means we can just focus on the topo-

logical features of ray classes, without having to worry about which external rays
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actually are contained in this equivalence class. Since various properties of the ray

classes persist when considering matings with cluster points, this language will al-

low us to make a more general statement in later chapters. Another usage of this is

to help us construct curves which separate the sphere in the formal mating of two

polynomials. Often we will find that the union of a ray class [x] (or some subgraph

of the ray class), along with some regulated arcs in the Julia sets of the two polyno-

mials, will separate the sphere. Since rays cannot cross, this will show that certain

rays cannot be in the same ray class as others.

Using this terminology, we have the following simple result. We write F =

f1 ⊎ f2.

Lemma 2.3.4. Suppose a periodic ray class contains a point p which has combi-

natorial rotation number different from 0. Then [p] does not contain any strictly

pre-periodic points.

Proof. By passing to an iterate of F if necessary, it suffices to consider the case

where p is fixed. We begin with an observation. If z 6= p is a periodic point, then z

belongs to some global arm at p, ℓ. This arm will be periodic, say F ◦k(ℓ) = ℓ. Then

the period of z must be divisible by k.

Clearly p is not strictly pre-periodic, so if there exists a strictly pre-periodic

point w then it must belong to one of the global arms at p. Denote this arm by ℓ and

its period by k. Then since w is pre-periodic, there is some integer r so that F ◦rk(w)

is equal to some periodic point z′. By the observation in the previous paragraph,

the period of z′ is mk for some m. There exists some integer s so that ms > r.

Then F ◦msk(w) = z will be periodic and belongs to ℓ, and since it is in the same

orbit as z′, it will have period mk. Hence F ◦msk(z) = z = F ◦msk(w) = z. But

this is a contradiction, since the point z has at least two pre-images in ℓ under the

map F ◦msk, but F ◦msk is a homeomorphism on the graph of the periodic ray class.

Hence no pre-periodic point w can belong to any of the global arms at p.

Essentially the above is just using the fact that a periodic ray shares an

endpoint with another ray, then the two rays are periodic with the same period.

Similarly, if a pre-periodic ray sharing an endpoint with another ray then they will

have the same pre-period and period. We now have the following.

Lemma 2.3.5. Suppose a periodic ray class contains a point p which has combina-

torial rotation number different from 0. Then given any periodic orbit O = O(z0) =

{z0, z1, . . . , zn−1}, the intersection between any global arm at p and O contains at

most one point.
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Proof. Clearly if [p] 6= [zi] for any i then the intersection of O(z) with any global

arm will be empty. So assume without loss of generality that [p]∩ [z0] 6= ∅. Let ℓ be

a global arm at p in the periodic ray class. There exists some k so that F ◦k(ℓ) = ℓ.

If ℓ∩O is empty, then ℓ also contains no pre-images of points in O, since otherwise

some forward image of ℓ will contain a point in O, and so ℓ∩O would be non-empty,

a contradiction. Since ℓ contains no pre-images of points in O, no forward iterate

of ℓ can contain points of O. Since global arms are mapped homeomorphically onto

global arms, this means all the global arms have empty intersection with the orbit

O. Hence every global arm at p must contain at least one point of O.

Suppose the global arm ℓ contains r > 1 elements of O, z0, . . . , zr−1. Under

the first return map to ℓ, these elements must be permuted, since the orbit is

periodic. Without loss of generality, we can assume the first element of ℓ ∩ O

on the global arm (in terms of distance from p) is z0. Then the second point (again,

in terms of distance in the tree from p) in ℓ ∩ O is F ◦k(z0) = zk for some k. Let

γ be the sub-arm from p to z0. Then γ′ = F ◦k(γ) is contained in ℓ and will be a

path from p to zk, since the global arm ℓ maps homeomorphically onto itself under

the return maps (since the map F is a homeomorphism on the graphs of the ray

equivalence classes). In particular, z0 ∈ γ′. However, this means that there has to

be a pre-image of z0 in the path γ. However, by construction, there are no points

in the orbit of z0 in the interior of γ and by Lemma 2.3.4, there also does not exist

any preperiodic points in γ. This contradiction means that the global arm ℓ must

contain at most one point in O.

Remark 2.3.6. Essentially, this proof is using the fact that a homeomorphism of

an interval onto itself (which fixes endpoints) cannot have any strictly pre-periodic

points.

2.3.2 A Mating Criterion

It should be noted that the requirement that the rational map F is of type D (that

is, the critical points belong to the basins of two distinct (super)attracting cycles)

is not sufficient for F to be a mating. For example, there exists a type D degree 2

rational map with critical orbits of periods 3 and 4 which has been shown to not be

equivalent to a mating (this example was found by Ben Wittner). However, there

is a necessary and sufficient condition for a rational function to be equivalent to

a mating. When considering the formal mating, it is clear that there is a curve

which separates the critical orbits: the equator of the sphere, which corresponds

to the circle where the two circles at infinity are glued together. This observation
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motivates the following theorem from [ST00], where it was attributed to Thurston

[Thu83], Levy [Lev85] and Wittner [Wit88].

Theorem 2.3.7. Let F be a postcritically finite branched covering of degree d.

Assume that F has no degenerate Levy cycle. Then F is equivalent to the mating

of two polynomials f, g if and only if there is a closed curve γ ⊂ S2 \ PF such that

F−1(γ) = γ′ is again a single closed curve and γ′ is isotopic to γ rel PF with the

same orientation. Moreover, given the curve γ, the two polynomials f, g are uniquely

determined.

The curve γ in the above theorem will be called an equator for the mating

f ⊥⊥ g. It follows that if a mating is shared then there is more than one equator for

a rational map F . In Chapters 4 and 5, we will find the equators on rational maps

which have clusters.

2.4 The Mapping Class Group

Given a surface S, it is possible to associate to S a group which can be thought

of as the equivalence classes of isotopies on the surface. This will be important in

Chapters 4 and 5, where we will require knowledge of the mapping class groups of

the disk and annulus respectively. We include this section here since we will use the

results when trying to show Thurston equivalence of two rational maps.

Let S be a surface with boundary ∂S. Denote by Homeo+(S) the group

of orientation-preserving homeomorphisms of the surface which fix ∂S pointwise,

and define Homeo+0 (S) to be those elements of Homeo+(S) which are isotopic to

the identity. Homeo+0 (S) is a normal subgroup of Homeo+(S), and so we get the

following.

Definition 2.4.1. The Mapping Class Group of a surface S, denoted MCG(S) is

the quotient

MCG(S) = Homeo+(S)/Homeo+0 (S).

The mapping class group allows us to discuss isotopy classes of homeomor-

phisms on a surface. We state the following well known results without proof.

Proposition 2.4.2. Let D be the closed disk and A be a closed annulus. Then

1. MCG(D) = 0,

2. MCG(A) ∼= Z.

Furthermore, the mapping class group of an annulus is generated by the Dehn twist

around the core curve in the annulus.
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Chapter 3

Clustering in the Mating

Operation

We now discuss what it means for a rational map to have a cluster point, or a

cluster cycle. The original motivation for this work was to look at how the period

two cluster case behaves compared to the period one cluster case. In fact, since there

are some marked differences between the two, in some cases it is necessary to alter a

definition depending on whether or not we are dealing with the period 1 or period 2

cluster case. In this chapter we will discuss the properties of clustering that holds in

maps with cluster cycles of arbitrary period. However, it is perhaps evidence of the

complexity of the problem increasing with the period that this chapter is so short.

Calculations suggest that one needs to introduce different definitions depending on

the period. We will focus on these differing definitions in the following chapters. For

now, we concern ourselves with saying as much as we can for clusters of arbitrary

period.

We remark that a bicritical map will only have one cluster cycle. This is

because each attracting cycle must attract at least one critical point. Since the

maps will have exactly two critical points, there will only be two attracting cycles.

3.1 Definitions

Definition 3.1.1. The following is the terminology we will use to describe certain

Fatou components of a post-critically finite rational map F .

• A critical (point) component will be a Fatou component containing a critical

point of F .

55



• A critical value component will be a Fatou component containing a critical

value of F .

• A critical orbit component will be a Fatou component which contains an iterate

of a critical point of F .

Note that critical components and critical value components are critical orbit com-

ponents.

We will sometimes refer to a critical orbit component in a cluster as being

provided by a critical point ci. When we say this, we mean the component is a

critical orbit component containing an iterate of the critical point ci.

It is a well known fact (using the Riemann-Hurwitz formula) that a quadratic

rational map on C has precisely two critical points (for example, polynomials of the

form z 7→ z2 + c have critical points at 0 and ∞). We say that a rational map is

of type D if the two critical points belong to the attracting basins of two disjoint

periodic orbits. This terminology is due to Milnor, [Mil93], although it was Rees

who originally classified the hyperbolic components of quadratic rational maps, and

she referred to type D maps as type IV maps. We note that hyperbolic rational

maps formed by mating are of type D. The same terminology can be applied to

bicritical rational maps.

Definition 3.1.2. Let F : C → C be a bicritical rational map of type D with the

property that the two critical orbits belong to superattracting orbits with the same

period. Then a cluster point for F is a point in J(F ) which is the endpoint of the

angle 0 internal rays of at least one critical orbit Fatou component from each of the

two critical cycles.

We will define a cluster to be the union of the cluster point and the Fatou

components meeting at it. The period of the cluster will be the period of the cluster

point.

The star of a cluster will be the union of the cluster point and the associated

0 internal rays, including the points on the critical orbit.

Note that the star of a cluster is invariant under the first return map to the

cluster. This allows us to define the notion of combinatorial rotation number of a

cluster (see below). We will actually find it far easier to work with the star of a

cluster than with the actual cluster itself. One quick observation is that the star of

a cluster must map homeomorphically onto its image. This is because the 0-internal

rays map homeomorphically onto their images (which are also 0-internal rays) under

the rational map. It should also be noted that if we are not in the degree two case,
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there is some sense of ambiguity as to what the 0-internal ray is. However, we

comfort ourselves with the notion that if a rational map has the dynamics necessary

to have clustering, it is possible to choose the internal rays of the critical orbit Fatou

components in such a way so that the map does indeed have a periodic cluster cycle.

Example 3.1.3. Consider the mating of Douady’s rabbit and the aeroplane poly-

nomial (both polynomials have a superattracting orbit of period 3, and are post-

critically finite). The result of this mating can be seen in Figure 3.1. This map has

a fixed cluster point. In the figure, the basins of one of the critical points is white,

the other basin is black. The cluster point is in the bottom right of the picture; its

pre-image in the top left.

Figure 3.1: An example of a map with a cluster point.

There is an obvious way of creating a cluster through mating of polynomials.

For example, in the period 2 case, take f1 to be the “double” rabbit with internal

address 1 → 2 → 2n. Then there is a period 2 cycle around which the critical

orbit components are already clustered (but note this is not strictly a cluster point).

57



Then there are n external rays landing at the “cluster point” where the critical

point component clusters, see Figure 3.2. We then need to fill in these gaps at

this period two cycle with critical orbit Fatou components from a second map, by

carrying out a mating. In the one cluster case, we can do a similar construction

with the n-rabbit (with angled internal address 1p/n → n) (see Figure 3.3). Indeed,

we will show in the one cluster case that every mating which admits a fixed cluster

point is the mating of an n-rabbit with some other map with certain combinatorial

characteristics. The situation is more complicated in the period 2 cluster case, as

we will discuss in Chapter 5. As the period increases, we conjecture that it gets

more and more complicated, see the discussion in Appendix F.

Figure 3.2: A “double rabbit” and some rays landing on the period 2 cycle.

The combinatorial rotation number is one of the two pieces of combinatorial

data (the other is the critical displacement) we will use to classify our clustered

matings. Unlike the critical displacement, the definition holds for cluster points of

any period.
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Figure 3.3: An n-rabbit and some rays landing on the α-fixed point.

If p is a period k cluster point of the bicritical rational map F , then by

definition it is the landing point of a family of internal rays. The map F ◦k is a

local homeomorphism which fixes the cluster point and the family of internal rays

are invariant under this map. We then define the combinatorial rotation number of

the cluster point by using Definition 1.4.3. Since the combinatorial rotation number

is not dependent on the choice of point in the periodic cycle, we have defined the

combinatorial rotation number of the cluster cycle.

Though we have not yet defined the critical displacement, we include the

following definition here since the definition will hold in both the period one and

period two cases. In higher period cases, it is likely that we would also have to

include the data which says how many times we have to iterate forward from the

cluster containing the critical point of f1 until we reach the cluster containing the

critical point of f2(though this data can be perhaps included in the definition of the

combinatorial displacement, see Appendix F. This is just one of the reasons as to
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why there is increasing complexity when moving from the period 2 to the period

three case. Informally, the critical displacement will represent the gap, in terms of

combinatorial distance, between the critical points in the cluster cycle.

Definition 3.1.4. Let F be a bicritical rational map with a periodic cycle of clus-

ters with combinatorial rotation number ρ and critical displacement δ (see Defini-

tion 4.1.1 in the one cluster case and Definition 5.1.4 in the two cluster case). Then

the pair (ρ, δ) will be called the combinatorial data of the cluster cycle.

Since a map F has only one cluster cycle in the bicritical case, we will refer

to the combinatorial data of F as the combinatorial data of the cluster cycle.

It is going to be useful to show that, in some sense, combinatorial rotation

number is preserved under the mating operation. The most common definition of

combinatorial rotation number for polynomials is derived from the cyclic permuta-

tion of external rays landing at periodic points [Mil00b]. However, our more general

definition was made by noticing that external rays are an example of invariant

curves, (families of) curves which are fixed under iteration. The issue with external

rays is there is not an immediate analogue for non-polynomial rational maps, and

we will want to use a definition which can be applied equally well in both polyno-

mial and non-polynomial cases. In practice, we will be using a combination of the

permutation of local arms in the Hubbard tree at a periodic point and the internal

rays of angle 0 inside periodic Fatou components which have a periodic point on the

boundary.

3.2 Structure of the clusters

The following section includes some simple facts about the clusters that allow us to

see how the critical orbit components of the critical points c1 and c2 come together.

There are two important points: firstly the two maps provide precisely the same

number of components to each cluster; secondly, the components alternate between

components from f1 and components from f2 as one checks cyclic ordering around

the cluster point. Since the critical points belong to the Fatou set, both these facts

are perhaps intuitively obvious if one recalls that the rational map F must map a

neighbourhood of each cluster point homeomorphically onto the neighbourhood of

its image.

Lemma 3.2.1. Suppose a bicritical rational map has a period k cluster cycle. Then

the period of the two critical orbits is nk for some n ≥ 1 and each orbit has precisely

n critical orbit Fatou components in each cluster.
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Proof. It is sufficient to show that each cluster in the periodic cycle contains the

same number of Fatou components in it. However, we note that the star of each

cluster maps homeomorphically onto its image star. Hence the number of Fatou

components from the orbit of each critical point must be equal in each cluster.

Since the critical points have the same period by assumption, the periods of the

critical orbit Fatou components are also equal and so equal to nk for some n ≥ 1.

Furthermore, we see that each critical orbit must contain precisely n critical orbit

Fatou components in each cluster. For if one cycle contained m 6= n components

then its image must also contain m components, once again because the stars map

homeomorphically.

Proposition 3.2.2. The ordering of Fatou components in a cluster is alternating.

That is, a Fatou component provided from the first critical point c1 must be between

two Fatou components provided by the orbit of the second critical point c2.

Proof. Suppose that two components from c1, U0 and U1 appear next to each other

in the cyclic ordering, with U anticlockwise from U1 in the cyclic ordering around

the period p cluster point c. The maps F ◦pm (for m ∈ N) fix the cluster point c, and

map U0 and U1 onto Fatou components provided by c1. In particular, there exists a

k such that F ◦pk(U0) = U1. By the fact that cyclic ordering of components around

the clusters is maintained under F and its iterates, U2 = F ◦pk(U1) = F ◦2pk(U0) is

the component immediately clockwise from F ◦pk(U0) = U1. Since U2 is the image

of a Fatou component provided by c1, it must itself be a component provided by c1.

Inductively, if Ur = F ◦rpk(U0) is a component provided by c1, then the component

immediately clockwise of Ur in the cyclic ordering, Ur+1 = F ◦pk(Ur) = F ◦(r+1)pk(U0)

is a component provided by c1. Hence all components in this cluster are provided

by c1, which is a contradiction to Lemma 3.2.1.

In the following chapters, we will be paying close attention to rational maps

with clustering that come about as the result of matings of polynomials. This

description is purposefully ambiguous: we do not necessarily state which mating is

being considered. This is because the rational map to which the mating is equivalent

is not dependent on which mating is chosen (Theorem 2.2.9). However, it is clear

that the definition of a cluster point requires us to consider the topological mating -

the case where the two filled Julia sets are actually glued together. However, many

of the results will make use of the structure of periodic ray equivalence classes and

“ray-blocking” techniques, which by necessity force us to consider the formal mating,

before the rays are drawn tight and the filled Julia sets glued together. With this

in mind, we will often use the notation F ∼= f1 ⊥⊥ f2 to discuss the mating of two
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polynomials. This will mean that the rational map F is Thurston equivalent to the

topological mating of f1 and f2.
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Chapter 4

Fixed Cluster Points

In this chapter we will outline the behaviour of maps which have a fixed cluster point.

In the first section, we define the critical displacement and show that the critical

points cannot be adjacent to one another in the cluster. In the second section, we

suppose that we have a rational map F = f ⊥⊥ h. We ask ourselves what properties

can be stated for the two maps f and h. We find that one of the maps has to be an

n-rabbit. The properties of the complementary map are not so exact, but we can

still describe them using very simple combinatorial terminology.

Section 4.3 is concerned with the classification of rational maps with a fixed

cluster point. We will show that the combinatorial data of the cluster completely

defines a degree d bicritical rational map in the sense of Thurston. This result,

coupled with the results from the previous section, will show us that degree 2 ratio-

nal maps with fixed cluster points can be obtained from the mating of two monic

polynomials. In fact, we have the following theorem.

Theorem 4.0.3. Suppose that F is a bicritical rational map with a fixed cluster

point and the combinatorial rotation number is p/n. Then F is the mating of an

n-rabbit with angled internal address 1p/n → n and another map h. In the degree 2

case, h has an associated angle with angular rotation number (n− p)/n.

The final section focuses on the notion of symbolic dynamics of quadratic

polynomials. Here we show that there are, at least in the simple cases demonstrated

here, patterns in the internal addresses of the non-rabbit maps in the matings which

create rational maps with fixed cluster points. In higher degrees, it is interesting to

note that the exact same patterns occur, at least in preliminary calculations.
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4.1 Definitions

Recall that the star of a cluster is defined to be the union of the cluster point with

the 0-internal rays of the periodic Fatou components meeting at the cluster point.

There is a natural cyclic ordering of these internal rays around the cluster point.

We call the internal rays the arms of the star at the cluster point c.

Definition 4.1.1. Let F be a rational map with a fixed cluster point. Label the

endpoints of the star as follows. Let e0 be the first critical point, and label the

remaining arms in anticlockwise order by e1, e2, . . . , e2n−1. Then the second critical

point is one of the ej , and we call j the critical displacement of the cluster of F . We

denote the critical displacement by δ.

Remark 4.1.2. We note that an equivalent definition is to measure the combinatorial

distance between the critical values. Sometimes this will be a more useful definition,

especially when considering rational maps constructed by mating.

Lemma 4.1.3. The critical displacement is an odd number.

Proof. This follows easily from Proposition 3.2.2.

First, a comment on the critical displacement. Since the definition requires

a choice to be made (in other words, since we are considering rational maps with

labelled critical points), it seems that a rational map with a fixed cluster point

and critical orbits of period n has two possible combinatorial data: (ρ, δ) could be

thought of as having combinatorial data (ρ, 2n − δ) if a different choice was made.

This will not concern us greatly, since our use of combinatorial data will be to prove

combinatorial equivalence of rational maps with labelled critical points.

The following result (Proposition 4.1.5) shows that not all combinatorial data

are obtained by rational maps. We first state a preliminary lemma from [Mil00a],

where it appears as Lemma 3.4.

Lemma 4.1.4. Let F be a bicritical rational map of degree d. Let A ⊂ C be a region

bounded by a simple closed curve which passes through neither critical value. Then

the pre-image of A under F can be described as follows.

1. If A contains no critical value, F−1(A) consists of d disjoint simply-connected

regions bounded by d disjoint simple closed curves.

2. If A contains just one critical value, F−1(A) is a single simply connected

region bounded by a simple closed curve and maps onto A by a ramified d-fold

covering.
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3. If A contains both critical values, F−1(A) is a multiply connected region with

d boundary curves, and maps onto A by a ramified d-fold covering.

Proposition 4.1.5. Suppose F is a bicritical rational map with a fixed cluster point,

where both critical points have period n. Then the two critical point components

cannot be adjacent. In other words, the critical displacement cannot be 1 or 2n− 1.

Proof. We will assume, to obtain a contradiction, that U0 is the adjacent component

which is anticlockwise of V0 in the cyclic ordering of components around the cluster

point c, and that U0 and V0 are the components containing the critical points of F .

We will use the notation that Uk = F ◦k(U0) and Vk = F ◦k(Vk) to label the critical

orbit components.

We begin with a description of the critical Fatou components of the map

F . The cluster point c is fixed and belongs to ∂U1 ∩ ∂V1. Since F is d-to-one on

U0 and V0 and because they are Jordan domains (Theorem 1.5.2), there must exist

pre-periodic pre-images ωi, i = 1, . . . , d− 1 of c on ∂U0 ∩∂V0. We label these points

in order, so that travelling anticlockwise around ∂U0 from c, the first point we meet

is ω1, then ω2 and so on until we label the pre-image clockwise from c by ωd−1.

Another way of regarding the ωj is that ωj is the landing point of the internal ray

of angle j/d. From this discussion, we see that ∂U0 ∩ ∂V0 contains at least d points.

Denote the critical values of F by v1 ∈ U1 and v2 ∈ V1. First, consider the

“V-shaped” curve Λ1 formed by the following the 0-internal ray going from c towards

v1, forming a small anticlockwise loop around v1 and then returning to c along the

same 0-internal ray. It then follows the 0-internal ray from c towards v2, forms a

small anticlockwise loop around v2 and then returns back to c. By construction,

Λ1 is contained entirely in U1 ∪ V1: see figure 4.1 for Λ1 and its image F (Λ1) = Λ2

(dashed line).

We will use the curve Λ1 to construct a Levy cycle. To do this, we modify

Λ1 by perturbing it away from c to form a simple closed curve γ1 which separates

the two critical values from the rest of the post-critical set and the cluster point

c. Now, since F is one-to-one on the critical value Fatou components, it maps γ1

homeomorphically to a curve γ2. Similarly, F maps γ2 homeomorphically to some

curve γ3 and so on inductively until we have constructed γn = γ0, which separates

the critical points c1 and c2 from the rest of the post-critical set. Indeed, notice

that each γk separates the two points F ◦k(c1) and F
◦k(c2) from the rest of the post-

critical set, and γk∩PF = ∅, hence each γk is a simple, non-peripheral, closed curve

and they are pairwise disjoint (Figure 4.2). We add that, furthermore, the curves

γi are constructed so that the intersection between γi and Uj ∪ Vj is empty unless

i = j (taken modulo n).
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••

∗
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U1

V0
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Figure 4.1: The “V-shaped” curve Λ1.

We now will use the curve Λ and its iterates as this will help illuminate the

behaviour of the pre-images of the γk. As long as k 6= 1, the pre-images of Λk

are simple to visualise. One pre-image is contained in Uk−1 ∪ Vk−1, and is in fact

equal to Λk−1. There are d − 1 other pre-images (since the map is degree d) Λjk−1,

j = 1, . . . , d − 1, which are each contained in U
j
k−1 ∪ V

j
k−1, where the U

j
k−1 and

V
j
k−1 are pre-periodic (but not periodic) Fatou components. Note that this is the

only possible situation, as there is only one pre-image of c on the boundary of each

component Uk−1, U
j
k−1, Vk−1 and V j

k−1, and c ∈ ∂Uk−1 ∩ Vk−1.

The case k = 1 is slightly more complicated, since Λ1 is contained in U1∪V1.

Since U1 and V1 are critical value components, they are mapped to in a d-to-one way

by the critical point components U0 and V0. The pre-image F−1(Λ1) consists of a

small loop round the critical point c1 which is connected to each ωj by the internal

ray of angle j/d in U0, and a small loop around c2 which is connected to the ωj by

the internal rays of angle j/(d − 1) in V0.
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Figure 4.2: The multicurve Γ.

∗∗

c

ω

Λ̂0
Λ̂

′
0

Figure 4.3: The curves Λ̂0 (continuous line) and Λ̂0 (dashed line).

Now we can show that Γ = {γ1, γ2, . . . , γn} is a Levy cycle. Note that the

main difference between the Λk and the γk is that the γk are constructed so that they

are simple closed curves, and the γk do not pass through the cluster point c so that

we can get the pairwise disjointness required for a Levy cycle. We need to consider

the pre-images of each γk (k 6= 1). One pre-image will be γk−1, by construction.

The other pre-images are pairwise disjoint (and disjoint from γk−1) by Lemma 4.1.4

and, being small perturbations of the Λjk−1 (which did not separate the post-critical

set), will be peripheral.
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∗∗
γ̂0

γ̂1
0

Figure 4.4: The curves γ̂0 and γ̂10 (dashed line) in the case d = 2.

So it just remains to consider the pre-image of γ1. All pre-images are disjoint

from all critical orbit Fatou components except for U0 and V0. We will show that one

pre-image of γ1 is homotopic to γ0 and the other d−1 pre-images are all peripheral.

Let A be the component of C\γ1 which contains v1 and v2. By Lemma 4.1.4, F−1(A)

has d boundary curves, and these boundary curves are the components of F−1(γ1).

The region F−1(A) must contain the critical points. Hence one of the boundary

curves, γ̂0, will separate the critical points from the rest of the post-critical set and

the other d − 1 boundary curves, γ̂j0, j = 1, . . . , d − 1, (labelled so that γ̂j0 is the

curve which separates the critical points from ωj) will be peripheral, see Figure 4.4.

To show Γ is a Levy cycle, it only remains to show that γ̂0 is homotopic to

γ0 = γn = F ◦(n−1)(γ1). Both γ0 and γ̂0 separate the critical points c1 and c2 from

the connected set

X =

n−1⋃

i=1

(U i ∪ V i).

Notice that PF \{c1, c2} ⊂ X and that C\X is simply connected. So the two curves

γ0 and γ̂0 are both homotopic to the boundary of a neighbourhood of X rel PF .

Hence they are homotopic to each other and so Γ is a Levy cycle. Hence F is not

equivalent to a rational map.

4.2 Properties of f and h

The aim of this section is to prove the following.

Theorem 4.2.1. Suppose F = f ⊥⊥ h is a rational map with a fixed cluster point
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with combinatorial rotation number p/n. Then precisely one of f and h is an n-

rabbit, with angled internal address 1p/n → n. In the degree 2 case, the other map

has an associated angle with angular rotation number (n− p)/n

Moreover, in the degree 2 case, if h is not an n-rabbit and is a map with an

associated angle that has angular rotation number (n−p)/n, then if f is the n-rabbit

with internal address 1p/n → n, the mating f ⊥⊥ h will have a fixed cluster point.

We will also show that all combinatorial data, save for the case where the

critical displacement is 1 or 2n− 1, can be obtained from matings.

4.2.1 The classification of f

We now start to discuss which pairs of maps (f1, f2) can be mated to create a

rational map with a fixed cluster point. In fact, in this case, there is a very simple

criterion for one of the maps; it must be an n-rabbit.

Proposition 4.2.2. Let f1 and f2 be monic unicritical polynomials with a period

n superattracting orbit. Suppose F ∼= f1 ⊥⊥ f2 is a rational map that has a fixed

cluster point. Then one of f1 or f2 (by convention, we will pick this to be f1) is an

n-rabbit; that is, it has internal address 1 → n.

Proof. First, we remark that a quadratic rational map has three fixed points, count-

ing multiplicities. We know that the β-fixed points of f1 and f2 are identified under

mating (and are not identified with any other points). Furthermore, α1 and α2, the

α-fixed points of f1 and f2 respectively must correspond to a fixed point of F . Since

the cluster point is, by hypothesis, a fixed point, we have one of two cases: either

(i) the two α-fixed points are identified under mating (and the cluster point is made

by identifying non-fixed points) or (ii) one of the α-fixed points becomes the cluster

point.

If we have case (i), we see that this is in fact statement 3 of Theorem 2.2.12.

