References: |
Akaike, H. (1973). Information theory as an extension of the maximum likelihood principle. In B. N. Petrov & F. Csaki (Eds.), Second International Symposium on Information Theory (pp. 267-281). Budapest: Akademiai Kiado. Anderson, N. H. (1981). Foundations of information integration theory. New York: Academic Press. Anderson, R. B., & Tweney, R. D. (1997). Artifactual power curves in forgetting. Memory & Cognition, 25, 724-730. Ashby, F. G., & Gott, R. E. (1988). Decision rules in the perception and categorization of multidimensional stimuli. Journal of Experimental Psychology: Learning, Memory, & Cognition, 14, 33-53. Ashby, F. G., & Maddox, W. T. (1993). Relations between prototype, exemplar, and decision bound models of categorization. Journal of Mathematical Psychology, 37, 372-400. Ashby, F. G., Maddox, W. T., & Lee, W. W. (1994). On the dangers of averaging across subjects when using multidimensional scaling or the similarity-choice model. Psychological Science, 5, 144-151. Barron, A. R., Rissanen, J., & Yu, B. (1998). The MDL principle in modeling and coding. IEEE Transactions on Information Theory, 44, 2743-2760. Berger, J. O., & Pericchi, L. R. (1996). The intrinsic Bayes factor for model selection and prediction. Journal of the American Statistical Association, 91, 109-122. Bower, G. H. (1961). Application of a model to paired-associate learning. Psychometrika, 26, 255-280. Browne, M. W. (2000). Cross-validation methods. Journal of Mathematical Psychology, 44, 108-132. Burnham, K. P., & Anderson, D. R. (1998). Model selection and inference: A practical information-theoretic approach. New York: Springer. Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference: A practical information-theoretic approach (2nd ed.). New York: Springer. Busemeyer, J. R., & Wang, Y.-M. (2000). Model comparisons and model selections based on generalization criterion methodology. Journal of Mathematical Psychology, 44, 171-189. Cover, T. M., & Thomas, J. A. (1991). Elements of information theory. New York: Wiley. Estes, W. K. (1956). The problem of inference from curves based on group data. Psychological Bulletin, 53, 134-140. Estes, W. K., & Maddox, W. T. (2005). Risks of drawing inferences about cognitive processes from model fits to individual versus average performance. Psychonomic Bulletin & Review, 12, 403-408. Grünwald, P. [D.] (2000). Model selection based on minimum description length. Journal of Mathematical Psychology, 44, 133-152. Grünwald, P. D. (2005). Minimum description length tutorial. In P. D. Grünwald, I. J. Myung, & M. A. Pitt (Eds.), Advances in minimum description length: Theory and applications (pp. 23-80). Cambridge, MA: MIT Press. Grünwald, P. D. (2007). The minimum description length principle. Cambridge, MA: MIT Press. Hastie, T., Tibshirani, R., & Friedman, J. (2001). The elements of sta tistical learning: Data mining, inference, and prediction. New York: Springer. Hayes, K. J. (1953). The backward curve: A method for the study of learning. Psychological Review, 60, 269-275. Jeffreys, H. (1935). Some tests of significance, treated by the theory of probability. Proceedings of the Cambridge Philosophical Society, 31, 203-222. Jeffreys, H. (1961). Theory of probability (3rd ed.). Oxford: Oxford University Press. Karabatsos, G. (2006). Bayesian nonparametric model selection and model testing. Journal of Mathematical Psychology, 50, 123-148. Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association, 90, 773-795. Lagarias, J. C., Reeds, J. A., Wright, M. H., & Wright, P. E. (1998). Convergence properties of the Nelder–Mead simplex method in low dimensions. SIAM Journal of Optimization, 9, 112-147. Lee, M. D., & Webb, M. R. (2005). Modeling individual differences in cognition. Psychonomic Bulletin & Review, 12, 605-621. Mack, A., & Rock, I. (1998). Inattentional blindness. Cambridge, MA: MIT Press. Macmillan, N. A., & Creelman, C. D. (2005). Detection theory: A user’s guide (2nd ed.). Mahwah, NJ: Erlbaum. Massaro, D. W. (1998). Perceiving talking faces: From speech perception to a behavioral principle. Cambridge, MA: MIT Press. Medin, D. L., & Schaffer, M. M. (1978). Context theory of classification learning. Psychological Review, 85, 207-238. Minda, J. P., & Smith, J. D. (2002). Comparing prototype-based and exemplar-based accounts of category learning and attentional allocation. Journal of Experimental Psychology: Learning, Memory, & Cognition, 28, 275-292. Myung, I. J., Kim, C., & Pitt, M. A. (2000). Toward an explanation of the power law artifact: Insights from response surface analysis. Memory & Cognition, 28, 832-840. Navarro, D. J., Griffiths, T. L., Steyvers, M., & Lee, M. D. (2006). Modeling individual differences using Dirichlet processes. Journal of Mathematical Psychology, 50, 101-122. Navarro, D. J., Pitt, M. A., & Myung, I. J. (2004). Assessing the distinguishability of models and the informativeness of data. Cognitive Psychology, 49, 47-84. Nosofsky, R. M. (1986). Attention, similarity, and the identification– categorization relationship. Journal of Experimental Psychology: General, 115, 39-57. Nosofsky, R. M., & Zaki, S. R. (2002). Exemplar and prototype models revisited: Response strategies, selective attention, and stimulus generalization. Journal of Experimental Psychology: Learning, Memory, & Cognition, 28, 924-940. Oden, G. C., & Massaro, D. W. (1978). Integration of featural information in speech perception. Psychological Review, 85, 172-191. Reed, S. K. (1972). Pattern recognition and categorization. Cognitive Psychology, 3, 382-407. Rissanen, J. (1978). Modeling by the shortest data description. Automatica, 14, 465-471. Rissanen, J. (1987). Stochastic complexity. Journal of the Royal Statistical Society B, 49, 223-239, 252-265. Rissanen, J. (1996). Fisher information and stochastic complexity. IEEE Transactions on Information Theory, 42, 40-47. Rissanen, J. (2001). Strong optimality of the normalized ML models as universal codes and information in data. IEEE Transactions on Information Theory, 47, 1712-1717. Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461-464. Shepard, R. N. (1987). Toward a universal law of generalization for psychological science. Science, 237, 1317-1323. Sidman, M. (1952). A note on functional relations obtained from group data. Psychological Bulletin, 49, 263-269. Siegler, R. S. (1987). The perils of averaging data over strategies: An example from children’s addition. Journal of Experimental Psychology: General, 116, 250-264. Wagenmakers, E.-J., Ratcliff, R., Gomez, P., & Iverson, G. J. (2004). Assessing model mimicry using the parametric bootstrap. Journal of Mathematical Psychology, 48, 28-50. Wixted, J. T., & Ebbesen, E. B. (1991). On the form of forgetting. Psychological Science, 2, 409-415. |