Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

An investigation into the design for vibration damping of extended length tool holders

Tools
- Tools
+ Tools

Shirvani, Ayoub (1995) An investigation into the design for vibration damping of extended length tool holders. PhD thesis, University of Warwick.

[img]
Preview
PDF
WRAP_THESIS_Shirvani_1995.pdf - Submitted Version - Requires a PDF viewer.

Download (12Mb)
Official URL: http://webcat.warwick.ac.uk/record=b1400569~S1

Request Changes to record.

Abstract

This thesis presents a theoretical and experimental investigation
into the design of extended length tool holders, with specific emphasis
on vibration damping and the attenuation of chatter in boring bars.
The theoretical strategy was to evaluate the general mechanics of
vibration characteristics, as applied to metal cutting operations. This
was used to provide an insight into possible control parameters, and
demonstrate a practical approach to the design and optimization of the
boring bar structure.
Consideration of vibration control parameters and its interaction
with functional specifications of the tool resulted in a modified
design of the tool holder. The design aspects were confined to passive
damping, to enable its application for practical use in industry.
Passive damping can be separated into two areas: Material specification
and system configuration. Both have been exploited here through the
development of a new material.
The theoretical design approaches were further examined through
metallurgical consideration. From this the practical aspects of
material development were confined to improving equivalent stiffness
through alloying elements and processing techniques. Research into
developing a Titanium Carbide (TiC) composite is detailed, involving
powder metallurgy under controlled processing conditions.
The experimented results indicate a 47.39% reduction in density,
combined with 27.14% improvement on its modulus of elasticity leading
to an increase in equivalent stiffness up to 84.59% compared to steel.
Although the results demonstrated considerable improvements of
mechanical properties and substantiate the suitability of such material
as a candidate for the bar material, even better properties were
obtained through Hot Isostatic Pressing (HIPing) process. A further
13.48% increase in elastic modulus lead to an improvement of 109.58 %
on the value of equivalent stiffness.
Experimental examination of tools, was confined to simple
internal turning operations (boring). This required the design of
fixtures for setting up the test rig. The experimental verification of
the combination boring bars was undertaken through comparative
stability performance, assessed from the attained machining quality
under varying machining conditions.
A computational verification of the combination boring bars was
performed using Finite Element Method. The dynamic compliance of the
tool was evaluated in the frequency range relevant to machine tool and
cutting processes for the fundamental mode with appropriate boundary
conditions. The computational and practical analyses, support the
conclusions implicit in the theoretical model, that the combination
approach to the design through material development and system
configuration offers high performance, practical devices.

Item Type: Thesis (PhD)
Subjects: T Technology > TA Engineering (General). Civil engineering (General)
Library of Congress Subject Headings (LCSH): Damping (Mechanics), Drilling and boring, Metal-cutting tools -- Design and construction
Official Date: February 1995
Dates:
DateEvent
February 1995Submitted
Institution: University of Warwick
Theses Department: School of Engineering
Thesis Type: PhD
Publication Status: Unpublished
Supervisor(s)/Advisor: Whitehouse, D. J. (David J.)
Extent: 163, [10] p.
Language: eng

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics

twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us