This means that the mating has a Levy cycle and so the mating is obstructed. So we

are left to consider case (ii). Let the cluster point be [α1]. α1 is the landing point for

k external rays of angles θ1, . . . , θk which are permuted under f1; in other words, α1

has a non-zero combinatorial rotation number. We remark briefly that k is at most

n, since otherwise the map f1 would have an α-fixed point with rotation number

r/k for some r, and so the angled internal address would begin 1r/k → k, but this is

a contradiction since k > n and the internal address is a strictly increasing sequence

whose final entry is n. So k ≤ n. The graph for the ray equivalence class [α1] is a

tree (or else the mating would be obstructed, and F would not be equivalent to a
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rational map). There are k local arms at α1 in this graph, corresponding to each

of the external rays which land there. Furthermore, the map F (considered as the

formal mating) permutes these arms at α1, and each arm will map homeomorphically

since no arm contains a critical point, as the polynomials f1 and f2 are hyperbolic.

Each arm must therefore contain the root points of n/k critical orbit Fatou

components of f1 and f2. By Lemma 2.3.5, n/k = 1 and so k = n. Hence the map

f1 has α1 with combinatorial rotation number of the form p/n and so the internal

address is 1 → n. By Proposition 1.8.1, f1 is an n-rabbit.

Proposition 4.2.3. Using the notation from the previous proposition, the combina-

torial rotation number of the cluster point is the same as the combinatorial rotation

number of the α-fixed point of the n-rabbit. In other words, if the cluster point has

rotation number p/n, the angled internal address of f1 is 1p/n → n.

Proof. By Proposition 4.2.2, the map f1 is an n-rabbit and so has angled internal

address

1 p
n
→ n

for some p coprime to n. This means the arms of the star which belong to the

critical orbit of the first critical point (that coming from the rabbit f1) permute the

arms with rotation number p/n. In order to maintain the cyclic order, all arms of

the star must be permuted cyclically with rotation number p/n, which proves the

proposition.

So it turns out from the previous two results that in the fixed cluster point

case the map f1 is completely defined by the period and rotation number of the

cluster. Informally, this is because the n-rabbit with internal address 1p/n → n

has both the correct period of the critical cycle and also has a fixed point with

the correct rotation number. Furthermore, it is the only map that has these two

properties. Clearly, the choice of the second map, h, if it admits a clustered mating

with f , will determine the critical displacement of the resultant rational map. We

will investigate the properties of this map h in Section 4.2.2. As stated above, by

convention we will write the first map in the mating to be the n-rabbit found in

this section. In other words, when we write F ∼= f ⊥⊥ h and F has a fixed cluster

point, we will assume that f is an n-rabbit. This again follows from the fact that

we are discussing rational maps with labelled critical points, so by convention, we

can label the critical points so that the critical point corresponding to the n-rabbit

polynomial is the first critical point.
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4.2.2 The classification of h

A sensible question to ask is: given the map f , with internal address 1p/n → n, and

the condition that F = f ⊥⊥ h has a fixed cluster cycle, what properties are satisfied

by the map h? Furthermore, if a map has these given properties, will it necessarily

admit a clustered mating with f? It turns out we can give a simple combinatorial

property for the map h which gives a necessary and sufficient condition for it to

create a clustered mating with f . See Section 4.4 for more on the combinatorics

of the map h. In this section we will be focussing on the degree 2 case, but it is

believed that the generalisation to the degree d case should be fairly simple.

Definition 4.2.4. Let θ ∈ S1 be periodic of period n, so that θ = a/(2n − 1) for

some a. Label the angles 2jθ, j = 0, . . . , n−1 cyclically by θ1, θ2, . . . , θn with θ1 = θ.

Then we say that the angle θ has angular rotation number p/n if

2θk = θk+p mod n

for each k.

Remark 4.2.5. Not every angle has an angular rotation number. We give a couple

of examples of angles that do admit an angular rotation number and one that does

not. Furthermore, in light of the discussion in the next chapter, this definition could

be called the 1-angular rotation number, but we suppress this notation for now.

The author has recently discovered that the notion of angular rotation num-

ber was discussed in [BS94], in a slightly different context. In the aforementioned

article, it was shown for any p/q, that there is a unique orbit of angles which have

angular rotation number p/q under angle doubling, and these angles correspond

to the angles of the rays landing at the α-fixed point of an n-rabbit. It is clear

that this uniqueness property is no longer true under the map t 7→ dt on the cir-

cle. However, if we add the condition that the orbit must be contained in some arc

(k/(d−1), (k+1)/d−1) on the circle, then we get uniqueness again, and the angles

in the orbit will once again correspond to the angles of rays landing at the α-fixed

point of an n-rabbit.

First we give a simple example.

Example 4.2.6. Let θ = 1/(2n − 1). Then the ordering of the angles on S1 is

0 < θ1 < θ2 < · · · < θn−1 < θn < 1.

Then the angular rotation number of θ is 1/n. Indeed, the map corresponding to

this angle is an n-rabbit which has an α-fixed point with combinatorial rotation
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number 1/n. Since all the iterates of the external ray of angle θ land at this point,

the combinatorial rotation number at α induces the angular rotation number of the

corresponding map. This is in fact true in general: if the iterates of θ all land at

the same (fixed) point then the angular rotation number of the angle is the same as

the combinatorial rotation number of the fixed point (see Lemma 4.2.9).

A more complicated example is given next.

Example 4.2.7. Let θ = 55/127. Then the iterates of θ (taken as multiples of 1/127)

are (subscripts denoting dynamical order):

θ1 = 55, θ2 = 110, θ3 = 93, θ4 = 59, θ5 = 118, θ6 = 109, θ7 = 91,

which, when written in cyclic ordering (starting with θ1) is

θ1 < θ4 < θ7 < θ3 < θ6 < θ2 < θ5.

This means that θ has angular rotation number 5/7.

Finally, we consider an angle which doesn’t have an angular rotation number.

We will see later on that these cases are precisely the maps which cannot create a

rational map with a fixed cluster point under mating.

Example 4.2.8. Let θ = 15/63. Then the iterates of θ (taken as multiples of 1/63)

are

θ1 = 15, θ2 = 30, θ3 = 60, θ4 = 57, θ5 = 51, θ6 = 39.

Starting with θ1, we get the cyclic ordering on the circle of these angles is given by

θ1 < θ2 < θ6 < θ5 < θ4 < θ3.

We see then that θ = 15/63 does not have an angular rotation number.

Lemma 4.2.9. Let f be an n-rabbit with combinatorial rotation number at the α-

fixed point p/n. Then the angular rotation number of θ1 and θ2, the angles landing

at the root point of the hyperbolic component containing f , is p/n.

Proof. All the iterates of θi have corresponding rays landing at the same point,

α. Then the external rays at this point are permuted with combinatorial rotation

number p/n, and thus the angular rotation number of θi will be p/n.

The following result is true in degree 2. We state the conjecture that this

is true in the more general degree d below it, and outline the reasons why the

generalisation is not immediate.
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Lemma 4.2.10. Suppose F ∼= f1 ⊥⊥ f2 has a fixed cluster point and where f1 is an

n-rabbit. Let α1 be the α-fixed point of f1. The graph of the periodic ray class [α1]

is a tree with a central vertex (corresponding to α1) with n edges from it, each of

which has a second endpoint labelled ri. These ri have a second edge leaving them,

which have a second endpoint at ei.

Proof. Compare with the discussion in Section 2.3.1. We discuss this proof using

the formal mating f1 ⊎ f2 so we can discuss the periodic ray classes (before the

ray classes are “collapsed” in the topological mating f1 ⊥⊥ f2 - the rational map

the mating is equivalent to is the same by Theorem 2.2.9). Each global arm at

α1 must contain a rootpoint of a critical orbit component of f2. Let ℓ be an edge

which has α1 as an endpoint. Then the angle of the external ray associated to ℓ has

denominator 2n − 1. If the other endpoint r is not a rootpoint of a critical orbit

component of f2, then it must be a branch point in J(f2), since otherwise it would

be an endpoint of J(f2), and of the graph, and this global arm would not contain

a rootpoint. Since r is a branch point, and cannot have non-zero combinatorial

rotation number (Lemma 2.3.3), there are exactly two rays landing at r, and they

are in separate orbits. So the point r is the endpoint of precisely two edges, one of

which is the edge ℓ, and the other is an edge ℓ′ whose other endpoint e is in J(f1).

But e must be an endpoint, since it cannot be equal to α1 (otherwise we would

have a loop in the ray equivalence class, and the mating would be obstructed) and

the external ray landing at e has denominator 2n − 1. But by Lemma 1.8.2, the

only biaccessible point which is the landing point of external rays with denominator

2n − 1 is α1.

So the global arm is a graph with V = {α1, r, e} and an edge set E =

{α1r, re}. Since this global arm must contain the rootpoint of a critical orbit Fatou

component of f2, and r is the only vertex in the arm that belongs to J(f2), it follows

that r is the required rootpoint. Since this argument holds for any of the global

arms, since they are mapped homeomorphically onto each other under iteration of

f1 ⊎ f2, we are done.

The difficulty in the degree d case comes about due to the fact that, when

the degree is higher than 2, the Fatou components have non-principal root points,

root points which are the landing point of only one external ray. With this being

the case, it is possible that the ray class is even simpler than that described in

Lemma 4.2.10. We know that one of the maps, f , must be an n-rabbit. Suppose

that the ray of angle θ lands at the α-fixed point of f . Then, since the only periodic

biaccessible point on J(f) is αf (by Lemma 1.8.2), the ray of angle −θ must land
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at the root point of a critical orbit Fatou component of the complementary map

h. If this root point is a principal root point (the landing point of two external

rays), then the periodic ray class is as described in Lemma 4.2.10. However, it is

possible (though we conjecture that this case never occurs) that this root point is

non-principal (the landing point of only one external ray). In this case, the periodic

ray class consists of a central vertex, corresponding to αf , which has n branches,

each with an endpoint ri which is the (non-principal) root point of a critical orbit

Fatou component of h. Since there are no other rays landing at the ri, the only

vertices of the ray class are αf and the ri.

Conjecture 4.2.11. Lemma 4.2.10 is true in degree d. In other words, the root

points of the critical orbit Fatou components of h that belong to the ray class [αf ] are

principal root points, and so are the landing points of precisely two external rays.

We now return to the degree 2 discussion, since we wish to make use of our

definition of the angular rotation number.

Proposition 4.2.12. Let f be an n-rabbit where the α-fixed point has combinatorial

rotation number p/n. Suppose that h mates with f so that F ∼= f ⊥⊥ h has a

fixed cluster point. Then one of the angles landing at the root of the critical value

component of h has angular rotation number (n− p)/n.

Proof. The ray equivalence class of the cluster point is the ray equivalence class

[αf ]. By Lemma 2.3.3 and Lemma 4.2.10, there are two rays landing at the root of

each critical orbit Fatou component of h, and they belong to different ray cycles.

Furthermore, if the ray Rfθ lands on αf , then the ray Rh−θ lands on a root of a

critical orbit Fatou component of h. Since the angle θ has angular rotation number

p/n by assumption, the angle −θ and its iterates (which land at the root points of

the critical orbit Fatou components of h) under angle doubling will have angular

rotation number (n− p)/n.

Remark 4.2.13. It is not true in general that both angles landing at the base of the

critical value component have angular rotation number (n− p)/n.

Proposition 4.2.14. All combinatorial data can be realised for a rational map with

a fixed cluster point, save for δ = 1 and δ = 2n− 1.

Proof. The exception is a result of Proposition 4.1.5. Suppose we want to construct

a rational map F with combinatorial data (ρ, δ). We show that such a map can be

created by mating two polynomials f and h. Since we want to have rotation number
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ρ = p/n, we take f to be the n-rabbit with internal address

1p/n → n.

By Proposition 4.2.3, the resultant rational map will have combinatorial rotation

number ρ = p/n at its cluster point. We now need to make a judicious choice for our

secondary map h. There are n external rays landing on αf , whose angles we label

in anticlockwise order by θ1, θ2, . . . θn, setting the angle immediately anticlockwise

from the critical value component to be θ1. Note that the denominator of the θj

is 2n − 1. Recall that the critical displacement can be defined as the combinatorial

distance between critical values. In order to get δ = 2k − 1, we need the critical

value component of h to be the landing point of Rh−θk . So we simply choose h to

be the centre of the hyperbolic component of M whose root point is the landing

point of the parameter ray RM
−θk

. Clearly h will have period n. Then it is well

known that Rh−θk lands at the root point of the critical value sector (see for example

[DH84, DH85] or [Mil00b]). Hence the map h exists and the mating F ∼= f ⊥⊥ h has

combinatorial data (ρ, δ).

The following is a converse to Proposition 4.2.12. It is actually a classification

of all angles (and therefore, maps) which can create a fixed cluster point under

mating with n-rabbits. In an informal sense, it says that any map which can create

a fixed cluster point will indeed create a fixed cluster point.

Proposition 4.2.15. Suppose h is not an n-rabbit. If an angle associated to the

map h has angular rotation number (n − p)/n, then h will mate with the map with

angled internal address 1p/n → n to create a rational map with a fixed cluster point.

Furthermore, this cluster point will have combinatorial rotation number p/n.

Proof. By Proposition 1.9.4, there are (at most) n − 2 maps with angular rotation

number (n − p)/n which are not n-rabbits. Also, all combinatorial data (excluding

the obstructed cases δ = 1 and δ = 2n − 1, which do not create rational maps)

can be obtained by mating (Proposition 4.2.14). There are therefore precisely n− 2

possible combinatorial displacements, namely δ = 3, 5, . . . , 2n− 3. It follows from a

simple counting argument that each map h has angular rotation number (n− p)/n,

and each of these must give a distinct value for δ. The final statement follows from

Proposition 4.2.3.

Note that it is a priori possible that the cyclic ordering of the kneading

sequence is not admissible in the case above. However, if any of the orderings were

not admissible, then we would not have enough maps to create all the combinatorial
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data, contradicting Proposition 4.2.14. Indeed, this proves that all cyclic orderings

with angular rotation number p/n are admissible. The author does not know how

much is known about admissible cyclic orderings of kneading sequences, but it is

suggested in the introduction to [BS01] that very little can be said, in general.

We now prove Theorem 4.2.1.

Proof. By proposition 4.2.2, one of the maps must be an n-rabbit, and by Propo-

sition 4.2.3, the internal address of this n-rabbit will be 1p/n → n. From Propo-

sition 4.2.12, the other map has an associated angle with angular rotation number

(n− p)/n.

Now suppose that h is not an n-rabbit and has an associated angle θ that

has angular rotation number (n− p)/n. By Proposition 4.2.15, the map f ⊥⊥ h has

a fixed cluster point.

4.3 Classifying the rational maps

This aim of this section is to show that the combinatorial data of a map with a fixed

cluster point completely determines it up to Möbius transformation. In actual fact,

we will be showing that the combinatorial data completely defines the Thurston

class of the rational map, and since each Thurston class contains only one rational

map, this means that the result of this section completely classifies rational maps

with a fixed cluster point. Note that in particular, no assumption is made on these

rational maps being matings here, though this result will follow.

The following is a well known result which is known in the literature as the

Alexander trick, named after J.W. Alexander. It allows us to study the simpler case

of maps with only one cluster of critical points. There is some ambiguity as to the

correct definition of the trick, so I have stated and proved the two versions, as both

will be required in this section. The motivation behind both proofs is very similar

- we “comb” the boundary values to a map on the whole of the closed disk. In the

simple case this takes the form of an extension of a homeomorphism on the circle,

whereas in the second case, the combing takes the form of an isotopy.

Lemma 4.3.1 (Alexander Trick - simple version). Any homeomorphism f : S1 → S1

can be extended to a homeomorphism f̃ : D → D.

Proof. Define f̃ : D → D by f̃(z) = tf(z/t). Then f̃ is the composition of three

homeomorphisms σ, f and τ and hence is a homeomorphism (check the following

proof for more details on the three homeomorphisms).
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Proposition 4.3.2 (Alexander Trick - isotopy version). Let f, g : D → D be home-

omorphisms of the closed disk to itself. If f = g on ∂D then f and g are isotopic.

Proof. By considering g−1 ◦ f , it suffices only to consider the case where one of the

maps is the identity. So let f be a homeomorphism of D which is the identity on

the boundary. Define the map Φ: D× [0, 1] by

Φ(z, t) = φt(z) =

{
tf

(
z
t

)
, 0 ≤ |z| < t;

z, t ≤ |z| ≤ 1.
(4.1)

It is clear that φ0 is the identity, and that φ1 = f , so Φ is a homotopy from the

identity to f . It remains to show that Φ is indeed an isotopy, meaning that all the

φt are homeomorphisms of the closed disk.

We already know that φt is a homeomorphism for t ∈ {0, 1}. So fix t ∈ (0, 1).

Then for all z with |z| ≥ t, we have φt(z) = z. So φt is a homeomorphism from

the set {z : t ≤ |z| ≤ 1} to itself. On the other hand, we will show that the map

z 7→ tf(z/t) is a homeomorphism from Dt to itself. Indeed, it is the composition of

the three homeomorphisms

σ : Dt → D, σ(z) =
z

t
,

f : D → D,

τ : D → Dt τ(z) = tz.

Since the composition of two homeomorphisms is a homeomorphism, this means φt

is a homeomorphism. So it remains to show that φt is continuous on the circle of

radius t. Since the identity map and z 7→ tf(z/t) agree on the circle of radius t,

and are both continuous on the boundary, φt a homeomorphism, and so Φ is an

isotopy.

The above proof shows that MCG(D) = 0, the trivial group with one element.

It is this rigidity of (orientation-preserving) homeomorphisms of the disk that allows

us to obtain Thurston equivalence in the next section.

We will make use of the following fact from topology (see for example [HY61],

Lemma 3.19).

Lemma 4.3.3. Any continuous map from a compact space into a Hausdorff space

is closed.

In particular, if the map is a bijection, we can say even more (see e.g [Sut81],

Theorem 5.9.1).
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Proposition 4.3.4. Let f be a continuous bijection from a compact space to a

Hausdorff space. Then f is a homeomorphism.

4.3.1 Proof of Thurston Equivalence

Recall that after Theorem 2.2.8, (Thurston’s theorem), we discussed some of the

problems of its applications. We will now use Alexander’s Trick to show that the

configuration of a cluster (in terms of its combinatorial rotation number and critical

displacement) uniquely defines the rational map in the sense of Thurston. For

more on the use of algebraic properties in the study of Thurston’s theorem, see

[Pil03, Kam01]. We will be using standard results about ramified covering maps,

see for example [For81].

Theorem 4.3.5. Suppose that two rational maps F and G (with labelled critical

points) have a fixed cluster with combinatorial rotation number p/n and critical

displacement δ. Then F and G are equivalent in the sense of Thurston.

The proof will proceed as follows. To prove Thurston equivalence, we need

to find homeomorphisms Φ, Φ̂ : C → C which satisfy

1. Φ ◦ F = G ◦ Φ̂.

2. Φ|PF = Φ̂|PF .

3. Φ and Φ̂ are isotopic rel PF .

We will first construct the homeomorphism Φ. We then try to construct the homeo-

morphism Φ̂ so that it satisfies the conditions 1 to 3 above. The first two conditions

will be satisfied by the construction given, whilst the third will follow from an appli-

cation of Alexander’s Trick. The whole proof will be broken down into a sequence

of lemmas.

In what follows, we will denote the stars of F and G by XF and XG respec-

tively. Recall that the star XF of a rational map F is made up of the union of

the internal rays inside the critical orbit Fatou components and the cluster point.

By Böttcher’s theorem, the dynamics of the first return map on each critical orbit

Fatou component is then conjugate to the map z 7→ zd on the disk, D. We also can

label the critical orbit points cyclically as follows. Let c0 be the first critical point,

in terms of the ordering induced by the critical displacement, so that the critical

displacement is defined to be the combinatorial distance (anticlockwise) around the

star from c0 to the other critical point. We label, counting anticlockwise, the other

critical orbit points by c1, c2, . . . , c2n−1, and denote the Fatou component containing
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ci by Ui. Note that at this point we are not worried about which critical orbit the

ci are in, since we are only concerned with the dynamics of the first return map on

each component. Finally let the 0-internal ray in Ui be labelled Ji.

In the following lemma, the objects associated with the map G will be given

a ′ to differentiate them from the objects associated with F . For example, the first

critical point of XG will be labelled c′0, and it will be in the Fatou component U ′
0.

Lemma 4.3.6. Suppose F and G have the same combinatorial data. Then there

exists a conjugacy φ : XF → XG. That is, φ ◦ F = G ◦ φ on XF . Furthermore, the

conjugacy can be constructed so as to preserve the cyclic ordering of the internal

rays in the star.

Proof. We will show that there is a conjugacy between the dynamics on Ji and J
′
i

for each choice of i. There is a map hF,i conjugating the dynamics on Ui with that of

z 7→ zd on D, so that hF,i(Ji) = [0, 1). Similarly, there exists a conjugacy hG,i from

U ′
i to z 7→ zd on D, with hG,i(Ji) = [0, 1) . So the map φi = h−1

G,i◦hF,i conjugates the

dynamics on Ui with that on U ′
i , and in particular takes Ji to J

′
i . So the restriction

of φi to Ji is the required conjugacy on Ji.

The required conjugacy φ is then defined by mapping the cluster point c ∈ XF

to the cluster point c′ ∈ XG, (i.e, φ(c) = c′) and then picking φ|Ji = φi.

Lemma 4.3.7. The star X of a cluster point is locally connected.

Proof. Let the star X have 2n branches. Denote the interval [0, exp(2πik)/n)] by

Ik. We will call the set

S2n =

2n−1⋃

k=0

Ik

the 2n-canonical star. It is clearly locally connected. This is because the local

neighbourhoods of a point z look like a half-open interval, an open interval or a star

depending on whether |z| = 1, 0 < |z| < 1 or z = 0 respectively. Now let φ be

a map taking S2n homeomorphically onto X, so that 0 maps to the cluster point

and the intervals Ik each map to a unique branch of the star X. Then X is the

homeomorphic image of a locally connected space and so is locally connected.

Lemma 4.3.8. Let φ be a homeomorphism from a star XF of a rational map F to

a star XG of a rational map G which preserves the cyclic ordering of the branches

of the stars. Then there exists continuous maps η̃F and η̃G and a homeomorphism
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ψ such that the following diagram commutes.

∂D
ψ

//

η̃F

��

∂D

η̃G

��
XF φ

// XG

Proof. By using a Möbius transformation if necessary, we set the cluster points of

XF and XG to be at 0 ∈ C.

We remark that C\XF is simply connected, since XF is a connected set (see,

for example [Con78], Chapter VIII, Theorem 2.2). Hence, by the Riemann Mapping

Theorem, there exists a Riemann map ηF : C \ D → C \XF . Similarly, there exists

a Riemann map ηG : C \D → C \XG.

By Lemma 4.3.7, the set XF is locally connected, and so by Carathéodory’s

Theorem (Theorem 1.3.6), we can extend the maps ηF and ηG to C\D in a continuous

way. We label these extensions η̃F and η̃G.

Since φ is a homeomorphism, it maps arms of the star XF to arms of XG.

Without loss of generality, we assume φ is such that φ([c, ci]) = [c′, c′i]. In particular

we have φ(ci) = c′i. The general choice of φ will have φ([c, ci]) = [c′, c′i+k] for some

k.

We now define the map ψ. Clearly, we would like to define ψ = η̃−1
G ◦ φ ◦ η̃F .

However, since most points in XG (indeed, all points not in PG) have more than

one pre-image under the mapping η̃G, this function is not well-defined. However,

it is possible to use this motivating idea to construct ψ, by choosing the “correct”

pre-image when necessary.

Note that each point in the postcritical set of F has precisely one pre-image

under η̃F , and the cyclic ordering of the η̃−1
F (ci) is the same as the cyclic ordering of

the ci. Since the same is true for η̃G (that is, points on the postcritical set have only

one pre-image), we can define ψ = η̃−1
G ◦ φ ◦ η̃F on the postcritical set. Since φ will

rotate the arms of the star by k places anticlockwise, ψ will do the same. For ease

of notation we will write pi = η̃−1
F (ci) and p′i = η̃−1

F (c′i). With this new notation,

therefore, we have ψ(pi) = p′i.

The cluster point c in XF has 2n preimages under η̃F , and each pre-image

lies in one of the arcs (pi, pi+1) for i = 0, . . . , 2n−1 (otherwise cyclic ordering would

not be maintained). Label the pre-image in (pi, pi+1) by ξi. Similarly, the cluster

point c′ in XG has 2n preimages under η̃G, and each pre-image lies in one of the
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arcs (c′i, c
′
i+1) for i = 0, . . . , 2n − 1. So we denote the pre-image in (c′i, c

′
i+1) by

ξ′i. We then define ψ(ξi) = ξ′i, and note that this satisfies η̃G ◦ ψ = φ ◦ η̃F , since

φ(c) = c′. Furthermore, this agrees with the cyclic ordering induced on the circle

by the rotation of arms in the map φ. See Figure 4.5 for the construction so far in

the case where the critical orbits have period 4.

φ
ψ

c′
0

c′
4 p′

0p′
4

c0

c4 p0p4
η̃F

η̃G

p′
1

p′
2

p′
3

p′
5

p′
6

p′
7

c′
1

c′
2

c′
3

c′
5

c′
6
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7

c1

c2
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c5
c6

c7
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p2
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ξ1
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ξ3

ξ4

ξ5 ξ6

ξ7

ξ′
0

ξ′
1

ξ′
2

ξ′
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ξ′
5

ξ′
6

ξ′
7

Figure 4.5: Construction of the map ψ in Lemma 4.3.8.

Now let z ∈ XF where z is not in the postcritical set or equal to the cluster

point. Then z has precisely two pre-images under η̃−1
F and the point z′ = φ(z) ∈ XG

has two pre-images under η̃−1
G . For the diagram in the statement of the lemma to

commute, we need to have ψ(η̃−1
F (z)) ∈ η̃−1

G (z′). It is clear that z must belong to

the interior of some internal ray of the form [0, ci] ⊂ XF , hence z
′ belongs to the
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internal ray [0, c′i] ⊂ XG. This means that there is a point w1 of η̃−1
F (z) in the arc

(ξi−1, pi) and the other point w2 must be in the arc (pi, ξi). Furthermore, the two

pre-images of z′ (under the map η̃G) are w
′
1 ∈ (ξ′i−1, p

′
i) and w

′
2 ∈ (p′i, ξi). We now

define ψ(w1) = w′
1 and ψ(w2) = w′

2. This definition satisfies φ ◦ η̃F = η̃G ◦ψ. Notice

further that this construction will preserve the cyclic ordering of the points on the

circle.

We now show that ψ is a homeomorphism. The construction of ψ shows it

is clearly bijective, so we only need to show ψ is continuous. Then, since ψ will

be a continuous bijection from a compact space to a Hausdorff space, it will be a

homeomorphism by Proposition 4.3.4. Indeed, since η̃F and φ are continuous maps,

it is sufficient to check the choices we made for η̃−1
G are done in a continuous way.

We have three cases.

Case 1: z /∈ {p0, . . . , p2n−1, ξ0, . . . , ξ2n−1}. Suppose z lies in some arc (pi, ξi). Then

any sequence vn → z will belong to (pi, ξi) if n is large enough. Then by construction

we will have ψ(vn) ∈ (p′i, ξ
′
i). Now we notice that η̃G is a homeomorphism on (p′i, ξ

′
i)

and so we must have ψ is continuous at z as it is (locally) the composition of

continuous maps. A similar argument holds when z belongs to some arc (ξi, pi+1).

Case 2: z = pi. Let xn → z. Then φ(η̃F (xn)) ∈ (0, c′i] for n sufficiently large

and by continuity of η̃F and φ, φ(η̃F (xn)) → c′i. Now the map η̃G is a branched

covering when restricted to (ξ′i−1, ξ
′
i), with image (0, c′i]. The unique branch point

is p′i which has its image at c′i. So as we have φ(η̃F (xn)) → c′i, we must have

η̃−1
G (φ(η̃F (xn))) → η̃−1

G (c′i) = p′i.

Case 3: z = ξi. Let yn → z. Then for n sufficiently large, yn ∈ (pi, pi+1),

φ(η̃F (yn)) ∈ [c′, c′i) ∪ [c′, ci+1)) and φ(η̃F (xn)) → c′. So η̃−1
G (φ(η̃F (yn))) ∈ (p′i, p

′
i+1),

by the construction of ψ (the other pre-images of φ(η̃F (yn)) cannot be the images

of ψ, since as yn ∈ (pi, pi+1), we must have ψ(yn) ∈ (p′i, p
′
i+1)). We then use the fact

that η̃G restricted to (p′i, p
′
i+1) is a homeomorphism, which once again means ψ is

continuous at z.

Hence we have shown ψ is a homeomorphism.

Remark 4.3.9. Given φ, the homeomorphism ψ is actually unique, which can be

proved by considering the facts that we have the identity η̃F ◦ φ = ψ ◦ η̃G and there

is a cyclic order induced by φ, η̃F and η̃G.

