Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Functionalisation of surfaces and interfaces : molecules, particles and crystals

Tools
- Tools
+ Tools

Peruffo, Massimo (2010) Functionalisation of surfaces and interfaces : molecules, particles and crystals. PhD thesis, University of Warwick.

[img]
Preview
PDF
WRAP_THESIS_Peruffo_2010.pdf - Requires a PDF viewer.

Download (15Mb)
Official URL: http://webcat.warwick.ac.uk/record=b2339787~S15

Request Changes to record.

Abstract

This thesis is concerned with understanding and directing the functionalisation of solid surfaces with materials: molecules, nanoparticles and crystals. Both conducting (electrode) and insulating surfaces are of interest. For molecular functionalisation, a sweep potential procedure has been developed to assist the formation of self assembled monolayers (SAMs) of a ruthenium thiolated complex. Electrochemical investigations were employed to characterised the SAM formed on a platinum electrode.
Nanoparticles formation explored two distinct routes. First Pd nanoparticles were successfully formed within ultra-thin Nafion films via impregnation and a chemical reduction method. Morphological investigations utilised atomic force microscopy. The electrocatalytic properties of the nanocomposite material were elucidated for the hydrogen oxidation reaction. The methodology used for the preparation of this nanocomposite material shows promise for applications in sensors and fuel cells. Second, the potential-assisted deposition of pre–formed perthiolated-ß-cyclodextrin-capped Pt nanoparticles method is described. Pt nanoparticles (5 nm diameter) were deposited in a controlled fashion on indium tin oxide and highly oriented pyrolytic graphite electrodes. The Pt anoparticles formed in this way were electrocatalytically active towards hydrogen generation and oxidation. This new approach for the deposition of metal nanoparticles with controlled surface density provides a new tool for the investigation of electrocatalytic processes.
A major focus of the second part of the thesis has been the development of methods to study crystal deposition at extreme supersaturation. For this purpose a delivery system for calcium carbonate at high-supersaturation ion has been coupled with a quartz crystal microbalance and in–situ optical microscopy.
The dynamics and quantitative evaluation of calcium carbonate deposition onto foreign solid substrates, and the effect of various additives, are described. Ex– situ studies, scanning electron microscopy and microRaman spectroscopy, allowed the morphological characterisation of the phases deposited. The transformation of ACC to calcite has been explored in details. In the study of additives, a significant finding was that citrate concentration shows a nonmonotonic behaviour on the amount of scale deposited. Fast screening of different additives (polymeric and molecular) and a quantitative ranking of their inhibitory properties on calcium carbonate deposition on a gold surface is described. Molecular and polymeric additives showed different inhibitory mechanisms on the scaling process and the technique employed gave a better insight into their mode of action.

Item Type: Thesis or Dissertation (PhD)
Subjects: Q Science > QD Chemistry
Library of Congress Subject Headings (LCSH): Surface chemistry, Ruthenium, Nanoparticles, Quartz crystals, Calcium carbonate
Official Date: February 2010
Dates:
DateEvent
February 2010Submitted
Institution: University of Warwick
Theses Department: Department of Chemistry
Thesis Type: PhD
Publication Status: Unpublished
Supervisor(s)/Advisor: Unwin, Patrick R.
Extent: xxiv, 198 leaves : ill., charts
Language: eng

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics

twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us