Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Nonstationary cluster-size inference with random field and permutation methods

Tools
- Tools
+ Tools

Hayasaka, Satoru, Phan, K. Luan, Liberzon, Israel, Worsley, Keith J. and Nichols, Thomas E. (2004) Nonstationary cluster-size inference with random field and permutation methods. NeuroImage, Vol.22 (No.2). pp. 676-687. doi:10.1016/j.neuroimage.2004.01.041 ISSN 10538119.

Research output not available from this repository.

Request-a-Copy directly from author or use local Library Get it For Me service.

Official URL: http://dx.doi.org/10.1016/j.neuroimage.2004.01.041

Request Changes to record.

Abstract

Because of their increased sensitivity to spatially extended signals, cluster-size tests are widely used to detect changes and activations in brain images. However, when images are nonstationary, the cluster-size distribution varies depending on local smoothness. Clusters tend to be large in smooth regions, resulting in increased false positives, while in rough regions, clusters tend to be small, resulting in decreased sensitivity. Worsley et al. proposed a random field theory (RFT) method that adjusts cluster sizes according to local roughness of images [Worsley, K.J., 2002. Nonstationary FWHM and its effect on statistical inference of fMRI data. Presented at the 8th International Conference on Functional Mapping of the Human Brain, June 2–6, 2002, Sendai, Japan. Available on CD-ROM in NeuroImage 16 (2) 779–780; Hum. Brain Mapp. 8 (1999) 98]. In this paper, we implement this method in a permutation test framework, which requires very few assumptions, is known to be exact [J. Cereb. Blood Flow Metab. 16 (1996) 7] and is robust [NeuroImage 20 (2003) 2343]. We compared our method to stationary permutation, stationary RFT, and nonstationary RFT methods. Using simulated data, we found that our permutation test performs well under any setting examined, whereas the nonstationary RFT test performs well only for smooth images under high df. We also found that the stationary RFT test becomes anticonservative under nonstationarity, while both nonstationary RFT and permutation tests remain valid under nonstationarity. On a real PET data set we found that, though the nonstationary tests have reduced sensitivity due to smoothness estimation variability, these tests have better sensitivity for clusters in rough regions compared to stationary cluster-size tests. We include a detailed and consolidated description of Worsley nonstationary RFT cluster-size test.

Item Type: Journal Article
Subjects: Q Science > QA Mathematics
R Medicine > RC Internal medicine > RC0321 Neuroscience. Biological psychiatry. Neuropsychiatry
Divisions: Faculty of Science, Engineering and Medicine > Science > Statistics
Library of Congress Subject Headings (LCSH): Mathematical statistics, Cluster analysis, Permutations, Brain -- Imaging -- Data processing
Journal or Publication Title: NeuroImage
Publisher: Elsevier
ISSN: 10538119
Official Date: 30 April 2004
Dates:
DateEvent
30 April 2004["eprint_fieldopt_dates_date_type_available" not defined]
Volume: Vol.22
Number: No.2
Page Range: pp. 676-687
DOI: 10.1016/j.neuroimage.2004.01.041
Status: Peer Reviewed
Publication Status: Published
Access rights to Published version: Restricted or Subscription Access

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us