We briefly comment on the properties of the Riemann maps η̃F and η̃G. As

discussed above, they are homeomorphisms on C\D and, by the local connectivity of

the stars, they extend to continuous maps maps on C\D. This extension maintains

the cyclic ordering of points, in a way similar to the way that external rays (and
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their landing points) maintain the cyclic ordering of points when mapping from ∂D

to J(f). One way of seeing this is by thinking of the images of the radial lines

{re2πiθ | r ∈ [1,∞)} ⊂ C \D,

under η̃F and η̃G, as an analogy to the external rays. This cyclic ordering will be an

important detail that will need to be considered when using the extended Riemann

maps to construct homeomorphisms later in this section.

Corollary 4.3.10. Let φ be the map from Lemma 4.3.6. Then there exists (the

extension of) Riemann maps η̃F and η̃G and a homeomorphism ψ such that

∂D
ψ

//

η̃F

��

∂D

η̃G

��
XF φ

// XG

commutes.

Proof. Trivial, since by setting φ from Lemma 4.3.6 to be the φ in Lemma 4.3.8 we

are done.

Proposition 4.3.11. The map ψ of Corollary 4.3.10 can be extended to a homeo-

morphism Ψ: C \ D → C \ D. This map Ψ induces a homeomorphism Φ: C → C,

such that Φ|XF = φ (i.e, Φ is an extension of φ to the sphere) and

C \ D
Ψ //

η̃F

��

C \D

η̃G

��

C Φ
// C

commutes.

Proof. The extension of ψ to Ψ is an application of the simple form of Alexander’s

Trick.

We want Φ to be an extension of φ, and hence it is necessary that we have

Φ(z) = φ(z) on XF . Note that, considering η̃−1
F (z) as a set, the commutative
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diagram for ψ in Corollary 4.3.10 suggests we can write φ(z) = (η̃G ◦ψ)(η̃−1
F (z)) for

z ∈ XF . Bearing this in mind, define

Φ(z) =

{
ηG ◦Ψ ◦ η−1

F (z), z ∈ C \XF ;

φ(z), z ∈ XF .

The discussion above suggests that if V ⊂ C then Φ−1(V ) = (η̃G ◦Ψ ◦ η̃−1
F )−1(V ) =

η̃F (Ψ
−1(η̃−1

G (V ))).

We will now show Φ is a homeomorphism. Let V ⊂ C be closed. Then

since η̃G and Ψ are continuous, the set Ψ−1(η̃−1
G (V )) is closed in C \ D. Now we

note that since η̃F is a continuous function from the compact space C \ D to the

Hausdorff space C, by Lemma 4.3.3 it is a closed function. This means the set

η̃F (Ψ
−1(η̃−1

G (V ))) is closed in C. Hence we have shown that if V is closed in C then

the set Φ−1(V ) = η̃F (Ψ
−1(η̃−1

G (V ))) is closed in C, and so Φ is continuous. Now we

see that Φ is a bijective continuous map from the compact space C to the Hausdorff

space C, and hence it is a homeomorphism by Proposition 4.3.4.

Remark 4.3.12. The proof that Φ is a homeomorphism is essentially just using the

fact that η̃F and η̃G are quotient maps. This means that η̃G ◦Ψ is a quotient map,

and so an application of Corollary 22.3 in [Mun00] yields the necessary result.

We note that, so far in this section, we have not needed any requirement

about the combinatorial data being equal, so these results hold in full generality.

However, the next result is the point where the equality of combinatorial data is

needed.

Before we prove the next proposition, we briefly discuss the space C\XF and

its pre-image C\F−1(XF ). Informally, first note that the star XF has d pre-images

in C, and each pre-image is disjoint, save for the fact that they all contain the critical

points of F . More exactly, we notice that the set XF \{critical values} has d disjoint

pre-images under F , and the union of one of these pre-images with the two critical

points will map homeomorphically onto XF . We call each of these pre-images, with

its union with the critical points, a pre-image star of XF . Note that there is a cyclic

order of these pre-image stars at c0 (the first marked critical point), so that we can

label them as follows. Label XF by X1. Counting anticlockwise from this pre-image,

label the remaining stars X2,X3, . . . Xd.

Furthermore, we notice that C\F−1(XF ) = C\
⋃d
j=1Xj contains d connected

components. Label these components in anticlockwise order, starting with A1 as the

component anticlockwise from XF = X1 with respect to the cyclic ordering at c0,

and the others in order asA2, . . . ,Ad. We remark that in this notation, the boundary

84



of Aj is contained in Xj ∪Xj+1. With this notation, the map F |Aj : Aj → C \XF

is a homeomorphism, and the map F |
C\F−1(XF )

: C\F−1(XF ) → C\XF is a degree

d covering map. For ease of notation we write Fj = F |Aj . See Figure 4.6. We

A3

X1

X2
X3

A2

A1

Figure 4.6: The star (bold line) and pre-image stars (dashed line) and how they
separate the sphere. The black dots represent the critical points, where the star and
pre-stars meet.

can carry out a similar construction with G. Using the same construction as above,

the pre-image stars of XG are X ′
1,X

′
2, . . . ,X

′
d and the connected components of

C \G−1(XG) are A′
1,A

′
2, . . . ,A

′
d. Gj will denote the map G|A′

j
.

Proposition 4.3.13. There exists a homeomorphism Φ̂ : C → C so that

C
Φ̂ //

F

��

C

G

��

C Φ
// C

commutes.

Proof. As with Lemma 4.3.8, this proof is constructive. First note that if z ∈ XF ,

then we define Φ̂(z) = φ(z) ∈ XG, taking advantage of the fact that φ is a conjugacy

between the dynamics on XF and XG (Lemma 4.3.6).

Now suppose z is in F−1(XF ). The case where z ∈ XF is dealt with above,

so we may assume z ∈ Xj for some j ∈ {2, . . . , d}. Then for the diagram to commute
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we require Φ̂(z) ∈ G−1 ◦Φ ◦F (z) = G−1 ◦φ ◦F (z). The set G−1 ◦Φ ◦F (z) contains

d elements, one each in X ′
1, . . . ,X

′
d. Since z ∈ Xj , we choose Φ̂(z) ∈ X ′

j .

Finally, suppose z ∈ C \ F−1(XF ). Then z ∈ Aj for some j ∈ {1, . . . , d}.

With a similar argument to that in the previous paragraph, the set G−1 ◦Φ ◦ F (z)

contains d elements, one in each of the Aj. So as we have, z ∈ Aj, we define Φ̂(z)

to be the element of G−1 ◦Φ ◦ F (z) in A′
j .

We now show Φ̂ is a homeomorphism. Let U be an open disc in C, which is

disjoint from the critical points. We will show Φ̂−1(U) is open. By commutativity,

Φ̂−1(U) is contained in F−1(Φ−1(G(U))). Since G is a rational map, G(U) is an

open set, and by continuity of Φ, Φ−1(G(U)) is also open. Furthermore, Φ−1(G(U))

is disjoint from the two critical values, and so F−1(Φ−1(G(U))) is made up of d

disjoint open sets. By the construction of Φ̂ given above, we see that precisely one

of these is the set Φ̂−1(U), which is therefore open. This proves continuity for the

non-critical points.

If U is a disc which contains one critical point, then a similar argument shows

that F−1(Φ−1(G(U))) is a single simply connected open set, and so Φ̂ is continuous

at the critical points. By Proposition 4.3.4, Φ̂ is a homeomorphism.

Lemma 4.3.14. There exists a homeomorphism Ψ̂ : C \D → C \ D so that

C \ D
Ψ̂ //

η̃F

��

C \D

η̃G

��

C
Φ̂

// C

commutes.

Proof. This is analogous to the proof of Proposition 4.3.11. We define

Ψ̂(z) =

{
η−1
G ◦ Φ̂ ◦ ηF (z), z ∈ C \ D;

ψ(z), z ∈ ∂D.

Again, continuity on C \D is assured by the fact that Ψ is defined as a composition

of homeomorphisms there. So we only need to check continuity on the boundary,

∂D.

The cyclic ordering induced by the Riemann maps and Φ̂ is induced by the

cyclic ordering from φ and ψ. Notice, if xn → x ∈ XF , limn→∞(Φ̂(xn)) = φ(x). Also
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ψ = Ψ̂|∂D is chosen as the homeomorphism of the circle which satisfies φ ◦ η̃F (z) =

η̃G ◦ψ(z) for all z. This means that ψ(z) is the element of η̃G(η̃
−1
G ◦ Φ̂◦ η̃F (z)) which

maintains the cyclic ordering of the points. Hence any sequence converging to z

must converge to ψ(z) under Ψ̂ (else we would lose the ordering), and so the given

boundary values for Ψ̂ gives continuity.

We now invoke Proposition 4.3.4 to show Ψ̂ is a homeomorphism.

We are now ready to prove Theorem 4.3.5.

Proof of Theorem 4.3.5. We claim that we have the following commutative diagram.

XF

φ

��

F

!!DD
DD

DD
DD

DD
DD

DD
DD

D
∂D

η̃Foo

ψ

��

XF

φ

��

∂D
η̃Foo

ψ

��

/.-,()*+1 /.-,()*+2 /.-,()*+3

XG ∂D
η̃G

oo

XG

G

==zzzzzzzzzzzzzzzzz

∂D
η̃G

oo

Each part of this diagram is justified as follows.

1. φ is a conjugacy so φ◦F = G◦φ. The existence of φ is given by Lemma 4.3.6.

2. Lemma 4.3.8

3. Lemma 4.3.8.

This diagram extends to give a commutative diagram:
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(C,XF )

(Φ̂,φ)

��

F

$$HHHHHHHHHHHHHHHHHHH
(C \ D, ∂D)

η̃Foo

(Ψ̂,ψ)

��

(C,XF )

(Φ,φ)

��

(C \ D, ∂D)
η̃Foo

(Ψ,ψ)

��

/.-,()*+1 /.-,()*+2 /.-,()*+3

(C,XG) (C \ D, ∂D)
η̃G

oo

(C,XG)

G

::vvvvvvvvvvvvvvvvvvv

(C \ D, ∂D)
η̃G

oo

where the notation (Φ, φ) : (C,XF ) → (C,XG) means the map is defined as Φ on

C, and its restriction to XF is φ. The other maps are defined analogously. This

diagram is justified by

1. Proposition 4.3.13.

2. Proposition 4.3.11

3. Lemma 4.3.14

We now remark that the maps Φ and Φ̂ agree on XF , and so agree on the set

PF ⊂ XF . Furthermore, Ψ is isotopic to Ψ̂, by Alexander’s Trick (Proposition 4.3.2),

and so we see that the commutative diagram above (and the fact that η̃F and η̃G

are homeomorphisms on C \ D) gives us that Φ and Φ̂ are isotopic rel XF and so

isotopic rel PF . Hence F and G are Thurston equivalent.

We now prove Theorem 4.0.3.

Proof. By Proposition 4.2.14, all admissible combinatorial data can be obtained by

matings, and by Theorem 4.3.5 the combinatorial data fixes the rational map in the

sense of Thurston. By Theorem 4.2.1, if the combinatorial rotation number of F is

p/n, then one of the maps is an n-rabbit with angled internal address 1p/n → n and

the other map has an associated angle with angular rotation number (n− p)/n.
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4.4 Combinatorial Progressions

It follows from the preceding work that every map with a one cluster can be thought

of as a mating, as Theorem 4.3.5 shows that combinatorial data completely describes

a rational map, and Proposition 4.2.14 shows that all (permitted) combinatorial data

can be realised by the mating construction. Furthermore, Proposition 4.2.2 says that

precisely one of the maps in the mating is an n-rabbit.Recall from Chapter 2 that

a necessary and sufficient condition for F to be a mating is that there exists an

equator.

Before starting the next proposition, we introduce some terminology. Recall

that the star of F is the union of the cluster point c and the 0-internal rays of the

critical orbit Fatou components. By Proposition 3.2.2, the components alternate

cyclically between components of the first critical point c1 and components of the

second critical point c2. Consider the subset of the star made up of union of the

cluster point with the 0-internal rays of the critical orbit components of the critical

point ci. Denote this set by Xi
F and call it the ith substar of XF . We remark that

X1
F ∩X2

F = {c}. We drop the subscript F when the map F is clear in the context.

Proposition 4.4.1. Let F be a rational map with a fixed cluster point, and let X be

the star of F . Then there are precisely two equators. Each equator is (isotopic to)

the boundary of a tubular neighbourhood of one of the substars Xi (see Figure 4.7).

E
c2

c0

c3

c1

c′0 c′1

c′2

c′3

Figure 4.7: The (isotopy class of the) equator in the fixed cluster point case.
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Proof. We first show that a tubular neighbourhood E of the substar is an equator.

The pre-image F−1(E) of this tubular neighbourhood of the substar is a tubular

neighbourhood of the substar and its pre-images. Since the preimage of the substar

will not contain any points in the postcritical set of F , this pre-image will be isotopic

to the tubular neighbourhood of the star rel PF (see Figure 4.8). Hence E is an

equator.

c0

c2

c3

c1

c′
0

c′
1

c′
2

c′
3

p2

p3

p1

F−1(E)

Figure 4.8: The pre-image of the equator from Figure 4.7.

We note that these are the only two equators by Proposition 4.2.2. Since

one of the maps must be an n-rabbit, there are only two matings which yield this

rational map. Hence there can only be two equators.

The above result comes about from the observation that, at least in this

case, the equators can be seen as tubular neighbourhoods of the Hubbard tree.

Indeed, the Hubbard tree of an n-rabbit is already in the form of a substar. It

is also possible to consider that the equator can also be thought of (isotopically)

as a tubular neighbourhood of the second map, an observation which leads to the

following proposition.

To set our ideas, we will from now on suppose that the first map is the

n-rabbit when considering the critical displacement. We now study some of the be-

haviour one finds for the non-rabbit map for given combinatorial data. In particular,

we will be focussing on describing these maps using the language of Section 1.7.

We begin with an algorithm.
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Algorithm 4.4.2. Suppose F has a fixed cluster cycle with star X and with com-

binatorial data (ρ, δ). Then the following steps yields the kneading sequence (and

hence, the internal address) of the secondary map h.

1. Let the period of the critical orbits be n. We number the endpoints of the

star as follows. Setting c1, the first critical point, to be at e0, label the other

endpoints in anticlockwise order by 1, 2, . . . , 2n − 1. Notice that c2 will be at

position eδ = e2k+1, by definition of the critical displacement.

2. These endpoints (excluding c2 = e2k+1) that belong to the orbit of c2 can be

divided into two sets. One is the set of endpoints {e1, e3, . . . , e2k−1} and the

other is the set of endpoints {e2k+3, e2k+5, . . . , e2n−1}. Denote the set contain-

ing F (c2) by Y1 and the other set by Y0.

3. Denote the critical orbit of c2 by F (c2) = z1, F
◦2(c2) = z2, . . . F

◦(n−1)(c2) =

zn−1 and F ◦n(c2) = c2 = zn. Note that in this notation we have z1 ∈ Y1.

4. Compute the kneading sequence as follows. Set νn = ∗. If zi ∈ Yj, then write

νi = j.

5. The kneading sequence of h is ν = ν1ν2 · · · νn.

Proof. We first make an observation about the ray equivalence class of the cluster

point, which by the preceding work is precisely the ray equivalence class of α1. By

Lemma 4.2.10, this class is star shaped. Let γ be the global arm of the star which

contains the rootpoint of the critical point component of f2. Then this arm separates

the set C\(K(f1)∪K(f2)) into two halves. In particular, this arm cuts the f2 plane

into two connected components A1, which contains the critical value of f2, and A0.

However, we note that these components correspond precisely to the division of the

plane induced by the kneading sequence definition. Hence the kneading sequence

ν = ν1ν2, . . . for the map f2 has νj = 1 if and only if f2(0) ∈ A1. But, using the

notation of the statement of the algorithm, we have Pf2∩A1 = Y1 and Pf2∩A0 = Y0.

Hence the algorithm gives the correct kneading sequence for f2.

4.4.1 Rotation number ρ = 1/n

Before making full use of Algorithm 4.4.2, we tackle the simple case where the

rotation number is 1/n.

Proposition 4.4.3. Suppose F has a fixed cluster point with rotation number ρ =

1/n. Then the internal addresses of the secondary maps f2 are given in Table 4.1.
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Critical displacement Internal address of f2
1 1 → n (Obstructed)

3 1 → n− 1 → n

5 1 → n− 2 → n− 1 → n

7 1 → n− 3 → n− 2 → n− 1 → n

· · · · · · · · · · · ·

2n− 5 1 → 3 → 4 → 5 → · · · → n− 1 → n

2n− 3 1 → 2 → 3 → 4 → · · · → n− 1 → n

2n− 1 1 → n (Obstructed)

Table 4.1: Internal addresses in the rotation number 1/n case.

Proof. Denote f◦j2 (0) = cj for each j. Then if the critical displacement is 2k + 1,

then the set Y0 contains k elements: Y0 = {cn−k, cn−(k−1), . . . , cn−2, cn−1}. Hence

Y1 = {c1, c2, . . . , cn−k−1} and so the kneading sequence for f2 is made up of a

string of (n − k − 1) 1s, followed by a string of k 0s and then a ∗. In other words

ν = 1n−k−10k∗.

A simple calculation then yields the internal address 1 → n− k → n− (k −

1) → · · · → n− 1 → n.

Proposition 4.4.4. Suppose we fix the critical displacement δ = 2k + 1 and have

rotation number ρ = 1/n. Letting n go to infinity, the sequence of maps giving δ as

the critical displacement is as in Table 4.2.

Denominator of ρ Internal address of f2
k + 1 1 → n (Obstructed)

k + 2 1 → 2 → 3 → · · · → k + 2

k + 3 1 → 3 → 4 → · · · → k + 3

· · · · · · · · · · · ·

k + ℓ 1 → ℓ→ ℓ+ 1 → · · · → k + ℓ

· · · · · · · · · · · ·

Table 4.2: Internal addresses for δ = 2k + 1 for ρ of the form 1/n.

Proof. Label the points on the star which belong to the critical orbit of the second

critical point by taking e0 to be the critical point, and e1, e2, . . . , en−1 to be the

other points in anticlockwise order. Clearly for a fixed cluster point with two period

n orbits, the largest the critical displacement can be is 2n − 1. Hence the lowest

period yielding a critical displacement of 2k+1 is period k+1. In this case we have

the critical points being adjacent, and so the mating is obstructed. Furthermore,
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the set Y1 = {e1, e2, . . . , en}, hence the kneading sequence is 1 · · · 1∗ and the internal

address is 1 → n.

Now suppose we have the rotation number is 1/(k + j). Then if the critical

displacement is 2k + 1 then the set Y0 = {ej , ej+1, . . . , ek+j−2, ek+j−1}. This gives

a kneading sequence of 1j−10k∗, and hence an internal address 1 → j → j + 1 →

· · · → k + j.

4.4.2 Rotation number ρ = 2/n

Proposition 4.4.5. Suppose F has a fixed cluster point with rotation number ρ =

2/n. Then the internal addresses of the secondary maps f2 are given as in Table 4.3.

δ Internal address of f2
1 1 → n (Obstructed)

3 1 → n−1
2 → n− 1 → n

5 1 → n−1
2 → n

7 1 → n−3
2 → n−1

2 → n− 2 → n− 1 → n

9 1 → n−3
2 → n−1

2 → n

· · · · · · · · · · · ·

4k − 1 1 → n−(2k−1)
2 → n−(2(k−1)−1)

2 → · · · → n−1
2

→ n− k → n− (k − 1) → · · · → n

4k + 1 1 → n−(2k−1)
2 → n−(2(k−1)−1)

2 → · · · n−1
2 → n

· · · · · · · · · · · ·

2n− 5 1 → 3 → 4 → 5 → · · · → n− 1 → n

2n− 3 1 → n+1
2 → n

2n− 1 1 → n (Obstructed)

Table 4.3: Internal addresses in the rotation number 2/n case.

Proof. If the rotation number is 2/n, then n is an odd integer. Using the same

notation as in the proof of the previous proposition, we remark that it is a simple

calculation that
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e1 = cn+1
2
,

e2 = c1

e3 = cn+3
2

e4 = c2

· · · · · ·

e2j−1 = cn+(2j−1)
2

e2j = cj

· · · · · ·

en−3 = cn−3
2

en−2 = cn−1

en−1 = cn−1
2
.

This follows from observing the orbit of the generator 2 in the group (Zn,+).

If δ = 1 or 2n − 1, then in both cases we have Y0 = ∅ and so the internal

address is 1 → n. If δ = 2n − 3 then Y0 = e1 = cn+1
2

and so the internal address is

1 → n+1
2 → n. We now consider all the other critical displacements.

If δ = 4k − 1 then the first critical point must be between en−(2k−1) and

en−2k in the cyclic ordering. Hence

Y0 = {en−1, en−2, en−3, . . . , en−(2k−1)}

= {cn−1
2
, cn−1, cn−3

2
, cn−2, . . . , cn−(2(k−1)−1)

2

, cn−(k−1), cn−(2k−1)
2

}

= {cn−(2k−1)
2

, cn−(2(k−1)−1)
2

, . . . , cn−1
2
, cn−(k−1), cn−(k−2), · · · , cn−1}

This gives a kneading sequence that looks like

n−2k−1
2︷ ︸︸ ︷

1 · · · 1

k︷ ︸︸ ︷
0 · · · 0

n−(2k−1)
2︷ ︸︸ ︷

1 · · · 1

k−1︷ ︸︸ ︷
0 · · · 0 ∗,

and a (somewhat laborious!) calculation yields the correct internal address 1 →
n−(2k−1)

2 → n−(2(k−1)−1)
2 → · · · n−1

2 → n− k → n− (k − 1) → · · · → n.

If δ = 4k+1 then the first critical point will be in between en−2k and en−2k+1

in the cyclic ordering. Comparing to the example with δ = 4k − 1, we see that this

means that Y0 is almost the same in this case, save for the addition of the element
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cn−k. In other words

Y0 = {cn−(2k−1)
2

, cn−(2(k−1)−1)
2

, . . . , cn−1
2
, cn−k, cn−(k−1), cn−(k−2), · · · , cn−1}

which gives the kneading sequence

n−2k−1
2︷ ︸︸ ︷

1 · · · 1

k︷ ︸︸ ︷
0 · · · 0

n−2k−1
2︷ ︸︸ ︷

1 · · · 1

k︷ ︸︸ ︷
0 · · · 0 ∗,

and this again yields the correct internal address 1 → n−(2k−1)
2 → n−(2(k−1)−1)

2 →

· · · n−1
2 → n.

An interesting question is to see if it makes any sense to take limits of com-

binatorial data. In other words, given some combinatorial data (ρ, δ) with perhaps

ρ irrational, can we find a sequence of combinatorial data (which each correspond

to a unique rational map Fn up to Möbius transformation) converging to (ρ, δ) and

then see if these rational maps Fn converge in some sense. Also, would this limit

be independent of the sequence? Initial attempts have been made to answer this

question.

We can also do this in the language of matings. We take the pairs of maps

(fn, gn) which give the combinatorial data (ρn, δn) converging to (ρ, δ). We then see

if the maps fn and gn converge (perhaps in the sense of their parameters) and take

the mating of these limits.
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Chapter 5

Period 2 Cluster Points

We now move on to the study of maps which have a period two cluster cycle. Though

there are some marked similarities with the one cluster case, numerous calculations

revealed that this case actually has an increased level of complexity. Conjecturally,

this complexity will increase even further as the period is made larger. This chapter

will focus solely on the degree 2 case: the far more more complicated consideration of

the higher degree case will hopefully be the focus of further work, see the appendices

for some preliminary results. The earlier sections in this chapter will follow the

same course, as far as possible, as the previous chapter. We will remark upon the

differences as they occur.

5.1 Combinatorial invariants

In this section we discuss how to define the combinatorial data of a cluster with a

period 2 cluster cycle. Before moving on, we discuss the potential differences with

the fixed point case. The combinatorial rotation number was defined in Chapter 3,

and when we defined it we took into account that the period of the cluster could be

arbitrarily large.

The second piece of combinatorial data for the fixed cluster case was the

combinatorial displacement, δ. As shown in Section 4.3.1, in the fixed cluster case,

the pair (ρ, δ) of combinatorial data is enough classify the degree d rational map in

the sense of Thurston. If we want to make a similar statement in the two cluster

case then, we need to define the combinatorial data in this case.

Clearly, the definition in the previous chapter profitted from the fact that

there was only one cluster, and so the critical points (and critical values) of a map

were forced to be in the same cluster. However, a priori, we see there are a couple
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of issues with trying to extend the fixed cluster definition to the period 2 case.

Firstly, we don’t know if the two critical points are in the same cluster. If they

are not, then attempting to measure the combinatorial displacement as the cyclic

distance between the two critical point components is clearly impossible, and so a

new definition is required.

The next few results will show us that, in actual fact, the critical points

cannot appear in the same cluster. Following these results, we see it is necessary

to modify our definition of critical displacement from the fixed cluster case to take

into account this new fact. This leads to the new statement, Definition 5.1.4.

Theorem 5.1.1. Let F ∼= f1 ⊥⊥ f2 be a degree 2 rational map with a period 2 cycle

of cluster points. Then precisely one of the maps f1 or f2 belongs to the (1/3, 2/3)-

limb of M.

Proof. It is clear that both f1 and f2 cannot belong to the (1/3, 2/3)-limb, since

then the mating would be obstructed by Tan Lei’s Theorem (Theorem 2.2.13). So

it only remains to show that both of f1 and f2 cannot lie outside M(1/3,2/3).

So assume f1 and f2 lie outside M(1/3,2/3). By Theorem 1.4.6, if fi is not

in M(1/3,2/3), the external rays of angles 1/3 and 2/3 must land at distinct points.

Since these angles have period 2 under angle doubling, they must land at points

with period dividing 2. As R1/3 and R2/3 land at different points, these landing

points must be a period 2 cycle.

Now notice that, under mating, we have the identifications

γf1

(
1

3

)
∼ γf2

(
2

3

)
and γf2

(
1

3

)
∼ γf1

(
2

3

)

and these points are not identified with each other, or any other points. In par-

ticular, these points cannot be cluster points. Since fi(γfi(1/3)) = γfi(2/3) and

fi(γfi(2/3)) = γfi(1/3), these pairs form a period 2 cycle for the map F ∼= f1 ⊥⊥ f2.

However, since F already has a period 2 cycle (the cluster point cycle) by assump-

tion, we see that this second period 2 cycle cannot exist, since a degree 2 rational

map can only have one period 2 cycle. Hence both of the maps cannot lie outside

M(1/3,2/3), and so precisely one of them lies in M(1/3,2/3).

We can restate this in terms of internal addresses.

Corollary 5.1.2. Let F ∼= f1 ⊥⊥ f2 be a degree 2 rational map with a period 2

cycle of cluster points. Then precisely one of the maps f1 or f2 has internal address

beginning 1 → 2 → · · · .
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Proof. This follows directly from the definition of the internal address. If f lies in

M(1/3,2/3) then we must pass through the period 2 component to get to it from the

main cardioid. This means 2 appears in the internal address.

Recall from Section 1.7 that the internal address can be considered as the

sequence of closest characteristic periodic points in the Hubbard tree. Thus the 2

in the internal address represents a period 2 point on the arc [c0, c1]. In fact, as

we will show later, this period 2 point becomes one of the cluster points; its image

(which is also contained in the Hubbard tree, by forward invariance) becomes the

other cluster point.

The author is grateful to Mary Rees for suggesting the proof of the following

result.

Proposition 5.1.3. There does not exist a rational map R with a period 2 cluster

cycle such that the critical points are in the same cluster.

Proof. We begin with some notation. We suppose that R is a branched cover and

the critical points are in the same cluster. Denote the critical points by c0 and c̃0,

and denote ci = R◦i(c0) and c̃j = R◦j(c̃0). We will set both critical points to have

period 2n, and so PR = {c0, . . . , c2n−1, c̃0, . . . , c̃2n−1}. Since the critical points are in

the same cluster and the clusters are period 2, the set of post-critical points in the

first cluster C0 are those of the form c2i and c̃2j (i.e those points with even index),

whilst the remaining post-critical points lie in the second cluster C1. Denote the

star of C0 by X0 and the star of C1 by X1.

Now consider the curve γ, the boundary of a tubular neighbourhood U of X0.

Then γ separates the two clusters and in particular is non-peripheral. By Lemma 3.4

in [Mil00a], R−1(γ) is made up of d disjoint curves, each of which is the boundary of

a tubular neighbourhood of a pre-image star of X0. If the pre-image star is not X1,

then the curve in R−1(γ) bounding its tubular neighbourhood must be peripheral.

The boundary of the tubular neighbourhood of X1, γ
′ ∈ R−1(γ) separates the two

clusters, and so is isotopic to γ. R : γ′ → γ is a homeomorphism, hence Γ = {γ}

is a Levy cycle and hence such a branched cover cannot be equivalent to a rational

map.

