The Library
Zero range condensation at criticality
Tools
Armendáriz, Inés, Grosskinsky, Stefan and Loulakis, Michail. (2013) Zero range condensation at criticality. Stochastic Processes and their Applications, Volume 123 (Number 9). pp. 34663496. ISSN 03044149

Text
1070268lb060711wrap_grosskinsky_zero_range_condensation.pdf  Submitted Version Download (327Kb) 
Official URL: http://dx.doi.org/10.1016/j.spa.2013.04.021
Abstract
Zerorange processes with decreasing jump rates exhibit a condensation transition, where a positive fraction of all particles condenses on a single lattice site when the total density exceeds a critical value. We study the onset of condensation, i.e. the behaviour of the maximum occupation number after adding or subtracting a subextensive excess mass of particles at the critical density. We establish a law of large numbers for the excess mass fraction in the maximum, which turns out to jump from zero to a positive value at a critical scale. Our results also include distributional limits for the fluctuations of the maximum, which change from standard extreme value statistics to Gaussian when the density crosses the critical point. Fluctuations in the bulk are also covered, showing that the mass outside the maximum is distributed homogeneously. In summary, we identify the detailed behaviour at the critical scale including subleading terms, which provides a full understanding of the crossover from sub to supercritical behaviour.
[error in script] [error in script]Item Type:  Journal Article 

Subjects:  Q Science > QC Physics 
Divisions:  Faculty of Science > Mathematics 
Library of Congress Subject Headings (LCSH):  Stochastic systems, Condensation 
Journal or Publication Title:  Stochastic Processes and their Applications 
Publisher:  Elsevier Science BV 
ISSN:  03044149 
Date:  September 2013 
Volume:  Volume 123 
Number:  Number 9 
Page Range:  pp. 34663496 
Identification Number:  10.1016/j.spa.2013.04.021 
Status:  Peer Reviewed 
Publication Status:  Published 
Access rights to Published version:  Restricted or Subscription Access 
References:  [1] E.D. Andjel: Invariant measures for the zero range process. Ann. Probab. 10 (3): 525–547 (1982). [2] E.D. Andjel, P.A. Ferrari, H. Guiol, C. Landim: Convergence to the maximal invariant measure for a zerorange process with random rates. Stoch. Proc. Appl. 90, 6781 (2000) [3] I. Armend´ariz, M. Loulakis: Thermodynamic Limit for the Invariant Measures in Supercritical Zero Range Processes. Prob. Th. Rel. Fields 145(12), 175–188 (2009) [4] I. Armend´ariz,M. Loulakis: Conditional Distribution of Heavy Tailed Random Variables on Large Deviations of their Sum. Stoch. Proc. Appl., doi:10.1016/j.spa.2011.01.011 [5] J. Beltr´an, C. Landim: Tunneling and Metastability of Continuous Time Markov Chains. J. Stat. Phys. 140(6), 10651114 (2010) [6] J. Beltr´an, C. Landim: Metastability of reversible condensed zero range processes on a finite set. Probab. Theory Relat. Fields DOI 10.1007/s0044001003370 (2011). [7] P. Billingsley: Convergence of Probability Measures, 1st ed., JohnWiley, New York (1968). [8] M. Biskup, L. Chayes and R. Koteck´y. On the formation/dissolution of equilibrium droplets. Europhys. Lett. 60(1): 21–27 (2002) [9] M. Biskup, L. Chayes and R. Koteck´y. Critical region for droplet formation in the twodimensional Ising model. Commun. Math. Phys. 242(12): 137183 (2003) [10] P. Chleboun, S. Grosskinsky. Finite size effects and metastability in zerorange condensation. J. Stat. Phys. 140(5): 846–872 (2010) [11] B. Davis, D.McDonald: An Elementary Proof of the Local Central Limit Theorem, J. Th. Probab. 8(3), 693–701 (1995) [12] D. Denisov, A.B. Dieker, and V. Shneer. Large deviations for random walks under subexponentiality: the bigjump domain. Ann. Probab. 36: 1946–1991 (2008) [13] R.A. Doney: A local limit theorem for moderate deviations. Bull. LondonMath. Soc. 33: 100–108 (2001) [14] M.R. Evans. Phase transitions in onedimensional nonequilibrium systems. Braz. J. Phys., bf 30 (1), 42–57 (2000). [15] M.R. Evans, T. Hanney: Nonequilibrium statistical mechanics of the zerorange process and related models. J. Phys. A: Math. Gen. 38, 195–240 (2005) [16] M.R. Evans, S.N. Majumdar. Condensation and extreme value statistics. J. Stat. Mech. P05004 (2008) [17] P. Ferrari, C. Landim, V. Sisko: Condensation for a fixed number of independent randomvariables. J. Stat. Phys 128 (5), 1153–1158 (2007) [18] P.A. Ferrari, V. Sisko: Escape of mass in zerorange processes with random rates. in IMS Lecture notes Asymptotics: Particles, Processes and Inverse Problems. 55: 108120 (2007) [19] B.V. Gnedenko, A.N. Kolmogorov. Limit distributions for sums of independent random variables. AddisonWesley, London (1968). [20] S. Großkinsky, Equivalence of ensembles for twospecies zerorange invariant measures, Stoch. Proc. Appl. 118 (8), 1322–1350 (2008) [21] S. Großkinsky, G.M. Sch¨utz, and H. Spohn. Condensation in the zero range process: stationary and dynamical properties. J. Stat. Phys., 113 (3/4), 389–410 (2003). [22] I. Jeon, P. March, and B. Pittel. Size of the largest cluster under zerorange invariant measures. Ann. Probab., 28(3), 1162–1194 (2000). [23] C. Kipnis and C. Landim. Scaling Limits of Interacting Particle Systems. Volume 320 of Grundlehren der mathematischenWissenschaften. Springer Verlag, Berlin (1999). [24] C. Landim. Hydrodynamic limit for space inhomogeneous onedimensional totally asymmetric zerorange processes. Ann. Prob. 24(2): 599638 (1996) [25] A.V. Nagaev. Local limit theorems with regard to large deviations when Cram´er’s condition is not satisfied. Litovsk. Mat. Sb. 8: 553–579 (1968) [26] F. Spitzer. Interaction of Markov processes. Adv. Math., 5:246–290, 1970. 
URI:  http://wrap.warwick.ac.uk/id/eprint/35937 
Actions (login required)
View Item 