It is now clear from the above that we will need to define critical displacement

in the 2 cluster case using a different definition from the one cluster case. There

are other ways in which one could define it, but this appears to be the most natural

and leads to neater statements in later sections.
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Definition 5.1.4 (Critical displacement). Let F be a rational map with a period

two cluster cycle. Choose one of the critical points to be c1, and label the cluster

containing it to be C1. Then (by Proposition 5.1.3) the other critical point c2 is in

the second cluster C2. We define the critical displacement δ as follows. Label the

arms in the star of C1, starting with the arm with endpoint c1, in anticlockwise order

ℓ0, ℓ1, . . . , ℓ2n−1. Then F (c2) is the endpoint of one of the ℓk. This integer k is the

critical displacement (see Figure 5.1).

Remark 5.1.5. Again, this definition depends on the choice of which critical point

is c1. Again, since we are dealing with rational maps with labelled critical points,

this issue will not cause us problems. Also, with a similar argument as with the one

cluster case, we see that the critical displacement must be an odd integer.

∗

•

Figure 5.1: A cluster with critical displacement 5. We use ∗ to represent the critical
point c1 and the dot to represent the critical value which is the image of the second
critical point c2. The shading is used to differentiate between components for the
orbit of c1 and c2.

5.2 Properties of maps in the mating operation

Suppose we have a mating F ∼= f1 ⊥⊥ f2 with a period 2 cluster cycle. From

Section 3.2, we already know how the critical orbit components from the two poly-

nomials piece together to create the clusters. However, a natural question to ask is
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what we can say about the two maps f1 and f2, given that they produce a 2 cluster

under mating.

5.2.1 Properties of the map in M(1/3,2/3)

Recall that in Chapter 4, Proposition 4.2.2, we showed that a mating producing a

fixed cluster point must have one of the maps being an n-rabbit. There is a similar

result for period 2 cluster orbits. However, it is not so simple as the previous case,

as there are in fact two maps that could play the role of the “rabbit-like map”.

Proposition 5.2.1. Let f1 and f2 be quadratic polynomials with period 2n superat-

tracting orbits. Suppose F ∼= f1 ⊥⊥ f2 is a rational map that has a period 2 cluster

cycle. Then one of f1 or f2 has internal address

1. 1 → 2r/n → 2n, or

2. 1 → 2r/n → 2n− 1 → 2n.

That is, a map which is either the tuning of the basilica by an n-rabbit (a“double

rabbit”), or the (unique) other period 2n component lying in the wake of this double

rabbit.

Figure 5.2 shows the position of these two maps in the period 8, rotation

number 1/4 case.

Proof. First we note that if we have an angled internal address starting

1 1
2
→ 2 r

n

then the corresponding map will have a period 2 orbit with combinatorial rotation

number r/n, by the dynamic characterisation of internal addresses. The content of

this proof will be to show that no other maps can have such a period 2 orbit, and

that such an orbit is required if the mating is going to create a period 2 cluster

cycle. Indeed, the period two orbit will become the cluster points for the period 2

cluster cycle.

By Corollary 5.1.2, we know that one of the maps (without loss of generality,

f1) must have internal address starting 1 → 2. By Corollary 1.7.10, this means

exists a period 2 point p1 on the arc [α, c1]. Since the 2 appears in the internal

address, the dynamical characterisation of the internal address means this period

two point will have non-zero combinatorial rotation number. We will show that this

point will become one of the cluster points, and along with its image p2 = f(p1)
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Figure 5.2: The double rabbit component and secondary map component of period
8, rotation number 1/4 case.

(which also lies on the Hubbard tree, by forward invariance), will form the period

2 cycle of cluster points. By Lemma 2.3.1, the period of [p1] under mating will be

either 1 or 2.

We will show that the period of [p1] cannot be 1. If this were to be the case,

then we must have [p1] = [p2]. Then p1 and p2 belong to the same ray class and both

have non-zero combinatorial rotation number. This contradicts Lemma 2.3.3. If the

period of [p1] is 2, then it must become a cluster point. For if not, the cluster cycle

will be a period 2 cycle for the rational map F which is distinct from the period two

orbit [p1] and [p2]. Since a degree 2 rational map must have precisely one period 2

orbit, this is a contradiction.

We now show that the combinatorial rotation number of p1 must be r/n for

some r. Suppose the denominator of the combinatorial rotation number is k. Then

there are k external rays landing at p1. Each of these corresponds to a global arm at
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p1 in the graph of the ray class [p1]. By Lemma 2.3.5, each arm can contain at most

one point of the periodic cycle of root points of the critical orbit components of f2.

Since global arms map homeomorphically onto their images, if one arm contains a

root point, then all arms contain a root point. So there are k root points of critical

orbit components of f2 in this ray class, and since the ray class is period two, there

are 2k root points in the union. Since we need all root points to belong to the union

of these ray classes, this gives us k = n.

So we now know the internal address must start 1 → 2r/n → · · · . By Corol-

lary 1.8.5 there are exactly two maps of period 2n satisfying this internal address,

and the internal addresses are given by the discussion following Corollary 1.8.5 and

Proposition 1.8.6. These are precisely the internal addresses given in the statement

of this result.

Corollary 5.2.2. Let F ∼= f1 ⊥⊥ f2 be a rational map with a period two cluster

cycle and let f1 be the map with internal address starting 1 → 2p/n → · · · . Then

the combinatorial rotation number of F will be p/n.

Proof. From the previous result, the cluster cycle is made up of the periodic ray

classes [p1] and [p2]. Each global arm at p1 in [p1] contains precisely one root point

from the periodic cycle of root points of the critical orbit components of f2. By

assumption, the external rays, and therefore the global arms, are permuted with

rotation number p/n. Hence the critical orbit components of f2 are also permuted

with rotation number p/n, and so the combinatorial rotation number of F is p/n.

Essentially, the previous two results say that, to create a map with a period

two cluster cycle with combinatorial rotation number ρ, it is necessary that one of

the maps in the mating has a period two orbit with combinatorial rotation number

(as defined for polynomials) ρ. Similarly, we found in the fixed cluster point case

that we had a similar result: one of the maps had to be an n-rabbit, with an α-

fixed point having the same combinatorial rotation number as that of the resultant

rational map. It seems likely that similar proofs extend this observation to higher

periods. Underlying this is the realisation that rotation numbers are preserved under

mating, and so we cannot create a point with non-zero rotation number if one did

not exist before the mating took place. Indeed, this follows from the discussion of

periodic ray classes in Chapter 2.

We include pictures of the two possible maps to help fix our ideas, see Fig-

ures 5.3 and 5.4. These pictures show not only the filled Julia sets of the maps, but

also the external rays landing on the α-fixed point and the period 2 points in the
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Julia set. In addition, the picture of the second map shows the rays landing on the

root points of the critical orbit components.

Figure 5.3: The double rabbit, corresponding to the parameter rays in Figure 5.2
with the external rays landing on the period 2 orbit and on the α-fixed point.
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Figure 5.4: The secondary map that belongs to the wake of the limb containing the
double rabbit in Figure 5.3, with the external rays landing on the period 2 orbit
and the α-fixed point. Also included are the rays landing at the root points of the
critical orbit Fatou components.

We now make a quick observation about the angles landing on the period

two orbits for the maps found in Proposition 5.2.1.

Lemma 5.2.3. Let f ∈ M(1/3,2/3) but is not in the period two hyperbolic component.

Let {p1, p2} be the period two orbit of f , where p1 is the point which lies on the

regulated arc [α, f(0)]. Then the angles of the rays landing at p1 are all in (1/3, 2/3),

and the angle of the rays landing at p2 are in (2/3, 1/3).

Proof. f ∈ M(1/3,2/3) so the external rays of angle 1/3 and 2/3 land on the α-fixed

point of f . Since f is not in the period two component, the period two orbit will be

repelling, and so each point is the landing point of some rays of rational angle. Since
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p1 ∈ [α, f(0)], the rays landing on p1 must all be in (1/3, 2/3), since otherwise the

rays would cross. Since f(p1) = p2 and the image of (1/3, 2/3) under angle doubling

is (2/3, 1/3), the angles of the rays landing on p2 must all lie in (2/3, 1/3).

5.2.2 Properties of h

The previous section gave us a classification of the maps in M(1/3,2/3), and the

results were perhaps not that surprising, considering the results that were found in

the study of the fixed cluster case in Chapter 4. Perhaps of more interest is the

question as to what we can say about the map that does not belong to M(1/3,2/3).

Are there any properties that this map is required to have? As in the previous

chapter, we see that it is actually possible to say a lot about these “complementary”

maps in the matings which yield period two cluster cycles.

Notation 5.2.4. In what follows, f will, in general, be a map with internal address

1 → 2 → 2n - we will call maps of this form “double rabbits”. The map g will be

the second map in the wake of f , with internal address 1 → 2 → 2n − 1 → 2n.

This will be called the “secondary map”. The map h will be the complementary

map in the mating. We will use the notation fr/n to denote the map with angled

internal address 1 → 2r/n → 2n and gr/n for the map with angled internal address

1 → 2r/n → 2n− 1 → 2n.

For the moment, we will be looking at the matings of the form F = fr/n ⊥⊥ h

which have a period two cluster cycle. In the next section, we will focus on the case

where the mating is gr/n ⊥⊥ h. We first discuss the periodic ray classes that become

the cluster points in the matings of the form f ⊥⊥ h.

The following result is an analogue to Lemma 1.8.2 in the period two case.

Lemma 5.2.5. Suppose that z is a biaccessible periodic point in J(fr/n). Then z

is either the α-fixed point or belongs to the period 2 orbit {p1, p2}.

Proof. The map fr/n belongs to only two wakes: the wake W(1/3,2/3) and the wake

W(θ−,θ+), where θ− < θ+ are the angles of the parameter rays landing at the root

point of the hyperbolic component containing fr/n. So by Theorem 1.4.6, there are

only two periodic repelling orbits with valence greater than 1. The first of these

is the α-fixed point, which has portrait { {1/3, 2/3} } and the other is the portrait

corresponding to the pair θ− and θ+. Since we know fr/n has a period 2 repelling

orbit {p1, p2} the portrait corresponding to these angles must correspond to the

period 2 orbit. Every other orbit portrait has valence 1, and so all other periodic

repelling points are the landing point of exactly one external ray. Hence the only
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biaccessible periodic points in J(fr/n) are the period two orbit and the α-fixed

point.

Lemma 5.2.6. If F ∼= fr/n ⊥⊥ h has a period two cluster cycle, then each ray

class [pi] corresponding to a cluster point, has a central vertex pi (corresponding to

one of the period two points of f , pi) which has n edges leaving it. Each of these

edges has a second endpoint ri, which corresponds to a root point of a critical orbit

component of h. There is a second edge at each ri, which has a second endpoint ei,

which corresponds to a point on the Julia set of fr/n which is the landing point of

only one external ray.

Compare this case with that of the period one case in Lemma 4.2.10; each

of the two graphs is homeomorphic to that case.

Proof. We note that each global arm at pi contains at most two other periodic points

in J(f)∪J(h). This is because any member of J(f) that appears in one of the global

arms cannot be biaccessible, by Lemma 5.2.5. Hence the global arm will contain a

periodic point of J(h) and a periodic point of J(f). In order for [pi] to be a cluster

point, the periodic point of J(h) in the arm must be the root point ri of a critical

orbit component of h. There will be only two edges leaving ri, since otherwise it

would have non-zero combinatorial rotation number, contradicting Lemma 2.3.3.

The end point of this second edge must be an endpoint of the graph of the ray class,

by the reasoning of the opening two sentences.

Since the ray classes are homeomorphic, and since the global arms map home-

omorphically onto their images, every global arm satisfies the description above.

First of all, we can place a restriction on the angles associated with the map

h.

Proposition 5.2.7. Suppose F = fr/n ⊥⊥ h has a period two cluster cycle. Then

the angles landing at the critical value component of h lie in (1/6, 1/3) ∪ (2/3, 5/6).

Proof. We observe that the both the angles θ− < θ+ landing at the root point

of the critical value component of h are in (2/3, 1/3), since h cannot belong to

M(1/3,2/3). By Lemma 5.2.6 and Lemma 5.2.3, the rays Rf−θ− and Rf−θ+ land on

the point p2 ∈ J(fr/n). Hence the rays Rf−2θ−
and Rf−2θ+

land on the point p1.

Hence −2θ−,−2θ+ ∈ (1/3, 2/3) by Lemma 5.2.3 and so 2θ−, 2θ+ ∈ (1/3, 2/3). The

pre-image of (1/3, 2/3) under angle doubling is the set (1/6, 1/3)∪(2/3, 5/6). Hence

θ−, θ+ ∈ (1/6, 1/3) ∪ (2/3, 5/6).
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We now describe a feature of these maps that is analogous with that of

angular rotation number in the previous chapter. We will make a simple observation

about the ordering of external angles of maps which mate with the double rabbit

with internal address 1 → 2p/n → 2n. Before this, we need to state a definition,

which is the period 2 analogue of the angular rotation number defined in the previous

chapter.

Definition 5.2.8. Let θ ∈ S1 have the property that 22nθ = θ mod 1. Consider the

disjoint sets A0 = A0(θ) =
{
θ, 22θ, 24θ, . . . , 22kθ, . . . , 22(n−1)θ

}
and A1 = A1(θ) ={

2θ, 23θ, . . . , 22k+1θ, . . . , 22n−1θ
}
. We say θ has 2-angular rotation number p/n if

the following conditions are satisfied.

• The sets A0 and A1 are contained in disjoint arcs on the circle.

• The sets A0 and A1 have 1-angular rotation number p/n under the map θ 7→

4θ.

It is of course possible to generalise this definition in the two obvious ways.

Firstly, if one were to consider degree d polynomials, one could ask for the angular

rotation number to exist for the mapping θ 7→ dθ. Secondly, if one wanted to

tackle period k cluster cycles, one can define the k-rotation number for any k by

considering sets A0, A1, . . . , Ak−1 and checking they each have the same 1-angular

rotation number. This discussion is a generalisation of the results as found in [BS94].

A similar consideration has appeared in [BMM+06].

We briefly discuss what each of the conditions in Definition 5.2.8 represent.

The first condition is introduced since we know that A1 should be contained in the

arc (1/3, 2/3) ⊂ S1 and A0 in the arc (2/3, 1/3). The second condition just makes

sure the angles are permuted cyclically with rotation number p/n under the first

return map. We remark that the map t 7→ 2t from A0 to A1 or from A1 to A0 will

preserve cyclic ordering, depending on the location of the non-periodic pre-image of

the angle θ.

As was the case in the previous chapter, we need to consider the properties

of the graphs of the ray equivalence classes to discuss some of the combinatorics of

the maps involved in matings that produce a period two cluster cycle. We currently

do not have enough information to discuss the graphs when the map in M(1/3,2/3)

is g, so we postpone that until Section 5.2.3. However, we can discuss the ray graph

when the map in M(1/3,2/3) is a tuned rabbit f .

We state without proof that a double rabbit of internal address 1 → 2p/n →

2n has 2-angular rotation number p/n - the proof is similar to that of Lemma 4.2.9.
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Proposition 5.2.9. Suppose F ∼= fp/n ⊥⊥ h is a rational map with a period 2

cluster cycle. Then one of the angles associated to h has 2-angular rotation number

(n− p)/n.

Proof. Denote one of the angles associated to fp/n by θ. The map fp/n is a double

rabbit and so both its associated angles have 2-angular rotation number p/n, hence

−θ has 2-angular rotation number (n− p)/n. By Lemma 5.2.6, we see that the rays

Rh
−2kθ

land at the root points of critical orbit components of h. Hence one of the

angles associated with h will have 2-angular rotation number (n− p)/n.

We can then combine Propositions 5.2.7 and 5.2.9 to say even more.

Corollary 5.2.10. Let h be a map such that fp/n ⊥⊥ h has a period 2 cluster cycle.

Then there is an angle θ associated to h that has 2-angular rotation number (n−p)/n

and has A1(θ) ⊂ (1/6, 1/3) ∪ (2/3, 5/6).

Proof. The existence of the angle θ is given by Proposition 5.2.9. In order to create

a cluster, all the rays in A0 must belong to (1/3, 2/3). Hence the pre-images of these

rays must lie in A1 ⊂ (1/6, 1/3) ∪ (2/3, 5/6). A1 is contained in the pre-images of

the angles in A0, so we are done.

We now focus a bit more on the set A1. Suppose θ ∈ (1/6, 1/3). The pre-

image of this interval is (1/12, 1/6) ∪ (7/12, 2/3). Since the periodic pre-image of

θ must lie in A0 ⊂ (1/3, 2/3), we see that the periodic pre-image (the one corre-

sponding to the angle of the ray landing at the root point of the critical point Fatou

component) is in (7/12, 2/3) and the pre-periodic pre-image is in (1/12, 1/6). Simi-

lar considerations show that if θ ∈ (2/3, 5/6) then the periodic pre-image of θ is in

(1/3, 5/12) and the pre-periodic pre-image is in (5/6, 11/12).

The knowledge of where the pre-periodic pre-image of θ is will help us in two

ways. Firstly, we will use it to help classify the properties of maps h that mate with

fp/n to form a rational map with a period 2 cluster cycle. The second use will be in

its role of calculating the kneading sequences of the h in Section 5.5.2.

In fact, in both cases, we are more concerned with where this pre-image θ0

lies in relation to the orbit of θ, and in particular the points of A1. The angle θ0 will

separate the set A1 into two disjoint sets: those contained in the interval (θ0, 1/3)

and those contained in (2/3, θ0). We can in fact simplify this.

Lemma 5.2.11. A1 ∩ (θ0, 1/3) = A1 ∩ (0, 1/3).

Proof. The set A1 ∩ (0, θ0) is empty, since if there exists φ ∈ A1 ∩ (0, θ0) then

φ ∈ (5/6, 0) or (0, 1/6). But this is a contradiction of Corollary 5.2.10.
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So the above separation of the set A1 can done by considering the comple-

mentary intervals to the angle 0 in A1.

Lemma 5.2.12. Let p2 be the periodic point of period 2 that lies on the boundary

of the critical point component of fp/n. Denote by R
fp/n
φ1

and R
fp/n
φ2

the rays landing

at p2 that separate the Fatou component containing f
◦(2n−2)
p/n (0) from the rest of the

critical orbit. Then the cyclic ordering satisfies

φ1 < 0 < φ2.

Proof. The images of R
fp/n
φ1

and R
fp/n
φ2

, which are respectively R
fp/n
2φ1

and R
fp/n
2φ2

land

on fp/n(p2) = p1, and these rays separate the component containing f
◦(2n−1)
p/n (0) from

the critical orbit Fatou components containing odd iterates of the critical point 0.

This means that (φ1, φ2) ⊂ (2φ1, 2φ2) (considered as arcs on the circle) and so

(φ1, φ2) contains a fixed point of the map t 7→ 2t. But the only fixed point of angle

doubling is 0 and so the result is proved.

The above lemma gives us a very simple way of calculating the number of

rays that land on p2 that land anti-clockwise of the ray of angle 0 for fp/n. The

combinatorial rotation number of the orbit of rays at p2 is p/n. The rays separating

the component containing f
◦(2n−2)
p/n (0) from the other critical orbit components map

onto the rays bounding the critical point component of fp/n. Since the rotation

number is p/n, there are p angles in A1 that are anticlockwise from 0 in A1.

The angle 0 will separate the set of angles of rays landing at p2 in fp/n, and

this separation must be compatible with the separation of A1 by the angle 0. This

follows from the fact that the β-fixed points are identified under mating, and since

the rays landing at p2 will be the those of angle φ satisfying −φ ∈ A1(θ), where

θ is the angle corresponding to the map h which has 2-angular rotation number

(n− p)/n. We then get the following.

Proposition 5.2.13. Suppose F ∼= fp/n ⊥⊥ h. Then h has an associated angle with

2-angular rotation number (n − p)/n and the set A1 ∩ (2/3, 0) = A1 ∩ (2/3, θ0) for

this angle contains precisely p elements.

We note here that in the previous chapter, we stated a result which showed

that having the correct angular rotation number was a necessary and sufficient

condition to form clustering with a rabbit. In fact, it is not true that if h has 2-

angular rotation number (n − p)/n then it will mate with fp/n to create a rational

map with a period 2 cluster cycle.
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Example 5.2.14. Consider the angle θ = 26/63, which has internal address 1 →

2 → 4 → 6. A simple calculation shows that θ has 2-angular rotation number 2/3.

However, if h is the associated map to θ, we see that f1/3 ⊥⊥ h cannot be a rational

map, since both f and h belong to M(1/3,2/3).

It should be noted, however, that in the formal mating of f and h, we notice

that the graphs of the ray equivalence classes for the points belonging to the period

two cycle of fp/n look precisely like the ray equivalence classes formed when the

mating actually creates a rational map with a period 2 cluster cycle.

Since we know that h has associated angles in (1/6, 1/3) ∪ (2/3, 5/6), we ask

if this, paired with the requirement to have 2-angular rotation number (n − p)/n,

is sufficient for a map to create a two cluster when mated with fp/n. To do this,

we show there are only n maps satisfying these two conditions, and a pigeonhole

principle argument, as in the last chapter, will give the result.

Proposition 5.2.15. There are precisely n angles that have 2-angular rotation num-

ber (n − p)/n and have A0 ⊂ (1/3, 2/3) such that A1 ∩ (2/3, 0) contains exactly p

elements .

Proof. We will show that the map t 7→ 2t from A0 to A1 maintains the cyclic

ordering. This is easy because A0 ⊂ (1/3, 2/3) which maps homeomorphically onto

(2/3, 1/3). Hence the ordering maintains the cyclic order on the circle.

This means that picking the position of one angle θ in A0 fixes the ordering

of all the other angles in the orbit of θ: those in A0 are fixed by the 2-angular

rotation number and the ordering in A1 fixed by the fact the angle doubling map

on (1/3, 2/3) is a homeomorphism.

Recall Algorithm 1.9.2. Then if we know the position of the non-periodic pre-

image of θ, we get a unique angle from the algorithm. But Proposition 5.2.13 tells

us that the position of the non-periodic pre-image is determined by the 2-angular

rotation number and the assumption on A1. Hence picking the position of the first

angle in the cyclic ordering of A0 uniquely defines the angle.

Since there are n angles in A0 and any of these can be the first angle, we see

that there are precisely n angles satisfying the given properties.

Corollary 5.2.16. The map F ∼= fp/n ⊥⊥ h has a period two cluster cycle if and

only if h has an associated angle satisfying the properties in Proposition 5.2.15.

Proof. There are n possible choices for the critical displacement and all are realisable

by matings. Hence each map having the given properties will create a period two

cluster cycle when mated with fp/n.
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It is highly likely that this statement is true under the weaker assumption

that h /∈ M(1/3,2/3).

The next result is perhaps more suited to the section on combinatorial re-

sults. However, since it essentially only requires the definition of 2-angular rotation

number, we include it here. It offers a restriction on which limbs of the Mandelbrot

set the map h can lie in.

Proposition 5.2.17. Let F ∼= f ⊥⊥ h be the mating of two quadratic polynomials,

such that the map F has a period 2 cluster cycle. Then the internal address of h

starts 1 → 2m+ 1 → · · · for some m ≥ 1.

Proof. Suppose that the the internal address of h starts 1 → 2m → · · · for some

m ≥ 1. If m = 1 then the mating will be obstructed and F could not be a rational

map so we assume m > 1.

The combinatorial rotation number of αh will be p/2m, where p is odd. The

case where p = 1 or p = 2m − 1 is easy, since if Rhθ lands at the root point of the

Fatou component containing c1, then the angle θ is separated on S1 from 22θ by 2θ

and 23θ. This means θ cannot have a well defined 2-angular rotation number.

So suppose p 6= 1, 2m − 1. The map h has an associated angle θ with 2-

angular rotation number (n − p)/n by Proposition 5.2.9. Label the local branches

at αh by anticlockwise cyclic ordering, starting with ℓ0 being the branch containing

the critical point c0. This means c1 is the endpoint of the branch ℓp. Denote the

endpoint of ℓp−1 by cj and the endpoint of ℓp+1 by ck. Then necessarily j, k ≤ 2m

and both are even. The former is a standard result about Hubbard trees and the

latter follows from the fact that p is odd, see Figure 5.5.

This means that the angles θ, 22θ, . . . belong to a different interval in the

circle to the angles 2θ, 23θ, . . .. But this means that 22θ must be in the same com-

plementary interval of S1 \{2j−1θ, 2k−1θ} as θ. This forces c3 to not be an endpoint

of the Hubbard tree. But since at least one of j or k is greater than 3 and cj and ck

are endpoints, this is a contradiction of the Hubbard tree being forward invariant

under h. Hence our assumption that the internal address of h starts 1 → 2m → . . .

is false.

5.2.3 Mating with the Secondary Map

Here we make some observations about what properties we can expect to find for

maps h which create a period 2 cluster cycle with the secondary map with internal

address 1 → 2 → 2n− 1 → 2n. That is, the maps h so that F ∼= g ⊥⊥ h has a period

two cluster cycle. We note that this section has no analogue with the previous
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Figure 5.5: Diagram for proof of proposition 5.2.17.

chapter, since the existence of this secondary map is a new phenomenon which does

not occur in the fixed cluster case.

We also need to make an observation about the ordering of the angles as-

sociated to the critical orbit of the secondary map, that with internal address

1 → 2 → 2n − 1 → 2n. The Hubbard trees for low period examples are given

in Appendix D. We describe the general structure of these Hubbard trees.

Proposition 5.2.18. The Hubbard tree of a map with internal address 1 → 2 →

2n − 1 → 2n can be described as follows. There are two period 2 points p1 and p2

with n arms. One of the global arms at p1 contains the critical point c0 and the

other global arms at p1 have endpoints c1, c3, . . . , c2n−3. The point p2 has one global

arm which contains the critical point c0, and the endpoints of the other global arms

are c2, c4, . . . , c2n−2. The point c2n−1 is on the arc (p2, c2n−1). Finally, there are no

branch points on the arc (p1, p2), and c0 lies on (p1, p2).

Proof. Using Algorithm 1.9.1 yields the tree with the above features. See Figure 5.6

for an example of such a tree.

Lemma 5.2.19. Suppose F ∼= g ⊥⊥ h is a rational map. Then the critical displace-

ment of F will be 1 or 2n− 1.

Proof. The branch at the period two point p1 in the Hubbard tree containing the

critical value of g is separated from the other branches at the period two point by

two rays, of angle θ and θ + 3 (we suppress the denominator 22n − 1). The rays of
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Figure 5.6: Hubbard tree for 1 → 22/5 → 9 → 10.

angles θ + 1 and θ + 2 land at the root point of the critical value component of g,

see Figure 5.7.

We claim that the ray graph containing the point p1 (as in the picture) must

have (precisely) one of the following two properties. The branch of the graph of the

ray equivalence class containing the root point r of the critical value component U1

of g (in other words, the landing point of the rays of angle θ + 1 and θ + 2) must

contain either the ray of angle θ or the ray of angle θ + 3. We will show that every

other possibility is impossible.

It is clear that each branch of the graph must contain exactly one of the rays

landing at the point p1. If it contained more than one then they would form a loop

and thus would generate a Levy cycle. Suppose the branch containing r contains

a ray of angle φ /∈ {θ, θ + 3}, and Rgφ lands at p1. Let γ denote the (unique) path

through external rays from r to p1. Since the only possible biaccessible points in

J(g) on this path are r and p1, we see that (using [p, r] as the notation for the

regulated arc from p to r):

Γ = γ ∪ [p1, r]

separates the sphere into two pieces. In particular, it separates the root point r′ on

the branch anticlockwise in the cyclic order from r from the ray of angle φ′ which

is the first angle anticlockwise round from φ in the cyclic ordering of rays at p. But

since F has to maintain this cyclic ordering, the branch containing r′ has to contain

the ray of angle φ′, and since rays cannot cross this is a contradiction, see Figure 5.8.

So we now know that the branch of the graph of the ray equivalence class

containing r must contain the ray Rgθ or Rgθ+3. We now study this branch in more

detail. Suppose that the ray Rh−(θ+1) lands at the same point as Rh−θ. This common
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θ + 1
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Figure 5.7: The rays landing at the period two point and critical value component
of the map g.

landing point ζ cannot be the root point of a critical orbit component, since the size

of the sector would mean this would have to be a critical value component, and so

the critical values would be in the same cluster, a contradiction of Proposition 5.1.3.

However, the angular width of the sector bounded by ζ and the external rays Rh−(θ+1)

and Rh−θ is the smallest it can possibly be, and so by Theorem 1.4.5 it must contain

the root point of the Fatou component which contains critical point of h. But this

is another contradiction since the root point of the critical value component needs

to be in the ray equivalence class of f(p1) and it is separated from this point. The

proof of when Rh−(θ+2) lands at the same point as Rh−(θ+3) is analogous to the above.

The only remaining possibility is that the rays Rh−(θ+2) and R
h
−θ land at the

same point or the rays Rh−(θ+1) and Rh−(θ+3) land at the same point. Since both

situations are essentially the same will we discuss only the first one. The common

landing point ξ of the two rays must be the root point of a critical orbit component.

For if not, we notice that

Rgθ+2 ∪R
h
−(θ+2) ∪R

h
−θ ∪R

g
θ

separates the ray Rh−(θ+1) from all other rays with the necessary denominator. Since
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Figure 5.8: The case where the branch containing r contains the ray of angle φ.

the root point of a critical orbit component must have at least two rays landing on it,

this means that this branch of the graph of the ray equivalence class cannot contain

a root point of a critical orbit component. But then none of the branches can, as

each one maps homeomorphically onto its image and they are periodic.

Hence the rays Rh−(θ+2) and R
h
−θ land at the root point r̂ of a critical orbit

component. The angular width of the sector containing this component is 2, and

so the angular width of its pre-image is 1. This means that the pre-image sector

contains the critical value, and so in particular the pre-image of r̂ is the root point

of the critical value component. Hence r̂ is the root point of the component V2

containing the second iterate of the critical point of h. Since V2 is adjacent to U1,

it follows their pre-images are adjacent, and so the critical point component of g

will be adjacent to the critical value component of h. This means that the critical

displacement of the resultant rational map will have to be ±1, or equivalently, equal

to 1 or 2n− 1.

We remark finally that which value δ takes is dependent on which pair of
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rays land together. We give more details in Corollary 5.2.27.

Figure 5.9 shows how the rays piece together.

θ

p1

θ + 1

θ + 2

φ′

θ + 3

Figure 5.9: How the ray class is formed near the critical value component of g.
Rh−(θ+2) must be an endpoint.

Corollary 5.2.20. The hyperbolic component containing h is narrow. That is, it

has width 1/(22n − 1).

Proof. The rays landing at the root point of the critical orbit component containing

the second iterate of the critical point differ by 2/(22n − 1) by the previous result.

Hence the rays landing at the root point of the critical value component differ by

1/(22n−1). Therefore the rays landing at the root point of the hyperbolic component

containing h differ by 1/(22n − 1) and so the component is narrow.

Corollary 5.2.21. One of the rays Rh−(θ+1) or Rh−(θ+2) lands at an endpoint of

J(h).
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Proof. If Rh−θ and Rh−(θ+2) land at the same (root) point in J(h), then there are

no possible partner rays for Rh−(θ+1). Hence the point is not biaccessible, and so it

must be an endpoint of J(h). A similar argument holds if Rh−(θ+1) and R
h
−(θ+3) land

at the same point in J(h); this causes Rh−(θ+2) to land at an endpoint.

Corollary 5.2.22. Each branch of the ray equivalence class corresponding to the

cluster points in g ⊥⊥ h can be described as follows. Starting at p, there is an edge

to the rootpoint of a critical orbit component of h. From this there is another edge

to the root point of a critical orbit component of g. Finally, from this point there is

an edge going to a point of J(h) which is the landing point of only one ray.

Proof. The branch containing the root point of the critical value component of g

starts with the period two point p1. One of the rays Rgθ ∪ R
h
−θ or Rgθ+3 ∪ R

h
−(θ+3)

lands at the root point of a critical orbit component of h. Suppose it is Rgθ ∪ R
h
−θ

(the other case is identical). As shown in the proof of Lemma 5.2.19, Rh−θ lands at

the same point as Rh−(θ+2), and this is a root point of a critical orbit component of

h. The next edge is then the ray Rh−(θ+2) ∪ R
g
θ+2, which lands at the root point of

the critical value component of g. The partner ray to Rgθ+2 is Rgθ+1, and the ray

Rgθ+1 ∪R
h
−(θ+1) must land at an endpoint of J(h), by Corollary 5.2.21.

The fact that this structure holds for all branches of the ray equivalence

classes holds because each branch maps homeomorphically onto its image and the

branches are periodic.

We now describe the ray equivalence class of the cluster points in the case

that the map in M(1/3,2/3) is g. This result, along with Lemma 5.2.6 gives the only

two possibilities for the ray classes of a period two cluster point.

Lemma 5.2.23. If F ∼= g ⊥⊥ h then each graph has a central vertex p, which has n

edges leaving it. The second endpoints of these edges are labelled ri, which correspond

to root points of critical orbit components of h. Each of these ri has another edge

starting at them, whose second endpoint are qi, which correspond to root points of

critical orbit components of g. Finally, each qi has a second edge leaving it, whose

endpoint is ei and corresponds to a point on the Julia set of h which is the landing

point of only one external ray.

Proof. From Proposition 5.2.1, the period 2 orbit {p1, p2} of g becomes the cluster

cycle, and so the ray classes that become the cluster point are the ray classes [p1]

and [p2]. Since the class maps homeomorphically onto itself under F ◦2, and pi is

fixed under this iterate, the branches at pi are homeomorphic. The structure of
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these branches is as in Corollary 5.2.22, and this structure is as in the statement of

the lemma.

We now return to the case where the mating is of the form f ⊥⊥ h. This case

is similar to the period one case, and so allows us to make similar observations to

those found in the previous chapter.

Lemma 5.2.24. Suppose F ∼= f ⊥⊥ h is a mating with a period 2 cluster cycle,

where f is the tuned rabbit with internal address 1 → 2p/n → 2n. Then one of the

angles landing at the root point of the critical value component of h has 2-angular

rotation number (n− p)/n.

Proof. The graph of the ray equivalence classes of the two cluster points looks identi-

cal to that of the ray equivalence class of the cluster point in the fixed cluster point

case, (the only difference being the periodicity of the graph as a whole). Hence

each graph is invariant under the second iterate of F , and this has the action of

sending the ray of angle θ to the ray of angle 4θ. Furthermore, if θ is the angle

of an external ray landing at one of the period 2 points of f , this angle will have

angular rotation number p/n under t 7→ 4t by the observation preceding this lemma

(compare Lemma 4.2.9). Hence the angle −θ will have 2-angular rotation number

(n− p)/n.

We can actually refine this result. It is in fact true that the set of maps that

mate with g to make a rational map with a period 2 cluster cycle is a subcollection

of the maps that mate with f to make a rational map with a period two cluster

cycle.

Proposition 5.2.25. Suppose F ∼= g ⊥⊥ h is a rational map with a period 2 cluster

cycle and g is the secondary map with internal address 1 → 2p/n → 2n − 1 → 2n.

Then h mates with the map f with internal address 1 → 2p/n → 2n to create a map

with a period two cluster cycle.

Proof. Recall that there are precisely two rays landing at the root points of the

critical orbit components of h, and these ray orbits are disjoint. If h mates with g to

create a map with a period 2 cluster cycle, then one of these ray orbits are made up

of rays of angles −θi such that the rays of angles θi land on the period two orbit in

the Julia set of g. But these are precisely the angles landing at the period two orbit

in J(f), and so the rays Rfθi and R
h
−θi

form two periodic ray classes which become

a period two cluster cycle.
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Recall that the critical displacement of g ⊥⊥ h, if it has a period 2 cluster

cycle, is 1 or 2n − 1. Since we now know that f ⊥⊥ h also has a period two cluster

cycle, we can ask what the critical displacement of f ⊥⊥ h will be.

Lemma 5.2.26. Suppose F ∼= g ⊥⊥ h is a rational map with period 2 cluster cycle.

Then F ′ ∼= f ⊥⊥ h is a rational map with a period 2 cluster cycle and has critical

displacement 1 or 2n− 1.

Proof. The fact that F ′ is a rational map with a period 2 cluster is the content of

Proposition 5.2.25. Recall from the proof of Lemma 5.2.19 that (using the same no-

tation) the rays landing at the root point of the critical orbit component containing

h◦2(0) are

Rh−θ and Rh−(θ+2) or Rh−(θ+1) and R
h
−(θ+3).

The rays bounding the critical value component of f are Rfθ and Rfθ+3, and so we

see that the critical value component of f is adjacent to the Fatou component of h

containing h◦2(0). Then the critical point component of f is adjacent to the critical

value component of h in the cyclic ordering and so the critical displacement is 1 or

2n− 1.

Corollary 5.2.27. 1. If g ⊥⊥ h has critical displacement 1 then f ⊥⊥ h has

critical displacement 2n − 1.

2. If g ⊥⊥ h has critical displacement 2n−1 then f ⊥⊥ h has critical displacement

1.

Proof. This result comes from the following observation. We know that the critical

orbit component U containing h◦2(0) has precisely two rays landing at its root

point. These pairs are either Rh−θ and Rh−(θ+2) or Rh−(θ+1) and Rh−(θ+3). Suppose

it is the former (the second case is entirely analogous). Then we see that the ray

Rh−(θ+2) ∪R
g
θ+2 goes from the root point of U to the root point of the critical value

component of g. However, when we carry out the mating f ⊎ h (again, we want

to discuss the mating before collapsing of ray classes takes place in the topological

mating), we see that now it is the rays Rh−θ ∪ R
f
θ that go from the root point of U

to the root point of the critical value component of f . This means that the cyclic

ordering of the components have changed, and since there are only two choices for

what the critical displacement can be, we are done.

Before finishing this section, we need to discuss the ordering of the angles

landing on the root points of the critical orbit Fatou components of gp/n. We already

know that the angles landing at the period two orbit have 2-angular rotation number
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p/n. However, the behaviour of the angles landing at the root points is just as

important when we are considering a mating with g. A look at the Hubbard tree of

gp/n yields the following observation: save for the angles of the rays landing at the

root point of the critical orbit component U containing c̃2n−1, the angles associated

to the map gp/n satisfy the two conditions in the definition of 2-angular rotation

number being p/n, as can be seen by observing the ordering of the endpoints of the

local arms of the members of the period two orbit in the Hubbard tree.

Also, by the construction in Lemma 5.2.19, the branch of the ray equivalence

class (of the formal mating) containing the root point of the critical value component

of g also contains the root point of the critical orbit component containing h◦2(0).

Iterating forwards, we see that the branch of the ray equivalence class containing

the root point of the component containing g◦k1 (0) contains the root point of the

component containing h◦(k+1)(0).

We briefly discuss how the position of critical orbit points in the Hubbard

tree affects the cyclic ordering of the rays landing at the root points of the Fatou

components containing them. Suppose that the root points are the landing points

of two separate orbits of rays, as is the case for the map h. If cj and ck are endpoints

of the Hubbard tree, then the sectors created by the rays landing at the root points

of the Fatou components containing them are disjoint. This means that the cyclic

ordering of the rays is the same for both orbits of rays. On the other hand, if cj is

not an endpoint and ck is an endpoint of a global arm at cj , the cyclic ordering of

the rays landing at the root points of the respective Fatou components is different

for each orbit, see Figures 5.10 and 5.11 for the two different cases.

θj

θ̂j
θk

θ̂k

Figure 5.10: When cj and ck are endpoints of the Hubbard tree, the cyclic ordering
of the rays is maintained.

Proposition 5.2.28. Suppose F ∼= g ⊥⊥ h is a rational map with a period 2 cluster

cycle. Then the elements of the forward orbit of the critical point of h, {h◦k(0) : k =
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θ̂k

θk

θj

θ̂j

Figure 5.11: If cj is not an endpoint, then the cyclic ordering of the two ray orbits
is changed.

1, . . . , 2n − 1}, are all endpoints on the Hubbard tree of h. In other words, the only

point in the post-critical set of h which is a branch point of the Hubbard tree of h is

the critical point 0.

Proof. We first note that 0 will be a branch point in the Hubbard tree, since if this

were not the case, h would be an n-rabbit. If h mates with g to create a rational

map with a period two cluster cycle, then by Proposition 5.2.25 it also mates with

the map with internal address 1 → 2p/n → 2n to create a period two cluster cycle,

and so by Lemma 5.2.24 one of its associated angles θ1 will have 2-angular rotation

number (n− p)/n.

The ordering of the angles landing on the root points of the critical orbit

components of g is discussed above - all save for the rays landing at the root point

of the component containing the point g◦(2n−1)(0) have ordering with 2-angular

rotation number p/n. This means the rays partnering them must have 2-angular

rotation number (n−p)/n. The only ray to which this doesn’t apply is the one which

pairs with the ray R which lands at the root point of the critical orbit component

containing g◦(2n−1)(0). But this ray is precisely the one which lands at the root

point of the critical point component of h. Since all the other rays maintain cyclic
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ordering, their associated critical orbit points must be endpoints of the Hubbard

tree.

Recall the definition of a triod from Section 1.9.

Proposition 5.2.29. Suppose F ∼= g ⊥⊥ h is a rational map with a period 2 cluster

cycle and g has internal address 1 → 2 → 2n − 1 → 2n. Then the entry ν2n−1 in

the kneading sequence of h is equal to 0.

Proof. Suppose that ν2n−1 = 1. We will show that c2n−1 is not an endpoint of

the Hubbard tree, contradicting Proposition 5.2.28. The first entry in the internal

address of ν is odd, so the kneading sequence begins 11 . . .. The internal address is

not 1 → 2n, and so there exists at least one 0 in the kneading sequence, and so there

exists a critical orbit point ck with itinerary beginning 10 . . .. Finally, the itinerary

of the point c2n−1 begins 1∗ by assumption.

So now apply Algorithm 1.9.6 to the triod formed by c1, ck and c2n−1. They

all agree in the first position, so we shift each sequence. But then we realise that

the second entries are 1, 0 and ∗ respectively, meaning that the original triod was

degenerate and the interior point is c2n−1.

Looking at Appendix B, we see that another result suggests itself.

Conjecture 5.2.30. If h maps with g to create a rational map with a period two

cluster cycle then the internal address of h contains 2n− 1.

5.3 Classifying the rational maps

In this section, we will show - at least for the quadratic case - that the combinatorial

data is enough combinatorial information to uniquely define the rational map in the

sense of Thurston. This section is very similar to Section 4.3. As well as proving

the main result (Theorem 5.3.2), we will also try to show in the exposition why the

result seems likely to be false in the higher degree case.

There are now two stars. Denote the star containing the first critical point of

F by X1
F and the one containing the second critical point X2

F . We similarly define

the stars X1
G and X2

G. C \ (X1
F ∪X2

F ) is doubly connected and so in what follows

we will need to consider the conformal equivalence of doubly connected regions. A

region is said to be n-connected if it comprises of a disk with n disks removed from

its interior. The following result is derived from [Con95], Chapter 15 Theorem 2.1.
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Theorem 5.3.1. If G is a non-degenerate n-connected region, then G is conformally

equivalent to an analytic n-Jordan region Ω. Moreover, Ω can be chosen so that its

inner boundary is ∂D and ∞ /∈ Ω.

The following result is entirely analogous to Theorem 4.3.5. The added

complexity comes about because we no longer have an analogue to the isotopy

version of Alexander’s Trick. Informally, this is because the space C \ (X1 ∪X2) is

no longer simply connected, and so is not conformally equivalent to a disk. Indeed,

it is conformally equivalent to an annulus. The simplicity of Theorem 4.3.5 resulted

from the mapping class group of the disk being trivial. For the annulus, the mapping

class group is now Z, and so we see that there is an extra difficulty when we consider

the period two cluster case.

Theorem 5.3.2. Suppose that two quadratic rational maps F and G have a period

two cluster cycle with rotation number p/n and critical displacement δ. Then F and

G are equivalent in the sense of Thurston.

Again, as in the previous chapter, the proof of this theorem will require

us to prove a sequence of results which will piece together to prove the theorem

itself. Indeed, our general method will proceed as in the previous chapter: we will

construct the homeomorphism Φ, and then try to use this map to construct the

homeomorphism Φ̂ so that the pair (Φ, Φ̂) satisfy the conditions required of the

homeomorphisms for Thurston equivalence. A number of the results are identical to

that used in Section 4.3.1, and as such will be stated here without a detailed proof.

One of the difficulties in the exposition is differentiating between the two stars of

each map. This fact is important, because we need a labelling of the stars in order

to define the critical displacement of the map.

We also emphasise that, unlike in the previous chapter, we only prove the

result in the case that the rational maps F and G have degree 2. There is strong

evidence to suggest that, in fact, the theorem is not true in the higher degree case.

With this in mind, we will follow the method of proof through as if we are dealing

with the degree d case, and highlight the point at which the degree being equal to 2

is necessary. This will allow us to discuss the possible modifications that would be

required to complete a proof in the general degree d case - or indeed, what further

data would be required. We begin with an analogue to Lemma 4.3.6.

Lemma 5.3.3. There exists a conjugacy φ : (X1
F ∪ X2

F ) → (X1
G ∪ X2

G) so that

φ ◦ F = G ◦ φ.

Proof. The proof of this lemma is essentially the same as that for Lemma 4.3.6.

Notice in particular that we require the stars to be marked, so that we know which
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one contains the first critical point in the definition of combinatorial displacement.

The next result is the first point where we notice a difference with the previ-

ous chapter. By the Riemann mapping theorem for simply connected regions (not

equal to the whole of C), we saw that the complement to the star in the sphere will

be conformally isomorphic to the unit disk. However, in this case, in light of Theo-

rem 5.3.1, we see that the complement to the stars will be conformally equivalent to

some annulus A. However, two annuli A1 and A2 are conformally equivalent to each

other if and only if the ratio of the radii of their boundary circles are the same. In

other words, if we normalise so that the radius of the inner boundary circle is 1, we

see that two annuli are conformally equivalent if and only if their outer boundary

circles have the same radii.

Proposition 5.3.4. Let F be a rational map with a period two cluster cycle. Then

there exists a conformal map ηF : AF → C \ (X1
F ∪X2

F ), where AF is an annulus.

Furthermore, this conformal equivalence can be extended to a continuous function

η̃F : AF → C.

Proof. The existence of the conformal equivalence is given by Theorem 5.3.1, and

the continuous extension follows from the fact that the stars are locally connected

(in a proof analogous to Lemma 4.3.7).

We now set our notation so that AF = {z : 1 < |z| < eRF }, AG = {z : 1 <

|z| < eRG} and ηF : AF → C \ (X1
F ∪ X2

F ) and ηG : AG → C \ (X1
G ∪ X2

G) are

conformal equivalences. We will also take advantage of the fact that the annuli

AF and AG are respectively covered by the strips ΣF = {a + bi : a ∈ [0, RF ]} and

ΣG = {a+ bi : a ∈ [0, RG]} by the map z 7→ exp z.

Proposition 5.3.5. Let ψ be a homeomorphism defined on the boundary of the

annulus AF mapping to the boundary of the other annulus AG, which preserves the

orientation on each boundary circle. Then ψ can be extended to a homeomorphism

Ψ: AF → AG.

Proof. The map ψ induces a map ψ : ∂ΣF → ∂ΣG, by defining ψ = log ◦ψ ◦ exp

and taking the branch of the logarithm to be such that Im(ψ(0)) ∈ [0, 2π). We

remark that ψ is 2πi-periodic. To define the map Ψ, consider the straight line

ℓb = {a + bi : 1 ≤ a ≤ RF}. Map this to the straight line between ψ(0 + bi) and

ψ(RF + bi), by setting

Ψ(a+ bi) =
RG
RF

a+

(
Im(ψ(RF + bi))− Im(ψ(bi))

RF
a+ Im(ψ(bi))

)
i. (5.1)
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We will show that this construction yields a homeomorphism between the strips,

which then induces a homeomorphism between the annuli.

Ψ

0

ψ(bi)

ψ(RF + bi)

Ψ(ℓb)

0

bi RF + biℓb

RF + 0i RG + 0i

Figure 5.12: The map Ψ.

First we show that ψ is a bijection.

• Injectivity. Suppose ψ(a+ bi) = ψ(c+ di). Then by (5.1) we must have a = c.

Suppose without loss of generality that b < d, then since ψ is increasing on

each boundary component, we must have ψ(bi) < ψ(di) and ψ(RF + bi) <

ψ(RF + di). For ψ(a+ bi) = ψ(c+ di) we would need the images of ℓb and ℓd

to cross. In particular this means ψ(bi) > ψ(di) or ψ(RF + bi) > ψ(RF + di),

which is a contradiction. So Ψ is injective.

• Surjectivity. Consider the vertical line

ℓ̃a =

{
z ∈ ΣG : Re(z) =

RG
RF

a

}
.

Then this line is mapped onto by the vertical line {z ∈ ΣF : Re(z) = a}. Since

each z ∈ AG belongs to exactly one of these lines ℓ̃a, surjectivity is proved.

We now prove continuity of Ψ. Notice that for fixed b, if a 6= a′, since Ψ is

2πi-periodic we have

∣∣Ψ(a+ bi)−Ψ(a′ + bi)
∣∣ ≤ 2πC

RG

∣∣a− a′
∣∣ . (5.2)

for some constant C. Furthermore, if b 6= b′ and then for fixed a we have

∣∣Ψ(a+ bi)−Ψ(a+ b′i)
∣∣ ≤ max

{∣∣ψ(bi)− ψ(b′i)
∣∣ ,
∣∣ψ(RF + bi)− ψ(RF + b′i)

∣∣} .
(5.3)
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Also, since ψ is a homeomorphism, we have ψ(b′i) → ψ(bi) and ψ(RF + b′i) →

ψ(RF + bi) as b′ → b. Hence

∣∣Ψ(a+ bi)−Ψ(a′ + b′i)
∣∣ =

∣∣Ψ(a+ bi)−Ψ(a′ + bi) + Ψ(a′ + bi)−Ψ(a′ + b′i)
∣∣

≤
∣∣Ψ(a+ bi)−Ψ(a′ + bi)

∣∣ +
∣∣Ψ(a′ + bi)−Ψ(a′ + b′i)

∣∣

≤
2πC

RG

∣∣a− a′
∣∣

+max
{∣∣ψ(bi) − ψ(b′i)

∣∣ ,
∣∣ψ(RF + bi)− ψ(RF + b′i)

∣∣}

→ 0

as a′ → a and b′ → b by (5.2) and (5.3). Hence Ψ is continuous and by considering

its restriction to compact subsets, we see that by Proposition 4.3.4 it is a homeomor-

phism. This homeomorphism Ψ then induces a homeomorphism Ψ: AF → AG.

To read more about the extensions of homeomorphisms defined on the bound-

aries of 2-manifolds, the reader is referred to [You48] (indeed, this reference guaran-

tees the existence of the extension in the above proposition). We will not be using

any specific properties of the homeomorphism constructed in Proposition 5.3.5. This

is because we do not know enough, in general, about the maps ηF and ηG.

Lemma 5.3.6. The homeomorphism Ψ induces a homeomorphism Φ: C → C.

Moreover, Φ|X1
F∪X

2
F
= φ.

Proof. We define

Φ(z) =

{
ηG ◦Ψ ◦ η−1

F (z), z ∈ C \ (X1
F ∪X2

F );

φ(z), z ∈ X1
F ∪X2

F .

Clearly Φ is a bijection, and it is a homeomorphism with a similar argument as in

Proposition 4.3.11.

We now define the homeomorphism Φ̂ to be the lifting of Φ under F and G;

that is Φ̂ = G−1 ◦ Φ ◦ F . At the moment we assume that F and G are of degree

d (our restriction to degree 2 will take place later), so we realise that there are in

fact d choices for the map Φ̂, since G is a d-fold ramified covering and each choice

corresponds to which cover is chosen. In the previous chapter, we constructed the

map Φ̂ in Proposition 4.3.13, starting off with the observation that φ was a conjugacy

on the stars XF and XG, and so we could set Φ̂ to equal φ on XF . It was then a

fortunate consequence of the fixed cluster case that this restriction still allowed us

to construct the homeomorphism Φ̂ which satisfied all the required properties.
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We are not so fortunate in the case where there is more than one cluster.

In this case, it may be that, a priori, the map Φ̂ we construct that satisfies Φ̂ =

G−1 ◦ Φ ◦ F may not satisfy Φ̂|(X1
F∪X2

F )
= φ. However, we notice that it is at least

possible to set Φ̂|X1
F
= Φ|X1

F
, since

z ∈ X1
F =⇒F (z) ∈ X2

F

=⇒Φ(F (z)) = φ(F (z)) ∈ X2
G

=⇒G−1(φ(F (z)) ∈ G−1
(
X2
G

)
.

The set G−1(X2
G) contains the star X1

G and all the non-periodic pre-image stars of

X2
G. Of course, we are at liberty to pick the lift (the branch of G−1) that gives us

Φ̂(X1
F ) = X1

G. This choice will uniquely define our choice of G−1 and so our map

Φ. However, this choice may not give us Φ̂(X2
F ) = X2

G, but instead will map it to

some pre-image star (or pre-star, for short), and so our choice of pair (Φ, Φ̂) may not

satisfy the requirements for the homeomorphisms in Thurston’s theorem. However,

we will show that in the degree 2 case we can carry out some suitable modifications

to get two homeomorphisms which do satisfy the requirements. In higher degree

cases, we can modify so that the maps Φ and Φ̂ agree on the stars, but in this case

it may not be true that they are isotopic relative to the postcritical set of F .

The reader may be suspicious about the above claim that the conditions

Φ̂ = G−1◦Φ◦F and Φ̂(X1
F ) = X1

G are enough to uniquely define the homeomorphism.

We briefly explain why this is the case below.

Let the critical points of F be c1 ∈ X1
F and c2 ∈ X2

F . Let γ be a path

between v1 = F (c1), the critical value in X2
F and v2, the critical value in X1

F and

with γ ∩ (X1
F ∪ X2

F ) = ∅. Then F−1(γ) is made up of d curves from c1 to c2,

and these split the sphere into d regions, which we label anticlockwise around the

critical point c1 by A1, . . . ,Ad, chosen so that X1
F ⊂ A1. The map Fi : Ai → C \ γ,

the restriction of F to Ai, is a homeomorphism for each i. This can be extended

continuously to the boundary.

With a similar argument we see that Φ(γ) =: γ′ is a path between the critical

points v′1 and v′2. Hence G
−1(γ′) splits the sphere into d regions, which we similarly

label anticlockwise by A′
1, . . .A

′
d, starting with A′

1 being the region component con-

taining X1
G. Again the restriction Gi : A

′
i → C \ γ′ is a homeomorphism and it can

be extended continuously to the boundary.

We now define Φ̂ by mapping Ai onto A′
i so that Φ̂ = G−1 ◦ Φ ◦ F .

Lemma 5.3.7. Φ̂ is a homeomorphism.

Proof. The details of this proof are similar to Proposition 4.3.13.
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We would like to follow the method of the previous chapter by transferring

the maps Φ and Φ̂ to maps on the annulus and then comparing them there. However,

as it stands this is not possible since we would require Φ̂|(X1
F∪X

2
F )

= Φ|(X1
F∪X

2
F )
. We

now outline how we can fix this problem.

Let τ ⊂ C be a simple closed curve which is disjoint from the stars X1
G and

X2
G and which intersects γ′ in only one place and so that the winding number of

τ about the first cluster point p′1 is 1. Denote by Dτ the Dehn twist about this

curve τ in the anticlockwise direction. The plan is to modify Φ to a new function

Φ1 = D◦j
τ ◦ Φ so that the pair Φ1 and Φ̂1 = G−1 ◦ Φ1 ◦ F equal φ on the stars.

By construction we map X1
F onto X1

G under Φ̂. Suppose that we have X2
F ⊂

Ak and X2
G ⊂ A′

ℓ. If k = ℓ then Φ̂ maps Ak onto A′
k and so Φ̂(X2

F ) = X2
G and we

are done. If k 6= ℓ then replace Φ with Φ1 = D
◦(ℓ−k)
τ ◦ Φ. Φ1 is a homeomorphism

since it is the composition of two homeomorphisms. We get a new path γ1 =

Φ1(γ) (γ defined as before) and hence we can define the regions B1, . . . ,Bd as the

connected components of the complement of G−1(γ1) in the sphere. As before we

label anticlockwise round the first critical point and set X1
G ⊂ B1. Now define

Φ̂1 = G−1 ◦ Φ1 ◦ F , mapping Ai onto Bi and forming the homeomorphism in the

usual way.

Lemma 5.3.8. Φ̂1(X
1
F ) = X1

G and Φ̂1(X
2
F ) = X2

G.

Proof. The first equality is clear since by construction we have X1
F ⊂ A1 and X1

G ⊂

B1. Also by assumption we have X2
F ⊂ Ak. So all we need to show is that X2

G ⊂ Bk.

Notice that since the regions Bi are ordered anticlockwise cyclically at the

first critical point c′1, they are ordered clockwise cyclically at c′2. We will compare

the paths in G−1(γ′) and those in G−1(γ1). Loosely speaking, we will be using the

fact that, when pulled back under the map G−1, the Dehn twist D
◦(ℓ−k)
τ becomes a

“partial twist” of (ℓ− k)/d. This is because each region Bi maps onto C \ γ1. Since

the twist is the identity outside some small neighbourhood of τ , we see that γ1 and

γ will agree outside of this neighbourhood. However, the pre-image paths, when

lifted, will look slightly different, since the twisting means the “heads” and “tails”

of the pre-image curves will match up in a different way.

We describe the above more formally. Label the paths inG−1(γ′) by σ1, . . . , σd,

going anticlockwise starting with σ1 being anticlockwise adjacent to X1
G. The paths

ζj in G−1(γ1) can be thought of as being made up of three parts. The path ζj is

equal to σj , starting at c′1, until it reaches some point aj . Similarly, it will also be

equal to another pre-image curve σj+(ℓ−k) of G−1(γ) from a point bj+(ℓ−k) to the

point c′2.
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We now discuss how ζj goes from aj to bj+(ℓ−k). The discrepancy is caused

by the Dehn twist, lifted under the pre-image G−1. Since D is defined to be an

anticlockwise twist, the curve ζj will be twisted anticlockwise, and so will pass

through the regions Aj+1, . . . ,Aj+(ℓ−k), meeting with the point bj+(ℓ−k) when it

meets the boundary of Aj+(ℓ−k). See Figure 5.13 and Figure 5.14.

A1

A4

σ2
A2

σ3

σ4

σ1

A3

Figure 5.13: Diagram for the proof of Lemma 5.3.8. The dashed lines represent the
modification that comes about if we add a Dehn twist in the range before pulling
back under G. Compare with Figure 5.14.

Since X2
G ⊂ A′

ℓ, we see that the paths σℓ−1 and σℓ are the paths coming into

c′2 adjacent to X
2
G. In other words the paths σℓ−1 and σℓ bound the components A′

ℓ.

From the discussion in the above paragraph, we see that the rays bounding Bk are

described as follows. One starts at c′1 and travels along σk−1 until it reaches ak−1.

It then follows a path from ak−1 to bk−1+(ℓ−k) = bℓ−1 and then follows σℓ−1 to c′2.

The other begins at c′1 and follows σk to ak. It then passes from ak to bℓ and then

follows σℓ and finally to c′2. Notice that in particular this means that we must have

X2
G ⊂ Bk and so we are done.

So we now have Φ1 and Φ̂1 agree on the stars. So we now compare the

induced maps Ψ1 and Ψ̂1 from AF to AG. Both these maps will equal ψ on ∂AF

and so Ψ̂−1
1 ◦ Ψ1 is a homeomorphism of AF which fixes the boundary pointwise.

By Proposition 2.4.2, this homeomorphism is isotopic to D◦k for some k ∈ Z, where

D is the Dehn twist around the (anticlockwise) core curve of the annulus AF . At

this point we finally restrict ourselves to the degree 2 case; we can think of this core
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B1

B2

B3

B4

Figure 5.14: The “modified” diagram from Figure 5.14, with the new regions
B1, . . . ,Bd labelled.

curve C as being the pre-image under ηF of some curve κ separating the stars in the

F -sphere. Note that the curve κ′ = F−1(κ) maps onto κ by a two to one covering.

Also, the curve C ′ = η−1
F (κ′) is homotopic to the curve C.

Proposition 5.3.9. We can modify the homeomorphisms Φ1 and Φ̂1 to homeomor-

phisms Φ2 and Φ̂2 which satisfy the conditions of the homeomorphisms in Thurston’s

theorem.

Proof. We begin by remarking that the homeomorphisms Φ1 and Φ̂1 satisfy G◦Φ̂1 =

Φ1 ◦ F and agree on the X1
F ∪X2

F . So all that remains is to modify them so that

these two conditions are preserved and that furthermore they are isotopic to one

another. This is equivalent to making sure some suitable modification of Ψ1 and

Ψ̂2 are isotopic to one another. It should be borne in mind that the definitions of

Φ2 and Φ̂2 rely on each other, since we require Φi ◦ F = G ◦ Φ̂i for i = 1, 2. Hence

modifying one will force the modification of the other.

A quick comment on the curves C and C ′. Since κ′ maps to κ in a two to

one covering, a Dehn twist around C ′ will correspond to the second power of a Dehn

twist around C, again in light of the fact that Φi ◦ F = G ◦ Φ̂i and because F and

G are degree 2.

Working on the annulus AF , we define Ψ̂2 = Ψ̂1 ◦ D
◦(−k)
C′ and Ψ2 = Ψ1 ◦

D
◦(−2k)
C . Since C and C ′ are homotopic, the Dehn twist around them has the same

effect on the element of the mapping class group, hence we drop the subscript from

130



now on. So we calculate

Ψ̂−1
2 ◦Ψ2 =D◦k ◦ Ψ̂−1

1 ◦Ψ1 ◦D
◦(−2k)

∼=D◦k ◦D◦k ◦D◦(−2k)

=Id.

Hence Ψ̂2 and Ψ2 are isotopic on the annulus and hence the maps Φ̂2 and Φ2 which

are obtained by passing forward onto the Riemann sphere (using the maps η̃F and

η̃G) satisfy the conditions for the homeomorphisms in Thurston’s theorem. Hence

F and G are Thurston equivalent.

5.3.1 The Higher Degree Case

We now discuss the problems with generalising the above method to a higher degree

case. Since we carried out the proof in the degree d case up until Proposition 5.3.9,

it is the method of this proof that we need to focus on. Informally, we are using

the fact that the difference in the homeomorphisms Φ1 and Φ̂1 can be thought of as

some power of a Dehn twist, D◦k.

Thinking of Φ as the homeomorphism on the range and Φ̂ as the homeomor-

phism on the domain, we see that if we carry out one Dehn twist in the domain,

then we will need to carry out the Dehn twist d times in the range. We require the

use of Dehn twists to “undo” the difference between the two homeomorphisms.

To give an example, suppose we are in the degree 4 case and that we found

Ψ̂−1
1 ◦Ψ1 was isotopic to D. Then, if we carry out k twists in the domain we carry

out 4k twists in the range, and we see that we can solve for the number of twists

required to make Ψ̂−1
1 and Ψ1 isotopic by solving the equation 1 = 4k−k = 3k. But

this does not have an integer solution, and so we cannot carry out a (power of a)

Dehn twist to correct the discrepancy. Hence the above technique would not supply

a proof of equivalence in the higher degree case.

In fact, there are some preliminary calculations that suggest that the state-

ment is no longer true in the higher degree case. It appears, then, that we would

require an extra piece of combinatorial data to be sure of Thurston equivalence. A

possible counterexample to the Thurston equivalence in degree 3 can be found in

Appendix E.

Question 5.3.10. How can we characterise this extra piece of data? Why does it

not appear in the quadratic case?
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5.4 Equators

In contrast to the one cluster case, the question of what the equators look like in

the period two case is a little more involved. There is the simple case, where the

equator is a tubular neighbourhood of the Hubbard tree of a tuned rabbit. This

equator will exist no matter what the combinatorial data are.

Construct a loop E as follows. Let X1 and X2 be the two substars belonging

to the orbit of one of the critical points c0, with c0 ∈ X1. Then denote by γ a path

from c0 to F ◦(2n−1)(c0) = c2n−1, the periodic pre-image of c0 and take a tubular

neighbourhood of X1 ∪X2 ∪ γ. Then the curve E is the boundary of this tubular

neighbourhood (see Figure 5.15).

c2n−1 c0

E

Figure 5.15: An equator in the period 2 case, corresponding to when one of the
maps is a tuned rabbit.

Proposition 5.4.1. Assume that a pre-image of γ is not a path from c2n−1 to c2n−2.

Then E is an equator for a rational map F .

Proof. We need to show the pre-image F−1(E) is isotopic to E rel PF . First note

that the tubular neighbourhood of X1 has d disjoint pre-images, one of which is

a tubular neighbourhood of X2 and the rest which are tubular neighbourhoods

of pre-image stars. The tubular neighbourhood of X2 is made up of a tubular

neighbourhood of all its d pre-image substars (one of which is X1), which all meet

at c0.

The path γ also has d pre-images, each of which goes from a pre-image of c0

to a pre-image of c2n−1. In particular one of the pre-images has endpoint c2n−1, and
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the path goes from c2n−1 to some c̃2n−2, a pre-image of c2n−1 which belongs to some

pre-image star of X1 (in particular, this pre-image star is not X2). Then there is a

path γ̃ from c2n−1 to c0 made up of this pre-image of γ and then the internal rays

from c̃2n−2 to c0. We then see that F−1(E) is isotopic to a tubular neighbourhood

of X1 ∪ γ̃ ∪X2 rel PF , and this is isotopic to E.

Figure 5.16 shows the pre-image of the equator described in the above proof.

c0c2n−1

F−1(E)

Figure 5.16: The pre-image of the equator E.

The considerations of Section 5.2 show that it is possible that a rational map

with a period two cluster cycle can be formed in a different way. One obvious way

is to change which map we consider to be the tuned rabbit, but this equator is

formed in exactly the same way as in the above. However, if c1 is adjacent to F (c2)

in the cyclic ordering, it is possible that neither map is a tuned rabbit and so by

Theorem 2.3.7 there must be a different equator.

Notice that in the one cluster case and the case where one of the maps is a

tuned rabbit in the period 2 cluster case, the ray equivalence classes are very simple.

In particular the ray equivalence classes contain only one point on the Hubbard tree

of the rabbit or tuned rabbit, meaning the Hubbard tree does not twist much in the

geometric mating and there are no identifications on the Hubbard tree. This means

a tubular neighbourhood of the Hubbard tree should be a very good approximation

(at least isotopically) to an equator.

We see that when it is no longer the case that one of the maps is a tuned rabbit
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- in the language of Section 5.2, when the mating is g ⊥⊥ h - there are identifications

on the Hubbard trees of g and h under the equivalence relation induced by the

ray equivalence classes. This is because each branch of the ray equivalence class

contains not only the period two point that becomes the cluster point, but also

the root point of a critical orbit component of the map g. For the identifications

of h, all the root points landing at critical orbit components of the same parity

are identified together at the cluster point. Hence in both cases the Hubbard tree

“twists” during the mating and so a tubular neighbourhood of the Hubbard tree no

longer is a suitable guess for the equator. At the moment it is not known how to

describe the equator in general for this mating, except in the cases with low period.

Question 5.4.2. Is there a general description of the equators corresponding to the

mating g ⊥⊥ h?

5.5 Combinatorial Phenomena

5.5.1 Combinatorial properties of the map h

We now discuss some properties of the map h, the complementary map to the maps

f or g in the mating. We characterised the maps which mate with f to form a

rational map with a period 2 cluster cycle earlier, with the aid of the notion of

2-angular rotation number. However, not every map which mates with f to create

a period 2 cluster cycle will mate with g to create a period 2 cluster cycle, although

the converse is true (Proposition 5.2.25). Here we will see what further conditions

are required on the map h for it to mate with g to create clustering. We already

know some non-combinatorial properties of h from Section 5.2.

In the previous chapter, we noticed that we were able to construct an algo-

rithm which gave us the kneading sequence of the complementary map to f , the

n-rabbit, in a mating which produces a rational map with a fixed cluster point. Here

we will assume that one of the maps in the mating is f , since this case gives a sim-

pler condition on the ordering of the associated angles of the map h. Furthermore,

by Proposition 5.2.25, any map which mates with g to create a rational map with

a period two cluster cycle will also mate with f to create a map with a period two

cluster cycle.

We now state an algorithm. It uses ideas from Algorithm 1.9.2.

Algorithm 5.5.1. The following algorithm computes the kneading sequence of the

map h such that F ∼= f ⊥⊥ h has a period 2 cluster cycle with critical displacement

2k − 1 and combinatorial rotation number p/n.
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1. Split S1 into two complementary arcs and label them I0 and I1. Choose n

points in each Ij and label the points in Ij in clockwise order by (j, 1), (j, 2), . . . ,

(j, n).

2. Put θ1 at position (1, k).

3. Label all the other positions so that the angle θ1 will have 2-angular rotation

number (n − p)/n, with the points in Ij being considered as the points in Aj .

For example, this puts θ2n at position (0, k).

4. Add a new point θ0 between positions (1, p) and (1, p + 1). The points θ0 and

θ2n divide the circle into 2 complementary intervals. Label the one containing

θ1 by J1 and the other one by J0.

5. The kneading sequence of θ1 is ν = ν1 . . . ν2n−1∗, where νk = j when θk ∈ Jj .

This kneading sequence is the kneading sequence of the map h.

Proof. This is essentially a repeat of a number of results from Section 5.2. Clearly

the two intervals I0 and I1 correspond to the two intervals containing A0 and A1.

Then the positions (1,m) represent the partner rays to the ones landing on the

period 2 point in f which lies on the boundary of the critical point component.

Clearly then putting θ1 at (1, k) will put the critical value component of h a total

of 2k − 1 components round from the critical point component of f .

The cyclic ordering of the other angles θi follows from the fact that, for the

map h, the cyclic ordering of the angles is maintained when one maps from A0 to

A1. The position of θ0 is given by Proposition 5.2.15 and the derivation of the

kneading sequence from the intervals is just the standard definition of the kneading

sequence.

Note in particular we do not need to calculate the actual numerical value of

any angles with this algorithm.

There is another way of calculating the kneading sequence of the map h,

using a technique very similar to Algorithm 4.4.2. Recall the form of the equator as

described in Proposition 5.4.1. The equator was chosen as a tubular neighbourhood

of the Hubbard tree of some fp/n since, as discussed above, the Hubbard tree does

not twist too much in the geometric mating. Of course, the Hubbard tree of h does

not twist much in the geometric mating either. With this in mind, we notice that

the curve in Figure 5.17 is isotopic to the equator in Figure 5.15, and this should be

itself isotopic to some tubular neighbourhood of the Hubbard tree of h. The reason

why we leave a gap at the point c2n−2 is because, as seen in Proposition 5.4.1, there
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is a pre-image of γ running from this point to a pre-image of c0. Hence the two

choices of equators are entirely compatible.

c2n−1 c0

c2n−2
E

Figure 5.17: A curve isotopic to the equator E in Figure 5.15. This is isotopic rel
PF to a tubular neighbourhood of the Hubbard tree of h.

We notice that the equator in Figure 5.17 provides a form of cyclic ordering to

the points in Ph. We describe this ordering more formally in the following algorithm.

Algorithm 5.5.2. The following is an algorithm to compute the kneading sequence

of the map h which creates a rational map with a period 2 cluster cycle and the

mating fp/n ⊥⊥ h with combinatorial displacement δ. Start off by drawing the two

stars of the cluster corresponding to the mating we require. The combinatorial data

is enough to draw these (in other words place the critical value c′1 δ places anti-

clockwise from the critical point c0). Then follow the steps below.

1. Label the critical orbit of the second critical point ω2 as follows. The points

lying anti-clockwise in the star between c2n−2 and c0, the first critical point are

c′i1 , c
′
i2
, . . . , c′ik . We then label the points in the other star, starting with the

point adjacent and anti-clockwise from c2n−1, by c
′
ik+1

, c′ik+2
. . . , c′ik+ℓ . Finally

we return to the first star and label the remaining points, starting with the one

adjacent and anticlockwise of c0 by c′ik+ℓ+1
, . . . , c′i2n .

2. Each cij corresponds to some c′m = F ◦m(c0)
′, as derived from the cyclic order-

ing around the stars determined by the combinatorial data.There exists r so

that cir = c′0, the second critical point. The set {c′ij : j = 1, 2, . . . , 2n, j 6= r}
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is then split into two subsets

{c′ij : j < r} and {c′ij : j > r}. (5.4)

Denote the subset containing c′1 by I1 and the other one by I0. The kneading

sequence is ν = ν1ν2 . . . ν2n−1∗ where νj = 1 if c′j ∈ I1 and νj = 0 if c′j ∈ I0.

Proof. We use a similar “separating” argument to that in Algorithm 4.4.2. Consider

the branch of the graph of the ray equivalence class containing the root point of the

Fatou component containing the critical point of h. The branch consists of the ray

leaving the period two point p1 which then lands at the root point of the critical

point component of h, and then the second ray leaving the critical point component

of h and landing at some endpoint in J(f). In particular this ray class divides

the h-plane into two regions in the same way as the construction of the kneading

sequence.

The ordering from the listing in the algorithm means that the two regions

split the points in the post-critical set of h in the manner described by (5.4).

Hence we can pick the region containing the critical value of h to be I1 and

the other region to be I0 and then construct the kneading sequence as described

above.

We can then use either of the two algorithms to calculate progressions of

internal addresses.

5.5.2 Progressions

We compute some simple examples of progressions of internal addresses.

Proposition 5.5.3. Suppose F ∼= f1/n ⊥⊥ h has a period two cluster cycle with com-

binatorial rotation number ρ = 1/n. Then the internal addresses of the secondary

maps h are given as in Table 5.1.

Proof. We use Algorithm 5.5.1. Note that there will only be one member anticlock-

wise between A0 and θ0, the non-periodic pre-image of θ0. This will be θ2n−δ, where

δ = 2k − 1 is the critical displacement. Moreover, the points clockwise between θ2n

and A1 are θ2n−2, θ2n−4, . . . , θ2n−(2k−2). If the critical displacement is not 2n − 1,

the interval J0 contains precisely the points mentioned above: that is it contains

θ2n−(2k−1), and θ2n−2, θ2n−4, . . . , θ2n−(2k−2). A simple calculation then gives knead-

ing sequence and the internal address.
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Critical displacement Internal address of h

1 1 → 2n− 1 → 2n

3 1 → 2n− 3 → 2n− 2 → 2n

5 1 → 2n− 5 → 2n− 4 → 2n− 2 → 2n

· · · · · · · · · · · ·

2n − 5 1 → 5 → 6 → 8 → · · · → 2n− 2 → 2n

2n − 3 1 → 3 → 4 → 6 → · · · → 2n− 2 → 2n

2n − 1 1 → 3 → 5 → 7 → · · · → 2n− 3 → 2n− 1 → 2n

Table 5.1: Internal addresses in the rotation number 1/n case.

If the critical displacement is 2n−1, then we see that the interval J1 contains

θ1, θ2, θ4, . . . , θ2n−1. This then gives the internal address for critical displacement

2n− 1.

We now consider the case where the rotation number is ρ = 2/n.

Proposition 5.5.4. Suppose F ∼= f1/n ⊥⊥ h has a period two cluster cycle with com-

binatorial rotation number ρ = 2/n. Then the internal addresses of the secondary

maps h are given as in Table 5.2.

δ Internal address of h

1 1 → n→ 2n− 1 → 2n

3 1 → n− 2 → n− 1 → 2n− 3 → 2n− 1 → 2n

5 1 → n− 2 → n− 1 → 2n

7 1 → n− 4 → n− 3 → n− 1 → 2n− 5 → 2n− 3 → 2n− 2 → 2n

9 1 → n− 4 → n− 3 → n− 1 → 2n

· · · · · · · · · · · ·

4k − 1 1 → n− 2k → n− 2k + 1 → n− k + 3 → · · · → n− 1 → 2n− 2k − 1
→ 2n− 2k + 1 → 2n− 2k + 2 → 2n− 2k + 4 → · · · → 2n

4k + 1 1 → n− 2k → n− 2k + 1 → n− 2k + 3 → · · · → n− 1 → 2n

· · · · · · · · · · · ·

2n− 5 1 → 3 → 4 → 6 → · · · → n− 1 → 2n

2n− 3 1 → 3 → 5 → · · · → n→ n+ 1 → 2n

2n− 1 1 → 3 → 5 → · · ·n− 2 → n+ 1
→ n+ 2 → n+ 4 → · · · → 2n− 1 → 2n

Table 5.2: Internal addresses in the rotation number 2/n case.

Proof. This time we use Algorithm 5.5.2. Notice that of course n is odd in this case.

This time there are 2 elements of Ph anticlockwise between c2n−2 and c0.
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We first tackle the case where the critical displacement is 1. In this case the

two points between c2n−2 and c0 are c′2n−1 and c′n. The first point in the ordering

that we meet in the second star is c0. Hence the kneading sequence will have νi = 0

if and only if i = n or i = 2n− 1.

We now split into two cases: when the critical displacement is 4k − 1 and

when it is 4k + 1.

Suppose δ = 4k − 1. Then c′i1 = c′n−2k and c′i2 = c′2n−2k+1. Passing to the

second star,

c′i3 = c′n−2k+1

c′i4 = c′2n−2(k−1)

c′i5 = c′n−2(k−1)+1

c′i6 = c′2n−2(k−2)

. . .

c′in+1
= c′n−2k−1

c′in+2
= c′2n−2k.

The critical point is at ci2(k+1)
. If c′1 6= c′i1 (which is equivalent to critical dis-

placement 2n − 3) then the set I0 is {c′ij : j < 2(k + 1)}. Then νj = 0 when

j = n− 2k, n − 2k + 1, n − 2(k − 1) + 1, . . . , n − 1 and when j = 2n − 2k + 1, 2n −

2(k − 1), 2n − 2(k − 2), . . . , 2n − 2. This yields the kneading sequence and internal

address as given.

When δ = 2n − 3 then c′1 = c′i1 and c′i2 = cn+2. The other members of I1

are those c′j with even index, save for c′n+1 (and c′0). Again a simple calculation is

required to achieve the result.

Now suppose δ = 4k + 1. Then c′i1 = c′2n−2k−1 and c′i2 = c′n−2k. Passing to

the second star,

c′i3 = c′2n−2k

c′i4 = c′n−2k+1

c′i5 = c′2n−2(k−1)

c′i6 = c′n−2(k−1)+1

. . .

c′in+1
= c′2n−2k−2

c′in+2
= c′n−2k−1.
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If δ = 2n− 1 then c′i2 = c′1 and c′i1 = c′n. Except for the critical point, c
′
0, all c

′
j with

even index lie in I1, so I1 = {c′1, c
′
n} ∪ {c2k : k = 1, 2, . . . , n − 1} and the kneading

sequence and internal address follow.

Now suppose δ 6= 2n − 1. The critical point is at c′i2(k+1)+1
. We see that

νj = 0 when j = 2n−2k−1, 2n−2k, 2n−2(k−1), . . . , 2n−2 or j = n−2k, n−2k+

1, n−2(k−1)+1, . . . , n−1. Notice that if r appears in the first list, then r− (n−1)

appears in the second list and so we get the kneading and internal addresses as

above.

Clearly we can use these algorithms to compute internal addresses and knead-

ing sequences for different rotation numbers, but the calculations get even more

involved. In particular, the structure of the table for ρ = k/n is dependent on all

three of n, k and the value of n mod k. One can see more examples of progressions

in the appendices.
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Appendix A

Data for the period 1 case

We give the raw data for the period 1 case. That is, the case where the mating

admits a map with a single cluster of hyperbolic components. In this case, the

critical displacement is given by the number of components one has to travel anti-

clockwise round the cluster to go from the critical point of f1 to the critical point

of f2. The map f1 will be the n-rabbit of given rotation number r/n in each case,

with internal address

1r/n → n.

A.1 Period 3 - denominator 7.

Rotation number 1/3.

Angles are (1/7,2/7).

Crit. disp. Angles for f2 Internal address of f2
3 (3,4) 1 → 2 → 3

Rotation number 2/3.

Angles are (5/7,6/7).

Crit. disp. Angles for f2 Internal address of f2
3 (3,4) 1 → 2 → 3
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A.2 Period 4 - denominator 15.

Rotation number 1/4.

Angles are (1/15,2/15).

Crit. disp. Angles for f2 Internal address of f2
3 (11,12) 1 → 3 → 4

5 (7,8) 1 → 2 → 3 → 4

Rotation number 3/4.

Angles are (13/15,14/15).

Crit. disp. Angles for f2 Internal address of f2
3 (7,8) 1 → 2 → 3 → 4

5 (3,4) 1 → 3 → 4
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A.3 Period 5 - denominator 31.

Rotation number 1/5.

Angles are (1/31,2/31).

Crit. disp. Angles for f2 Internal address of f2
3 (27,28) 1 → 4 → 5

5 (23,24) 1 → 3 → 4 → 5

7 (15,16) 1 → 2 → 3 → 4 → 5

Figure A.1: Period 5, Rotation number 1/5
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Rotation number 2/5.

Angles are (9/31,10/31).

Crit. disp. Angles for f2 Internal address of f2
3 (13,18) 1 → 2 → 4 → 5

5 (11,12) 1 → 2 → 5

7 (25,26) 1 → 3 → 5

Figure A.2: Period 5, Rotation number 2/5
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Rotation number 3/5.

Angles are (21/31,22/31).

Crit. disp. Angles for f2 Internal address of f2
3 (5,6) 1 → 3 → 5

5 (19,20) 1 → 2 → 5

7 (13,18) 1 → 2 → 4 → 5

Figure A.3: Period 5, Rotation number 3/5
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Rotation number 4/5.

Angles are (29/31,30/31).

Crit. disp. Angles for f2 Internal address of f2
3 (15,16) 1 → 2 → 3 → 4 → 5

5 (7,8) 1 → 3 → 4 → 5

7 (3,4) 1 → 4 → 5

Figure A.4: Period 5, Rotation number 4/5
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A.4 Period 6 - denominator 63.

Rotation number 1/6.

Angles are (1/63,2/63).

Crit. disp. Angles for f2 Internal address of f2
3 (59,60) 1 → 5 → 6

5 (55,56) 1 → 4 → 5 → 6

7 (47,48) 1 → 3 → 4 → 5 → 6

9 (31,32) 1 → 2 → 3 → 4 → 5 → 6

Figure A.5: Period 6, Rotation number 1/6
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A.5 Period 7 - denominator 127.

Rotation number 1/7.

Angles are (1/127,2/127).

Crit. disp. Angles for f2 Internal address of f2
3 (123,124) 1 → 6 → 7

5 (119,120) 1 → 5 → 6 → 7

7 (111,112) 1 → 4 → 5 → 6 → 7

9 (95,96) 1 → 3 → 4 → 5 → 6 → 7

11 (63,64) 1 → 2 → 3 → 4 → 5 → 6 → 7

Figure A.6: Period 7, Rotation number 1/7
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Rotation number 2/7.

Angles are (17/127,18/127).

Crit. disp. Angles for f2 Internal address of f2
3 (93,102) 1 → 3 → 6 → 7

5 (91,92) 1 → 3 → 7

7 (59,68) 1 → 2 → 3 → 5 → 6 → 7

9 (55,56) 1 → 2 → 3 → 7

11 (117,118) 1 → 4 → 7

Figure A.7: Period 7, Rotation number 2/7
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Rotation number 3/7.

Angles are (41/127,42/127).

Crit. disp. Angles for f2 Internal address of f2
3 (53,74) 1 → 2 → 4 → 6 → 7

5 (45,50) 1 → 2 → 6 → 7

7 (43,44) 1 → 2 → 7

9 (105,106) 1 → 3 → 5 → 7

11 (89,90) 1 → 5 → 7

Figure A.8: Period 7, Rotation number 3/7
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A.6 Period 8 - denominator 255.

Rotation number 1/8.

Angles are (1/255,2/255)

Crit. disp. Angles for f2 Internal address of f2
3 (251,252) 1 → 7 → 8

5 (247,248) 1 → 6 → 7 → 8

7 (239,240) 1 → 5 → 6 → 7 → 8

9 (223,224) 1 → 4 → 5 → 6 → 7 → 8

11 (191,192) 1 → 3 → 4 → 5 → 6 → 7 → 8

13 (127,128) 1 → 2 → 3 → 4 → 5 → 6 → 7 → 8

Figure A.9: Period 8, Rotation number 1/8
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Rotation number 3/8.

Angles are (73/255,74/255).

Crit. disp. Angles for f2 Internal address of f2
3 (173,174) 1 → 5 → 8

5 (109,146) 1 → 2 → 4 → 5 → 7 → 8

7 (107,108) 1 → 2 → 4 → 5 → 8

9 (91,92) 1 → 2 → 5 → 8

11 (217,218) 1 → 3 → 8

13 (205,214) 1 → 3 → 6 → 8

Figure A.10: Period 8, Rotation number 3/8
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A.7 Period 9 - denominator 511.

Rotation number 1/9

Crit. disp. Angles for f2 Internal address of f2
3 (507,508) 1 → 8 → 9

5 (503,504) 1 → 7 → 8 → 9

7 (495,496) 1 → 6 → 7 → 8 → 9

9 (479,480) 1 → 5 → 6 → 7 → 8 → 9

11 (447,448) 1 → 4 → 5 → 6 → 7 → 8 → 9

13 (383,384) 1 → 3 → 4 → 5 → 6 → 7 → 8 → 9

15 (255,256) 1 → 2 → 3 → 4 → 5 → 6 → 7 → 8 → 9

Figure A.11: Period 9, Rotation number 1/9
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Rotation number 2/9.

Angles are (33/511,34/511).

Crit. disp. Angles for f2 Internal address of f2
3 (445,462) 1 → 4 → 8 → 9

5 (443,444) 1 → 4 → 9

7 (379,396) 1 → 3 → 4 → 7 → 8 → 9

9 (375,376) 1 → 3 → 4 → 9

11 (247,264) 1 → 2 → 3 → 4 → 6 → 7 → 8 → 9

13 (239,240) 1 → 2 → 3 → 4 → 9

15 (493,494) 1 → 5 → 9

Figure A.12: Period 9, Rotation number 2/9
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Rotation number 4/9.

Angles are (169/511,170/511).

Crit. disp. Angles for f2 Internal address of f2
3 (213,298) 1 → 2 → 4 → 6 → 8 → 9

5 (181,202) 1 → 2 → 6 → 8 → 9

7 (173,178) 1 → 2 → 8 → 9

9 (171,172) 1 → 2 → 9

11 (425,426) 1 → 3 → 5 → 7 → 9

13 (361,362) 1 → 5 → 7 → 9

15 (345,346) 1 → 7 → 9

Figure A.13: Period 9, Rotation number 4/9
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A.8 Period 10 - denominator 1023.

Rotation number 1/10.

Angles are (1/1023,2/1023).

Crit. disp. Angles for f2 Internal address of f2
3 (1019,1020) 1 → 9 → 10

5 (1015,1016) 1 → 8 → 9 → 10

7 (1007,1008) 1 → 7 → 8 → 9 → 10

9 (991,992) 1 → 6 → 7 → 8 → 9 → 10

11 (959,960) 1 → 5 → 6 → 7 → 8 → 9 → 10

13 (895,896) 1 → 4 → 5 → 6 → 7 → 8 → 9 → 10

15 (767,768) 1 → 3 → 4 → 5 → 6 → 7 → 8 → 9 → 10

17 (511,512) 1 → 2 → 3 → 4 → 5 → 6 → 7 → 8 → 9 → 10

Figure A.14: Period 10, Rotation number 1/10
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Rotation number 3/10.

Angles are (145/1023,146/1023).

Crit. disp. Angles for f2 Internal address of f2
3 (749,822) 1 → 3 → 6 → 9 → 10

5 (733,742) 1 → 3 → 9 → 10

7 (731,732) 1 → 3 → 10

9 (475,548) 1 → 2 → 3 → 5 → 6 → 8 → 9 → 10

11 (443,452) 1 → 2 → 3 → 8 → 9 → 10

13 (439,440) 1 → 2 → 3 → 10

15 (949,950) 1 → 4 → 7 → 10

17 (885,886) 1 → 7 → 10

Figure A.15: Period 10, Rotation number 3/10
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A.9 Period 11 - denominator 2047.

Rotation number 1/11.

Angles are (1/2047,2/2047).

C. disp. f2 angles Internal address of f2
3 (2043,2044) 1 → 10 → 11

5 (2039,2040) 1 → 9 → 10 → 11

7 (2031,2032) 1 → 8 → 9 → 10 → 11

9 (2015,2016) 1 → 7 → 8 → 9 → 10 → 11

11 (1983,1984) 1 → 6 → 7 → 8 → 9 → 10 → 11

13 (1919,1920) 1 → 5 → 6 → 7 → 8 → 9 → 10 → 11

15 (1791,1792) 1 → 4 → 5 → 6 → 7 → 8 → 9 → 10 → 11

17 (1535,1536) 1 → 3 → 4 → 5 → 6 → 7 → 8 → 9 → 10 → 11

19 (1023,1024) 1 → 2 → 3 → 4 → 5 → 6 → 7 → 8 → 9 → 10 → 11

Figure A.16: Period 11, Rotation number 1/11
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Rotation number 2/11.

Angles are (65/2047,66/2047).

Crit. disp. Angles for f2 Internal address of f2
3 (1917,1950) 1 → 5 → 10 → 11

5 (1915,1916) 1 → 5 → 11

7 (1787,1820) 1 → 4 → 5 → 9 → 10 → 11

9 (1783,1784) 1 → 4 → 5 → 11

11 (1527,1560) 1 → 3 → 4 → 5 → 8 → 9 → 10 → 11

13 (1519,1520) 1 → 3 → 4 → 5 → 11

15 (1007,1040) 1 → 2 → 3 → 4 → 5 → 7 → 8 → 9 → 10 → 11

17 (991,992) 1 → 2 → 3 → 4 → 5 → 11

19 (2013,2014) 1 → 6 → 11

Figure A.17: Period 11, Rotation number 2/11
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Rotation number 3/11.

Angles are (273/2047,274/2047).

Crit. disp. Angles for f2 Internal address of f2
3 (1757,1758) 1 → 7 → 11

5 (1501,1638) 1 → 3 → 6 → 7 → 10 → 11

7 (1499,1500) 1 → 3 → 6 → 7 → 11

9 (1467,1468) 1 → 3 → 7 → 11

11 (955,1092) 1 → 2 → 3 → 5 → 6 → 7 → 9 → 10 → 11

13 (951,952) 1 → 2 → 3 → 5 → 6 → 7 → 11

15 (887,888) 1 → 2 → 3 → 7 → 11

17 (1909,1910) 1 → 4 → 11

19 (1885,1902) 1 → 4 → 8 → 11

Figure A.18: Period 11, Rotation number 3/11
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Rotation number 4/11.

Angles are (585/2047,586/2047).

Crit. disp. Angles for f2 Internal address of f2
3 (1453,1454) 1 → 8 → 11

5 (1389,1390) 1 → 5 → 8 → 11

7 (877,1170) 1 → 2 → 4 → 5 → 7 → 8 → 10 → 11

9 (875,876) 1 → 2 → 4 → 5 → 7 → 8 → 11

11 (859,860) 1 → 2 → 4 → 5 → 8 → 11

13 (731,732) 1 → 2 → 5 → 8 → 11

15 (1753,1754) 1 → 3 → 11

17 (1741,1750) 1 → 3 → 9 → 11

19 (1645,1718) 1 → 3 → 6 →→ 9 → 11

Figure A.19: Period 11, Rotation number 4/11
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Rotation number 5/11.

Angles are (681/2047,682/2047).

Crit. disp. Angles for f2 Internal address of f2
3 (853,1194) 1 → 2 → 4 → 6 → 8 → 10 → 11

5 (725,810) 1 → 2 → 6 → 8 → 10 → 11

7 (693,714) 1 → 2 → 8 → 10 → 11

9 (685,690) 1 → 2 → 10 → 11

11 (683,684) 1 → 2 → 11

13 (1705,1706) 1 → 3 → 5 → 7 → 9 → 11

15 (1449,1450) 1 → 5 → 7 → 9 → 11

17 (1385,1386) 1 → 7 → 9 → 11

19 (1369,1370) 1 → 9 → 11

Figure A.20: Period 11, Rotation number 5/11

162



A.10 Period 12 - denominator 4095.

Rotation number 1/12.

Angles are (1/4095,2/4095).

C. d. f2 angles Internal address of f2
3 (4091,4092) 1 → 11 → 12

5 (4087,4088) 1 → 10 → 11 → 12

7 (4079,4080) 1 → 9 → 10 → 11 → 12

9 (4063,4064) 1 → 8 → 9 → 10 → 11 → 12

11 (4031,4032) 1 → 7 → 8 → 9 → 10 → 11 → 12

13 (3967,3968) 1 → 6 → 7 → 8 → 9 → 10 → 11 → 12

15 (3839,3840) 1 → 5 → 6 → 7 → 8 → 9 → 10 → 11 → 12

17 (3583,3584) 1 → 4 → 5 → 6 → 7 → 8 → 9 → 10 → 11 → 12

19 (3071,3072) 1 → 3 → 4 → 5 → 6 → 7 → 8 → 9 → 10 → 11 → 12

21 (2047,2048) 1 → 2 → 3 → 4 → 5 → 6 → 7 → 8 → 9 → 10 → 11 → 12

Figure A.21: Period 12, Rotation number 1/12
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Rotation number 5/12.

Angles are (1321/4095,1322/4095).

Crit. disp. Angles for f2 Internal address of f2
3 (2741,2742) 1 → 7 → 12

5 (1717,2378) 1 → 2 → 4 → 6 → 7 → 9 → 11 → 12

7 (1709,1714) 1 → 2 → 4 → 6 → 7 → 12

9 (1453,1586) 1 → 2 → 6 → 7 → 11 → 12

11 (1451,1452) 1 → 2 → 6 → 7 → 12

13 (1387,1388) 1 → 2 → 7 → 12

15 (3433,3434) 1 → 3 → 5 → 12

17 (3385,3418) 1 → 3 → 5 → 8 → 10 → 12

19 (2905,2906) 1 → 5 → 12

21 (2869,2902) 1 → 5 → 10 → 12

Figure A.22: Period 12, Rotation number 5/12
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Appendix B

Data for the period 2 case

This is the data found when finding maps with a period 2 cycle of cluster points.

In this case, the critical displacement is given as the gap (in terms of hyperbolic

components) in an anticlockwise direction between the critical point component of f1

and the critical value component of f2. In what follows, f1 will be the tuned-n-rabbit

with internal address

11/2 → 2r/n → 2n,

and g1 will be the secondary component which lies beyond the tuned-n-rabbit, with

internal address

11/2 → 2r/n → (2n− 1)1/2 → 2n.
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B.1 Period 4 - denominator 15.

Rotation number 1/2

f1 : (6/15, 9/15)

g1 : (7/15, 8/15)

Internal address f2 angles C. disp. with f1 C. disp with g1
1 → 3 → 4 (3,4) 1 3

1 → 3 → 4 (11,12) 3 1

Figure B.1: Period 4, Rotation number 1/2
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B.2 Period 6 - denominator 63.

Rotation number 1/3

f1 : (22/63, 25/63)

g1 : (23/63, 24/63)

Internal address Angles for f2 C. disp. with f1 C. disp with g1
1 → 5 → 6 (19,20) 1 5

1 → 3 → 4 → 6 (13,14) 3 ×

1 → 3 → 5 → 6 (51,52) 5 1

Figure B.2: Period 6, Rotation number 1/3
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B.3 Period 8 - denominator 255.

Rotation number 1/4.

f1 : (86/255, 89/255)

g1 : (87/255, 88/255)

Internal address Angles for f2 C. disp. with f1 C. disp with g1
1 → 7 → 8 (83,84) 1 7

1 → 5 → 6 → 8 (77,78) 3 ×

1 → 3 → 4 → 6 → 8 (53,54) 5 ×

1 → 3 → 5 → 7 → 8 (211,212) 7 1

Figure B.3: Period 8, Rotation number 1/4
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B.4 Perod 10 - denominator 1023.

Rotation number 1/5.

f1 : (342/1023, 345/1023)

g1 : (343/1023, 344/1023)

Internal address Angles for f2 C. d. with f1 C. d. with g1
1 → 9 → 10 (339,340) 1 9

1 → 7 → 8 → 10 (333,334) 3 ×

1 → 5 → 6 → 8 → 10 (309,310) 5 ×

1 → 3 → 4 → 6 → 8 → 10 (213,214) 7 ×

1 → 3 → 5 → 7 → 9 → 10 (851,852) 9 1

Figure B.4: Period 10, Rotation number 1/5
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Rotation number 2/5.

f1 : (406/1023, 409/1023)

g1 : (407/1023, 408/1023)

Internal address Angles for f2 C. d. with f1 C. d. with g1
1 → 5 → 9 → 10 (307,308) 1 9

1 → 3 → 4 → 7 → 9 → 10 (211,228) 3 ×

1 → 3 → 4 → 10 (205,206) 5 ×

1 → 3 → 5 → 6 → 10 (843,844) 7 ×

1 → 3 → 6 → 7 → 9 → 10 (819,820) 9 1

Figure B.5: Period 10, Rotation number 2/5
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B.5 Period 12 - denominator 4095.

Rotation number 1/6.

f1 : (1366/4095, 1369/4095)

g1 : (1367/4095, 1368/4095)

Internal address f2 angles C.d. with f1 C.d. with g1
1 → 11 → 12 (1363,1364) 1 11

1 → 9 → 10 → 12 (1357,1358) 3 ×

1 → 7 → 8 → 10 → 12 (1333,1334) 5 ×

1 → 5 → 6 → 8 → 10 → 12 (1237,1238) 7 ×

1 → 3 → 4 → 6 → 8 → 10 → 12 (853,854) 9 ×

1 → 3 → 5 → 7 → 9 → 11 → 12 (3411,3412) 11 1

Figure B.6: Period 12, Rotation number 1/6
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B.6 Period 14 - denominator 16383.

Rotation number 1/7.

f1 : (5462/16383, 5465/16383)

g1 : (5463/16383, 5464/16383)

Internal address f2 angles C.d. w/ f1 C.d. w/ g1
1 → 13 → 14 (5459,5460) 1 13

1 → 11 → 12 → 14 (5453,5454) 3 ×

1 → 9 → 10 → 12 → 14 (5429,5430) 5 ×

1 → 7 → 8 → 10 → 12 → 14 (5333,5334) 7 ×

1 → 5 → 6 → 8 → 10 → 12 → 14 (4949,4950) 9 ×

1 → 3 → 4 → 6 → 8 (3413,3414) 11 ×
→ 10 → 12 → 14

1 → 3 → 5 → 7 → 9 (13651,13652) 13 1
→ 11 → 13 → 14

Figure B.7: Period 14, Rotation number 1/7
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Rotation number 2/7.

f1 : (5718/16383, 5721/16383)

g1 : (5719/16383, 5720/16383)

Internal address f2 angles C.d. f1 C.d. g1
1 → 7 → 13 → 14 (5331,5332) 1 13

1 → 5 → 6 → 11 → 13 → 14 (4947,5012) 3 ×

1 → 5 → 6 → 14 (4941,4942) 5 ×

1 → 3 → 4 → 6 → 9 → 11 → 12 → 14 (3405,3470) 7 ×

1 → 3 → 4 → 6 → 14 (3381,3382) 9 ×

1 → 3 → 5 → 7 → 8 → 14 (13619,13620) 11 ×

1 → 3 → 5 → 8 → 9 → 11 → 13 → 14 (13523,13524) 13 1

Figure B.8: Period 14, Rotation number 2/7
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Rotation number 3/7.

f1 : (6550/16383, 6553/16383)

g1 : (6551/16383, 65520/16383)

Internal address f2 angles C.d. f1 C.d. g1
1 → 5 → 9 → 13 → 14 (4915,4916) 1 13

1 → 3 → 4 → 7 → 9 → 12 → 13 → 14 (3379,3652) 3 ×

1 → 3 → 4 → 11 → 13 → 14 (3283,3300) 5 ×

1 → 3 → 4 → 14 (3277,3278) 7 ×

1 → 3 → 5 → 6 → 10 → 14 (13515,13516) 9 ×

1 → 3 → 6 → 7 → 9 → 10 → 14 (13131,13131) 11 ×

1 → 3 → 6 → 7 → 10 → 11 → 13 → 14 (13107,13108) 13 1

Figure B.9: Period 14, Rotation number 3/7
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B.7 Period 16 - denominator 65535.

Rotation number 1/8.

f1 : (21846/65535, 21849/65535)

g1 : (21847/65535, 21848/65535)

Internal address f2 angles C.d. f1 C.d. g1
1 → 15 → 16 (21843,21844) 1 15

1 → 13 → 14 → 16 (21837,21838) 3 ×

1 → 11 → 12 → 14 → 16 (21813,21814) 5 ×

1 → 9 → 10 → 12 → 14 → 16 (21717,21718) 7 ×

1 → 7 → 8 → 10 → 12 → 14 → 16 (21333,21334) 9 ×

1 → 5 → 6 → 8 → 10 → 12 → 14 → 16 (19797,19798) 11 ×

1 → 3 → 4 → 6 → 8 (13653,13654) 13 ×
→ 10 → 12 → 14 → 16

1 → 3 → 5 → 7 → (54611,54612) 15 1
9 → 11 → 13 → 14 → 16

Figure B.10: Period 16, Rotation number 1/8
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Rotation number 3/8.

f1 : (26006/65535, 26009/65535)

g1 : (26007/65535, 26008/65535)

Internal address f2 ang. C.d. f1 C.d. g1
1 → 5 → 10 → 11 → 15 → 16 (19763,19764) 1 15

1 → 5 → 9 → 10 → 16 (19667,19668) 3 ×

1 → 3 → 4 → 7 → 9 → 12 → 13 (13523,14564) 5 ×
→ 15 → 16

1 → 3 → 4 → 7 → 9 → 10 → 16 (13517,13518) 7 ×

1 → 3 → 4 → 10 → 16 (13133,13134) 9 ×

1 → 3 → 5 → 6 → 16 (54091,54092) 11 ×

1 → 3 → 5 → 6 → 11 → 13 → 15 → 16 (54003,54068) 13 ×

1 → 3 → 6 → 7 → 9 → 12 → 13 (52531,52532) 15 1
→ 15 → 16

Figure B.11: Period 16, Rotation number 3/8
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B.8 Period 18 - denominator 262143.

Rotation number 1/9.

f1 : (87382/262143, 87385/262143)

g1 : (87383/262143, 87384/262143)

Internal address f2 angles C.d. f1 C.d. g1
1 → 17 → 18 (87379,87380) 1 17

1 → 15 → 16 → 18 (87373,87374) 3 ×

1 → 13 → 14 → 16 → 18 (87349,87350) 5 ×

1 → 11 → 12 → 14 → 16 → 18 (87253,87254) 7 ×

1 → 9 → 10 → 12 → 14 → 16 → 18 (86869,86870) 9 ×

1 → 7 → 8 → 10 → 12 → 14 → 16 → 18 (85333,85334) 11 ×

1 → 5 → 6 → 8 → 10 (79189,79190) 13 ×
→ 12 → 14 → 16 → 18

1 → 3 → 4 → 6 → 8 → (54613,54614) 15 ×
10 → 12 → 14 → 16 → 18

1 → 3 → 5 → 7 → 9 → 11 (218451,218452) 17 1
→ 13 → 15 → 17 → 18

Figure B.12: Period 18, Rotation number 1/9
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Rotation number 2/9.

f1 : (88406/262143, 88409/262143)

g1 : (88407/262143, 88408/262143)

Internal address f2 angles C.d. f1 C.d. g1
1 → 9 → 17 → 18 (86867,86868) 1 17

1 → 7 → 8 → 15 → 17 → 18 (85331,85588) 3 ×

1 → 7 → 8 → 18 (85325,85326) 5 ×

1 → 5 → 6 → 8 → 13 → 15 → 16 → 18 (79181,79438) 7 ×

1 → 5 → 6 → 8 → 18 (79157,79158) 9 ×

1 → 3 → 4 → 6 → 8 → 11 → 13 (54581,54838) 11 ×
→ 14 → 16 → 18

1 → 3 → 4 → 6 → 8 → 18 (54485,54486) 13 ×

1 → 3 → 5 → 7 → 9 → 10 → 18 (218323,218324) 15 ×

1 → 3 → 5 → 7 → 10 → 11 → 13 (217940,217939) 17 1
→ 15 → 17 → 18

Figure B.13: Period 18, Rotation number 2/9
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Rotation number 4/9.

f1 : (104854/262143, 104857/262143)

g1 : (104855/262143, 104856/262143)

Internal address f2 angles C.d. f1 C.d. g1
1 → 5 → 9 → 13 → 17 → 18 (78643,78644) 1 17

1 → 3 → 4 → 7 → 9 → 12 (54067,58436) 3 ×
→ 13 → 16 → 17 → 18

1 → 3 → 4 → 11 → 13 → 16 → 17 → 18 (52531,52804) 5 ×

1 → 3 → 4 → 15 → 17 → 18 (52435,52452) 7 ×

1 → 3 → 4 → 18 (52429,52430) 9 ×

1 → 3 → 5 → 6 → 10 → 14 → 18 (216267,216268) 11 ×

1 → 3 → 6 → 7 → 9 → 10 → 14 → 18 (210123,210124) 13 ×

1 → 3 → 6 → 7 → 10 → 11 (209739,209740) 15 ×
→ 13 → 14 → 18

1 → 3 → 6 → 7 → 10 → 11 → 14 (207915,207916) 17 1
→ 15 → 17 → 18

Figure B.14: Period 18, Rotation number 4/9
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B.9 Period 20 - denominator 1048575.

Rotation number 1/10.

f1 : (349526/1048575, 349529/1048575)

g1 : (349527/1048575, 349528/1048575)

Internal address f2 angles δ f1 δ g1
1 → 19 → 20 (349523,349524) 1 19

1 → 17 → 18 → 20 (349517,349518) 3 ×

1 → 15 → 16 → 18 → 20 (349493,349494) 5 ×

1 → 13 → 14 → 16 → 18 → 20 (349397,349398) 7 ×

1 → 11 → 12 → 14 → 16 → 18 → 20 (349013,349014) 9 ×

1 → 9 → 10 → 12 → 14 → 16 → 18 → 20 (347477,347478) 11 ×

1 → 7 → 8 → 10 → 12 (341333,341334) 13 ×
→ 14 → 16 → 18 → 20

1 → 5 → 6 → 8 → 10 → 12 (316757,316758) 15 ×
→ 14 → 16 → 18 → 20

1 → 3 → 4 → 6 → 8 → 10 → 12 (218453,218454) 17 ×
→ 14 → 16 → 18 → 20

1 → 3 → 5 → 7 → 9 → 11 → 13 (873811,873812) 19 1
→ 15 → 17 → 19 → 20

Figure B.15: Period 20, Rotation number 1/10
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Rotation number 3/10.

f1 : (366166/1048575, 366169/1048575)

g1 : (366167/1048575, 366168/1048575)

Internal address f2 angles C.d. f1 C.d. g1
1 → 7 → 13 → 19 → 20 (341203,341204) 1 19

1 → 5 → 6 → 11 → 13 → 18 → 19 → 20 (316627,320788) 3 ×

1 → 5 → 6 → 17 → 19 → 20 (316243,316308) 5 ×

1 → 5 → 6 → 20 (316237,316238) 7 ×

1 → 3 → 4 → 6 → 9 → 11 (217933,222094) 9 ×
→ 12 → 15 → 17 → 18 → 20

1 → 3 → 4 → 6 → 15 → 17 → 18 → 20 (216397,216462) 11 ×

1 → 3 → 4 → 6 → 20 (216373,216374) 13 ×

1 → 3 → 5 → 7 → 8 → 14 → 20 (871731,871732) 15 ×

1 → 3 → 5 → 8 → 9 → 11 (865587,865588) 17 ×
→ 13 → 14 → 20

1 → 3 → 5 → 8 → 9 → 11 (865491,865492) 19 1
→ 14 → 15 → 17 → 19 → 20

Figure B.16: Period 20, Rotation number 3/10
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B.10 Period 22 - denominator 4194303.

Rotation number 1/11.

f1 : (1398102/4194303, 1398105/4194303)

g1 : (1398103/4194303, 1398103/4194303)

Internal address f2 angles C.d. f1 C.d. g1
1 → 21 → 22 (1398099,1398100) 1 21

1 → 19 → 20 → 22 (1398093,1398094) 3 ×

1 → 17 → 18 → 20 → 22 (1398069,1398070) 5 ×

1 → 15 → 16 → 18 → 20 → 22 (1397973,1397974) 7 ×

1 → 13 → 14 → 16 → 18 → 20 → 22 (1397589,1397590) 9 ×

1 → 11 → 12 → 14 → 16 → 18 (1396053,1396054) 11 ×
→ 20 → 22

1 → 9 → 10 → 12 → 14 → 16 (1389909,1389910) 13 ×
→ 18 → 20 → 22

1 → 7 → 8 → 10 → 12 → 14 (1365333,1365334) 15 ×
→ 16 → 18 → 20 → 22

1 → 5 → 6 → 8 → 10 → 12 (1267029,1267030) 17 ×
→ 14 → 16 → 18 → 20 → 22

1 → 3 → 4 → 6 → 8 → 10 (873813,873814) 19 ×
→ 12 → 14 → 16 → 18 → 20 → 22

1 → 3 → 5 → 7 → 9 → 11 → (3495251,3495252) 21 1
13 → 15 → 17 → 19 → 21 → 22

Figure B.17: Period 22, Rotation number 1/11
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Rotation number 2/11.

f1 : (1402198/4194303, 1402201/4194303)

g1 : (1402199/4194303, 1402200/4194303)

Internal address f2 angles C.d. f1 C.d. g1
1 → 11 → 21 → 22 (1396051,1396052) 1 21

1 → 9 → 10 → 19 → 21 → 22 (1389907,1390932) 3 ×

1 → 9 → 10 → 22 (1389901,1389902) 5 ×

1 → 7 → 8 → 10 → 17 → 19 (1365325,1366350) 7 ×
→ 20 → 22

1 → 7 → 8 → 10 → 22 (1365301,1365302) 9 ×

1 → 5 → 6 → 8 → 10 → 15 (1266997,1268022) 11 ×
→ 17 → 18 → 20 → 22

1 → 5 → 6 → 8 → 10 → 22 (1266901,1266902) 13 ×

1 → 3 → 4 → 6 → 8 → 10 → 13 (873685,874710) 15 ×
→ 15 → 16 → 18 → 20 → 22

1 → 3 → 4 → 6 → 8 → 10 → 22 (873301,873302) 17 ×

1 → 3 → 5 → 7 → 9 → 11 → 12 → 22 (3494739,3494740) 19 ×

1 → 3 → 5 → 7 → 9 → 12 (3493203,3493204) 21 1
→ 13 → 15 → 17 → 19 → 21 → 22
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Figure B.18: Period 22, Rotation number 2/11
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Rotation number 3/11.

f1 : (1463894/4194303, 1463897/4194303)

g1 : (1463895/4194303, 1463896/4194303)

Internal address f2 angles C.d. f1 C.d. g1
1 → 7 → 14 → 15 → 21 → 22 (1365203,1365204) 1 21

1 → 7 → 13 → 14 → 22 (1364819,1364820) 3 ×

1 → 5 → 6 → 11 → 13 → 14 (1266515,1282964) 5 ×
→ 19 → 21 → 22

1 → 5 → 6 → 11 → 13 → 14 → 22 (1266509,1266510) 7 ×

1 → 5 → 6 → 14 → 22 (1264973,1264974) 9 ×

1 → 3 → 4 → 6 → 9 → 11 → 12 (871757,888206) 11 ×
→ 14 → 17 → 19 → 20 → 22

1 → 3 → 4 → 6 → 9 → 11 (871733,871734) 13 ×
→ 12 → 14 → 22

1 → 3 → 4 → 6 → 14 → 22 (865589,865590) 15 ×

1 → 3 → 5 → 7 → 8 → 22 (3487027,3487028) 17 ×

1 → 3 → 5 → 7 → 8 → 15 (3486675,3486932) 19 ×
→ 17 → 19 → 21 → 22

1 → 3 → 5 → 8 → 9 → 11 (3462355,3462356) 21 1
→ 13 → 16 → 17 → 19 → 21 → 22
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Figure B.19: Period 22, Rotation number 3/11
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Rotation number 4/11.

f1 : (1664406/4194303, 1664409/4194303)

g1 : (1664407/4194303, 1664408/4194303)

Internal address f2 angles δ(f1) δ(g1)

1 → 5 → 10 → 11 → 16 → 17 (1264947,1264948) 1 21
→ 21 → 22

1 → 5 → 10 → 11 → 15 → 16 → 22 (1264851,1264852) 3 ×

1 → 5 → 9 → 10 → 16 → 22 (1258707,1258708) 5 ×

1 → 3 → 4 → 7 → 9 → 10 → 13 (865491,932068) 7 ×
→ 15 → 16 → 19 → 21 → 22

1 → 3 → 4 → 7 → 9 → 10 (865485,865486) 9 ×
→ 13 → 15 → 16 → 22

1 → 3 → 4 → 7 → 9 → 10 → 16 → 22 (865101,865102) 11 ×

1 → 3 → 4 → 10 → 16 → 22 (840525,840526) 13 ×

1 → 3 → 5 → 6 → 22 (3461963,3461964) 15 ×

1 → 3 → 5 → 6 → 17 → 19 → 21 → 22 (3461940,3461875) 17 ×

1 → 3 → 5 → 6 → 11 → 13 → 15 (3456243,3460404) 19 ×
→ 18 → 19 → 21 → 22

1 → 3 → 6 → 7 → 9 → 12 (3362099,3362100) 21 1
→ 13 → 15 → 18 → 19 → 21 → 22
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Figure B.20: Period 22, Rotation number 4/11
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Rotation number 5/11.

f1 : (1664406/4194303, 1664409/4194303)

g1 : (1664407/4194303, 1664408/4194303)

Internal address f2 angles δ(f1) δ(g1)

1 → 5 → 9 → 13 → 17 → 21 → 22 (1258291,1258292) 1 21

1 → 3 → 4 → 7 → 9 → 12 → 13 (865075,934980) 3 ×
→ 16 → 17 → 20 → 21 → 22

1 → 3 → 4 → 11 → 13 → 16 (840499,844868) 5 ×
→ 17 → 20 → 21 → 22

1 → 3 → 4 → 15 → 17 → 20 → 21 → 22 (838963,839236) 7 ×

1 → 3 → 4 → 19 → 21 → 22 (838867,838884) 9 ×

1 → 3 → 4 → 22 (838861,838862) 11 ×

1 → 3 → 5 → 6 → 10 → 14 → 18 → 22 (3460299,3460300) 13 ×

1 → 3 → 6 → 7 → 9 → 10 → 14 → 18 → 22 (3361995,3361996) 15 ×

1 → 3 → 6 → 7 → 10 → 11 → 13 (3355851,3355852) 17 ×
→ 14 → 18 → 22

1 → 3 → 6 → 7 → 10 → 11 (3355467,3355468) 19 ×
→ 14 → 15 → 17 → 18 → 22

1 → 3 → 6 → 7 → 10 → 11 (3355443,3355444) 21 1
→ 14 → 15 → 18 → 19 → 21 → 22
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Figure B.21: Period 22, Rotation number 5/11
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B.11 Period 24 - denominator 16777215.

Rotation number 1/12.

f1 : (5592406/16777215, 1398105/16777215)

g1 : (1398103/16777215, 1398103/16777215)

Internal address f2 angles C.d. f1 C.d. g1
1 → 23 → 24 (5592403,5592404) 1 23

1 → 21 → 22 → 24 (5592397,5592398) 3 ×

1 → 19 → 20 → 22 → 24 (5592373,5592374) 5 ×

1 → 17 → 18 → 20 → 22 → 24 (5592277,5592278) 7 ×

1 → 15 → 16 → 18 → 20 → 22 → 24 (5591893,5591894) 9 ×

1 → 13 → 14 → 16 → 18 → 20 (5590357,5590358) 11 ×
→ 22 → 24

1 → 11 → 12 → 14 → 16 → 18 (5584213,5584214) 13 ×
→ 20 → 22 → 24

1 → 9 → 10 → 12 → 14 → 16 (5559637,5559638) 15 ×
→ 18 → 20 → 22 → 24

1 → 7 → 8 → 10 → 12 → 14 (5461333,5461334) 17 ×
→ 16 → 18 → 20 → 22 → 24

1 → 5 → 6 → 8 → 10 → 12 → 14 (5068117,5068118) 19 ×
→ 16 → 18 → 20 → 22 → 24

1 → 3 → 4 → 6 → 8 → 10 → 12 (3495253,3495254) 21 ×
→ 14 → 16 → 18 → 20 → 22 → 24

1 → 3 → 5 → 7 → 9 → 11 → 13 (13981012,3981013) 23 1
→ 15 → 17 → 19 → 21 → 22 → 24
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Figure B.22: Period 24, Rotation number 1/12
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Rotation number 5/12.

f1 : (6707606/16777215, 6707609/16777215)

g1 : (6707607/16777215, 6707608/16777215)

Internal address f2 angles f1 g1
1 → 5 → 9 → 14 → 15 → 19 → 23 → 24 (5034803,5034804) 1 23

1 → 5 → 9 → 13 → 14 → 24 (5033267,5033268) 3 ×

1 → 3 → 4 → 7 → 9 → 12 → 13 → 14 (3460403,3739204) 5 ×
→ 17 → 19 → 22 → 23 → 24

1 → 3 → 4 → 7 → 9 → 12 → 13 → 14 → 24 (3460307,3460324) 7 ×

1 → 3 → 4 → 11 → 13 → 14 → 21 → 23 → 24 (3362003,3378404) 9 ×

1 → 3 → 4 → 11 → 13 → 14 → 24 (3361997,3361998) 11 ×

1 → 3 → 4 → 14 → 24 (3355853,3355854) 13 ×

1 → 3 → 5 → 6 → 10 → 24 (13841611,13841612) 15 ×

1 → 3 → 5 → 6 → 10 → 15 → 17 (13840203,13841228) 17 ×
→ 19 → 20 → 24

1 → 3 → 6 → 7 → 9 → 10 → 24 (13448011,13448012) 19 ×

1 → 3 → 6 → 7 → 9 → 10 → 19 (13446963,13447988) 21 ×
→ 21 → 23 → 24

1 → 3 → 6 → 7 → 10 → 11 → 13 (13423411,13423412) 23 1
→ 16 → 17 → 20 → 21 → 23 → 24
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Figure B.23: Period 24, Rotation number 5/12
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Appendix C

Hubbard Trees for the Period 1

Cluster Case

C.1 Period 3

C.1.1 Rotation number 1

c1

c2

c0

Figure C.1: Hubbard tree for 1 → 3, rotation number 1

c0 c2c1

Figure C.2: Hubbard tree for 1 → 2 → 3, c.d = 3
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C.2 Period 4

C.2.1 Rotation number 1

c1

c2

c0

c3

Figure C.3: Hubbard tree for 1 → 4, rotation number 1

c3

c1

c2

c0

Figure C.4: Hubbard tree for 1 → 3 → 4, c.d = 3
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c0 c2c1 c3

Figure C.5: Hubbard tree for 1 → 2 → 3 → 4, c.d = 5
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C.3 Period 5

C.3.1 Rotation number 1

c2

c0

c1

c4

c3

Figure C.6: Hubbard tree for 1 → 5, rotation number 1

c5 = c0

c3

c2

c1

c4

Figure C.7: Hubbard tree for 1 → 4 → 5, c.d = 3
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c2

c1

c5 = c0

c4

c3

Figure C.8: Hubbard tree for 1 → 3 → 4 → 5, c.d = 5

c1 c5 = c0 c4 c3 c2

Figure C.9: Hubbard tree for 1 → 3 → 4 → 5, c.d = 7
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C.3.2 Rotation number 2

c0

c3

c2

c1

c4

Figure C.10: Hubbard tree for 1 → 5, rotation number 2

c4c1 c3 c5 = c0 c2

Figure C.11: Hubbard tree for 1 → 2 → 4 → 5, c.d = 3
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c5 = c0

c1

c3 c2

c4

Figure C.12: Hubbard tree for 1 → 2 → 5, c.d = 5

c3

c4

c5 = c0

c1

c2

Figure C.13: Hubbard tree for 1 → 3 → 5, c.d = 7
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C.4 Period 6

C.4.1 Rotation number 1

c0

c1
c2

c3

c4

c5

Figure C.14: Hubbard tree for 1 → 6, rotation number 1
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c5

c0

c1

c2

c3

c4

Figure C.15: Hubbard tree for 1 → 5 → 6, c.d = 3

c3

c2

c1
c4

c5

c0

Figure C.16: Hubbard tree for 1 → 4 → 5 → 6, c.d = 5

c2

c1

c4

c3

c5

c0

Figure C.17: Hubbard tree for 1 → 3 → 4 → 5 → 6, c.d = 7

c1 c4 c3 c2c0 c5

Figure C.18: Hubbard tree for 1 → 2 → 3 → 4 → 5 → 6, c.d = 9
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C.5 Period 7

C.5.1 Rotation number 1

c0

c1
c2

c3

c4

c5
c6

Figure C.19: Hubbard tree for 1 → 7, rotation number 1
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c0

c3

c1

c5
c4

c2

c6

Figure C.20: Hubbard tree for 1 → 6 → 7, c.d = 3

c5

c0

c1

c3

c4

c2

c6

Figure C.21: Hubbard tree for 1 → 5 → 6 → 7, c.d = 5
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c3

c2

c1

c0 c4c5c6

Figure C.22: Hubbard tree for 1 → 4 → 5 → 6 → 7, c.d = 7

c2

c1

c0 c3c4c5c6

Figure C.23: Hubbard tree for 1 → 3 → 4 → 5 → 6 → 7, c.d = 9

c1 c0 c2c3c4c5c6

Figure C.24: Hubbard tree for 1 → 2 → 3 → 4 → 5 → 6 → 7, c.d = 11
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C.5.2 Rotation number 2

c0

c1

c3

c4

c5

c2

c6

Figure C.25: Hubbard tree for 1 → 7, rotation number 2
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c5

c2

c1

c4

c0c6 c3

7

Figure C.26: Hubbard tree for 1 → 3 → 6 → 7, c.d = 3

c3

c6c0

c4

c1

c5

c2

Figure C.27: Hubbard tree for 1 → 3 → 7, c.d = 5

c3c0 c6c4c5c1 c2

Figure C.28: Hubbard tree for 1 → 2 → 3 → 5 → 6 → 7, c.d = 7
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c4

c1

c5

c2

c6

c3

c0

Figure C.29: Hubbard tree for 1 → 2 → 3 → 7, c.d = 9

c2

c3

c4

c6

c5

c1

c0

Figure C.30: Hubbard tree for 1 → 4 → 7, c.d = 11
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C.5.3 Rotation number 3

c0

c1

c2

c3

c4

c5

c6

Figure C.31: Hubbard tree for 1 → 7, rotation number 3

c2c1 c0c4 c3

c5c6

Figure C.32: Hubbard tree for 1 → 2 → 4 → 6 → 7, c.d = 3
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c1

c3

c0

c4

c2

c6

c5

Figure C.33: Hubbard tree for 1 → 2 → 6 → 7, c.d = 5

c0

c1

c5

c3

c6

c2

c4

Figure C.34: Hubbard tree for 1 → 2 → 7, c.d = 7

c3

c4

c2

c6

c5c0

c1

Figure C.35: Hubbard tree for 1 → 3 → 5 → 7, c.d = 9
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c0

c1

c2

c3

c4

c6

c5

Figure C.36: Hubbard tree for 1 → 5 → 7, c.d = 11
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Appendix D

Hubbard trees for the period 2

cluster case

D.1 Period 4

D.1.1 Rotation number 1

c0c3

c1 c2

Figure D.1: Hubbard tree for 1 → 2 → 4, rotation number 1

c1 c2

c0 c3

Figure D.2: Hubbard tree for 1 → 2 → 3 → 4, rotation number 1
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c2

c1

c3

c0

Figure D.3: Hubbard tree for 11/3 → 3 → 4,c.d=1.

c3

c1

c2

c0

Figure D.4: Hubbard tree for 12/3 → 3 → 4,c.d=3.
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D.2 Period 6

D.2.1 Rotation number 1

c0

c1

c3

c5

c4

c2

Figure D.5: Hubbard tree for 1 → 2 → 6, rotation number 1

c0

c3

c1 c4

c5

c2

Figure D.6: Hubbard tree for 1 → 2 → 5 → 6, rotation number 1
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c1

c3

c4

c2

c5

c0

Figure D.7: Hubbard tree for 1 → 5 → 6,c.d=1.

c2

c1

c3

c4

c5

c0

Figure D.8: Hubbard tree for 1 → 3 → 4 → 6,c.d=3.
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c3

c5

c4c2

c1

c0

Figure D.9: Hubbard tree for 1 → 3 → 5 → 7 → 8,c.d=5.
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D.3 Period 8

D.3.1 Rotation number 1

c1

c5

c3

c7 c0

c2

c6

c4

Figure D.10: Hubbard tree for 1 → 2 → 8, rotation number 1
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c0

c1

c5

c3

c7

c6

c2

c4

Figure D.11: Hubbard tree for 1 → 2 → 7 → 8, rotation number 1
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c4

c5c3

c1

c6

c8 = c0

c7

c2

Figure D.12: Hubbard tree for 1 → 7 → 8,c.d=1.

c5

c6
c4 c2

c1 c3

c0

c7

Figure D.13: Hubbard tree for 1 → 5 → 6 → 8,c.d=3.
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c1

c3

c4

c6c7

c5

c2

c0

Figure D.14: Hubbard tree for 1 → 3 → 4 → 6 → 8,c.d=5.

c3c4

c7

c5

c6

c1

c2

c0

Figure D.15: Hubbard tree for 1 → 3 → 5 → 7 → 8,c.d=7.
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D.4 Period 10

D.4.1 Rotation number 1

c1c3

c5 c7 c2 c4

c6c8

c9 c0

Figure D.16: Hubbard tree for 1 → 2 → 10, rotation number 1

c0

c1c3

c7c5 c2 c4

c8 c6

c9

Figure D.17: Hubbard tree for 1 → 2 → 9 → 10, rotation number 1
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c3

c1

c6
c4

c5
c7

c10 = c0

c9

c8

c2

Figure D.18: Hubbard tree for 1 → 9 → 10,c.d=1.
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c1

c6

c4

c3
c5

c0

c2

c9

c7

c8

Figure D.19: Hubbard tree for 1 → 7 → 8 → 10,c.d=3.

c5

c6
c4 c2

c1 c3

c9
c7

c0

c8

Figure D.20: Hubbard tree for 1 → 5 → 6 → 8 → 10,c.d=5.

224



c1

c3

c4c2

c7

c5

c6

c8c9

c10 = c0

Figure D.21: Hubbard tree for 1 → 3 → 4 → 6 → 8 → 10,c.d=7.

c3

c1

c2

c7

c5

c4

c6

c8

c9

c10 = c0

Figure D.22: Hubbard tree for 1 → 3 → 5 → 7 → 9 → 10,c.d=9.
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D.4.2 Rotation number 2

c9 c0

c1

c3

c5

c7 c2

c4

c6

c8

Figure D.23: Hubbard tree for 1 → 2 → 10, rotation number 2

c1

c3

c5

c7 c2

c4

c6

c8

c0

c9

Figure D.24: Hubbard tree for 1 → 2 → 9 → 10, rotation number 2
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c1

c4

c3

c8

c0

c7

c9

c5

c6

c2

Figure D.25: Hubbard tree for 1 → 5 → 9 → 10,c.d=1.

c3

c4

c7

c1

c5

c8

c2

c9

c0c6

Figure D.26: Hubbard tree for 1 → 3 → 4 → 7 → 9 → 10,c.d=3.
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c1
c3

c0

c2

c4

c8
c6

c9

c5

c7

Figure D.27: Hubbard tree for 1 → 3 → 4 → 10,c.d=5.

c0

c2

c1

c4

c6

c5

c8

c9
c7

c3

Figure D.28: Hubbard tree for 1 → 3 → 5 → 6 → 10,c.d=7.
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c9
c5c1

c2

c7

c3

c0c6

c4

c8

Figure D.29: Hubbard tree for 1 → 3 → 6 → 7 → 9 → 10,c.d=9.

229



D.5 Period 12

D.5.1 Rotation number 1

c1

c2c7

c0

c8
c3

c11

c9

c10

c4

c5
c6

Figure D.30: Hubbard tree for 1 → 2 → 12, rotation number 1

c0

c1

c7 c2

c8

c5

c3 c10

c11

c9

c6

c4

Figure D.31: Hubbard tree for 1 → 2 → 11 → 12, rotation number 1
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c3
c5

c9

c7

c2

c4
c8

c6

c10

c1

c0 c11

Figure D.32: Hubbard tree for 1 → 11 → 12,c.d=1.
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c10
c2

c4c6
c8

c9c7
c5c3

c1

c0

c11

Figure D.33: Hubbard tree for 1 → 9 → 10 → 12,c.d=3.

c1

c10

c8

c7c5
c3

c6
c4

c2

c0

c9
c11

Figure D.34: Hubbard tree for 1 → 7 → 8 → 10 → 12,c.d=5.
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c10

c8

c6

c1

c4

c3
c5

c2

c0

c9
c11

c7

Figure D.35: Hubbard tree for 1 → 5 → 6 → 8 → 10 → 12,c.d=7.

c1

c2

c3

c6

c0

c11
c9

c7

c5

c4

c8

c10

Figure D.36: Hubbard tree for 1 → 3 → 4 → 6 → 8 → 10 → 12,c.d=9.
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c3

c0

c13c1

c2 c4 c6 c8 c10

c5

c7

c9

Figure D.37: Hubbard tree for 1 → 3 → 5 → 7 → 9 → 11 → 12,c.d=11.
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D.6 Period 14

D.6.1 Rotation number 1

c1

c2

c3

c5

c7

c9

c0

c6

c8

c11

c13

c12

c10

c4

Figure D.38: Hubbard tree for 1 → 2 → 14, rotation number 1
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c1

c3

c5

c7 c11

c9

c2

c4

c6

c8c12

c10

c13

Figure D.39: Hubbard tree for 1 → 2 → 13 → 14, rotation number 1
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c12

c10
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c4
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c11

c9

c13

c0

Figure D.40: Hubbard tree for 1 → 13 → 14,c.d=1.
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Figure D.41: Hubbard tree for 1 → 11 → 12 → 14,c.d=3.

c12

c10
c2

c4c6
c8

c9c7
c5c3

c1

c11 c13

c0

Figure D.42: Hubbard tree for 1 → 9 → 10 → 12 → 14,c.d=5.
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Figure D.43: Hubbard tree for 1 → 7 → 8 → 10 → 12 → 14,c.d=7.
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Figure D.44: Hubbard tree for 1 → 5 → 6 → 8 → 10 → 12 → 14,c.d=9.
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Figure D.45: Hubbard tree for 1 → 3 → 4 → 6 → 8 → 10 → 12 → 14,c.d=11.
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Figure D.46: Hubbard tree for 1 → 3 → 5 → 7 → 9 → 11 → 13 → 14,c.d=13.
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D.6.2 Rotation number 2
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Figure D.47: Hubbard tree for 1 → 2 → 14, rotation number 2
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Figure D.48: Hubbard tree for 1 → 2 → 13 → 14, rotation number 2
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Figure D.49: Hubbard tree for 1 → 7 → 13 → 14,c.d=1.
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Figure D.50: Hubbard tree for 1 → 5 → 6 → 11 → 13 → 14,c.d=3.
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Figure D.51: Hubbard tree for 1 → 5 → 6 → 14,c.d=5.
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Figure D.52: Hubbard tree for 1 → 3 → 4 → 6 → 9 → 11 → 12 → 14,c.d=7.
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Figure D.53: Hubbard tree for 1 → 3 → 4 → 6 → 14,c.d=9.
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Figure D.54: Hubbard tree for 1 → 3 → 5 → 7 → 8 → 14,c.d=11.

c0

c1

c2

c10

c4

c6
c12

c7 c13 c5

c3
c11c9

c8

Figure D.55: Hubbard tree for 1 → 3 → 5 → 8 → 9 → 11 → 13 → 14,c.d=13.
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D.6.3 Rotation number 3
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Figure D.56: Hubbard tree for 1 → 2 → 14, rotation number 3
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Figure D.57: Hubbard tree for 1 → 2 → 13 → 14, rotation number 3

248



c1

c4

c3

c8

c0

c7

c5

c2

c6

c9
c10

c11

c12

c13

Figure D.58: Hubbard tree for 1 → 5 → 9 → 13 → 14,c.d=1.
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Figure D.59: Hubbard tree for 1 → 3 → 4 → 7 → 9 → 12 → 13 → 14,c.d=3.
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Figure D.60: Hubbard tree for 1 → 3 → 4 → 11 → 13 → 14,c.d=5.
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Figure D.61: Hubbard tree for 1 → 3 → 4 → 14,c.d=7.
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Figure D.62: Hubbard tree for 1 → 3 → 5 → 6 → 10 → 14,c.d=9.
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Figure D.63: Hubbard tree for 1 → 3 → 6 → 7 → 9 → 10 → 14,c.d=11.
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Figure D.64: Hubbard tree for 1 → 3 → 6 → 7 → 10 → 11 → 13 → 14,c.d=13.
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Appendix E

The Period 2 Case in Higher

Degrees

Recall that in Chapter 4, we made no assumptions about the degree of the maps

that have fixed cluster points. In constrast, we restricted ourselves to the quadratic

case in the period two cluster cycle case in Chapter 5. In this section we will give

examples that show that some of the results from Chapter 5 cannot be generalised

to higher periods.

Recall that Theorem 5.1.1 stated that, if F = f1 ⊥⊥ f2 has a period two

cluster cycle, precisely one of the fi can belong to M(1/3,2/3), meaning only one

of them lies beyond the period two component. The proof takes advantage of two

facts from the quadratic case: firstly, there is only one period two component, and

so if both maps lay beyond the period two component then the mating would be

obstructed. Secondly, a quadratic rational map has exactly one period two cycle,

meaning that the period two cycle has to become the cluster cycle under mating.

We now remark that neither of these two facts is true when the degree is

greater than two. Indeed, it is in fact possible that a mating in degree 3 can have

both maps lying beyond the same period 2 hyperbolic component.

Example E.0.1. Let f1 be the map corresponding to the angles (11/80, 19/80) and

let f2 be the map corresponding to the angles (22/80, 24/80). Then f1 and f2 both

have superattracting orbits of period 4. The critical value component of f2 has the

rays of angle 22/80 and 24/80 landing at its principal root point, and the ray of

angle 23/80 lands at its non-principal root. The relevant orbits under angle trebling

are

11/80 → 33/80 → 19/80 → 57/80 → 11/80
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and

23/80 → 69/80 → 47/80 → 61/80 → 23/80.

Then we have the following equivalences under the mating f1 ⊥⊥ f2.

γ2(69/80) ∼ γ1(11/80) = γ1(19/80) ∼ γ2(61/80) (E.1)

and

γ2(47/80) ∼ γ1(33/80) = γ1(57/80) ∼ γ2(23/80). (E.2)

So we see that the ray classes derived from equations (E.1) and (E.2) will give a

period two cluster cycle. However, f1 and f2 both lie beyond the same period 2

component in the degree 3 multibrot set.

We include the pictures of the two Julia sets, along with the relevant external

rays.

Figure E.1: The Julia set of the map f1 with the external rays landing on the period
two orbit that becomes the cluster cycle.

In the quadratic case, the only root points of critical orbit components are

principal root points. Hence there cannot exist matings in the quadratic case where
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Figure E.2: The Julia set for f2, the map which mates with f1 to create a period
2 cycle. Note the external rays that have been drawn land at non-principal root
points of the Fatou components.

non-principal root points become cluster points, as is the case in Example E.0.1.

However, it is simple to show that at least one of the maps must belong to the wake

of some period two component in parameter space, otherwise the resultant rational

map will have too many period two cycles.

The combinatorial data for the map constructed in Example E.0.1 is ρ = 1/2

and δ = 3. The same combinatorial data can be achieved by the mating g1 ⊥⊥ g2

where g1 is the map corresponding to the angle pair (21/80, 29/80) and g2 is the map

corresponding to the angle pair (71/80, 73/80). In this mating, the cluster point is

made up of the ray equivalence classes which is made up of principal root points of

critical orbit components for both g1 and g2 - in other words it is formed in the same

manner as those in Chapter 5. We conjecture that the rational maps F = f1 ⊥⊥ f2

and G = g1 ⊥⊥ g2 are not be Thurston equivalent. If this conjecture is correct, it

would mean that the combinatorial data, as currently defined, would not be enough

to classify (in the sense of Thurston) the rational maps with period two cluster

cycles in degree 3 or higher. As mentioned in Chapter 5, it would be interesting to

255



find out what other data is required in order to get Thurston equivalence.
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Appendix F

The Higher Period Case

F.1 An overview

In this appendix, we look at the case where the rational map has a cluster cycle of

period three. Since this is outside the scope of this thesis, we do not try to prove

anything too substantial here, and the general tone will be fairly informal. However,

we will endeavour to compare this case with those of the period 1 and 2 cases, and

state some questions/conjectures about what can be said in general about rational

maps with clusters.

We start off by listing some data of very low periods so we can see if any

patterns appear for this case. We also look at what sets of combinatorial data

appear, and if any matings are shared.

The first difference we notice is that, even if we pass from period two to period

three in the quadratic case, we need to introduce an extra piece of combinatorial

data, which tells us the number of times we need to iterate forward from the cluster

of the first critical point c1 to the cluster containing the second critical point c2.

In the one cluster case this was not necessary, since there was only one cluster;

in the period 2 cluster cycle case, the result of Proposition 5.1.3 again meant this

extra piece of data was not necessary, although we did have to redefine critical

displacement.

We give a new definition of the critical displacement below to take into

account this new behaviour that is possible for higher periods.

Definition F.1.1. The critical displacement of a period k cluster cycle of a map F

is defined as follows. Choose one of the critical points to be the first critical point c1.

Then there exists j < k such that zj = F ◦j(c1) is in the same cluster as the second

critical point c2. Then count anticlockwise round the star of this cluster from zj to
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c2; c2 will be the (2ℓ + 1)-th endpoint anticlockwise round from zj in the star. We

then say the critical displacement δ = (j, 2ℓ + 1).

We define the combinatorial rotation number in the usual way. Below we list

some data for the period three cluster cycle case. Afterwards, we will discuss the

phenomena and state some questions and conjectures relating to them.

Let f be the map corresponding to the pair of angles (10/63, 17/63). The

internal address of this map is 1 → 3 → 6; in other words, f is the tuning of the

rabbit by the basilica and the associated parameter is c ≈ −0.11341 . . .+0.86056 . . . i.

There are three period 6 components beyond this component:

• g1: (11/63, 12/63) has internal address 1 → 3 → 5 → 6.

• g2: (13/63, 14/63) has internal address 1 → 3 → 4 → 6.

• g3: (15/63, 16/63) has internal address 1 → 3 → 4 → 5 → 6.

Figure F.1 shows the position of these components relative to one another.

We remark that this structure persists. That is, let H be a hyperbolic component

with internal address 1 → 3 → 3k. Then there are precisely three other components

of period 3k in the wake of H (this is an upshot of Proposition 1.8.3).

6

6

3

6

5

6

17/63

11/63

12/63
13/63

15/63

16/63

4

10/63

5

14/63

Figure F.1: The position of the period 6 maps in the 1/3-limb of M.
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As with the period two case, all combinatorial data can be realised by rational

maps apart from the case where the critical points are in the same cluster. It is also

possible to create rational maps with cluster cycles by mating with the secondary

maps that lie beyond the component corresponding to the angles (10/63, 17/63).

We also display whether the map f2 in the table creates a period three cluster cycle

when mated with one of the maps gi as labelled above.

Crit. disp. Angles for f2 Int. add. of f2 g1 g2 g3
(1,1) (29,34) 1 → 2 → 3 → 5 → 6 × × ×

(1,3) (43,44) 1 → 5 → 6 × X ×

(2,1) (57,58) 1 → 4 → 6 X × ×

(2,3) (23,24) 1 → 2 → 5 → 6 × × X

We also include the period 9 examples which are the matings of the map

with internal address 1 → 3 → 9, corresponding to the angles (74/511, 81/511). In

this case we have

• g1: (75/511, 76/511) has internal address 1 → 3 → 8 → 9.

• g2: (77/511, 78/511) has internal address 1 → 3 → 7 → 9.

• g3: (79/511, 80/511) has internal address 1 → 3 → 7 → 8 → 9.

The table is then given below.

Crit. disp. Angles for f2 Int. add. of f2 g1 g2 g3
(1,1) (349,350) 1 → 5 → 6 → 9 × × ×

(1,3) (237,274) 1 → 2 → 3 → 5 → 6 → 8 → 9 × × ×

(1,5) (363,364) 1 → 8 → 9 × X ×

(2,1) (187,188) 1 → 2 → 5 → 6 → 9 × × ×

(2,3) (473,474) 1 → 4 → 7 → 9 X × ×

(2,5) (215,216) 1 → 2 → 4 → 5 → 8 → 9 × × X

Our first observation is to do with the internal addresses of the secondary

maps. Using a similar argument to Proposition 1.8.6 we get the following.

Proposition F.1.2. The internal addresses of the secondary components in the

wake of the component with internal address 1 → 3 → 3n are

• 1 → 3 → 3n− 1 → 3n.

• 1 → 3 → 3n− 2 → 3n.

• 1 → 3 → 3n− 2 → 3n− 1 → 3n.

259



We remark that there is a similar pattern for the period 4 case and conjec-

turally this persists as the periods increase. Furthermore, we conjecture that, for

any period, all these secondary components are narrow: that is, they correspond to

angles a/(2nk − 1) and (a+ 1)/(2nk − 1) for some a.

Returning to the period three case, we see then that we have a certain amount

of similarities with the period two case. Again, we see that it is possible that matings

with the secondary components (the maps gi above) can yield maps with period 3

cluster cycles under mating. However, in constrast to the period 2 cluster cycle case,

it appears that there is a unique choice of partner map hi for each of the gi, such

that the g − i ⊥⊥ hi has a period three cluster cycle. Again, we conjecture this is

true in general, as the period 3n of the maps increases.

The question of Thurston equivalence is far more difficult, even in the degree

two case. In the one cluster case we see that in retrospect our task was very simple:

Alexander’s Trick shows that all homeomorphisms of the disk are isotopic. In the

period two cluster cycle we had to be more careful, but we were able to take advan-

tage of the fact that the mapping class group of annulus was generated by a single

Dehn twist and so, trivially, it is abelian. In higher periods k > 2, the complement

to the stars of the cluster cycle in the sphere is conformally equivalent to the disk

with k − 1 disks removed. The mapping class group of such an object is far more

complicated. Indeed, it is more than likely, in light of the problems found in the

higher degree case when the period is two, we would conjecture that the combina-

torial data of the clusters is not enough information to get Thurston equivalence in

the higher period case, whatever the degrees of the rational maps in question.
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[Fat19] P. Fatou, Sur les équations fonctionelles, Bull. Soc. Math. France 47

(1919), 161–271.
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