References: |
1. Wang XJ (2002) Probabilistic decision making by slow reverberation in cortical circuits. Neuron 36: 955–968. 2. Deco G, Rolls ET (2006) A neurophysiological model of decision-making and Weber’s law. European Journal of Neuroscience 24: 901–916. 3. Wang XJ (2008) Decision making in recurrent neuronal circuits. Neuron 60: 215–234. 4. Rolls ET, Deco G (2010) The Noisy Brain: Stochastic Dynamics as a Principle of Brain Function. Oxford: Oxford University Press. 5. Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Nat Acad Sci USA 79: 2554–2558. 6. Amit DJ (1989) Modeling Brain Function. The World of Attractor Neural Networks. Cambridge: Cambridge University Press. 7. Faisal A, Selen L, Wolpert D (2008) Noise in the nervous system. Nature Reviews Neuroscience 9: 292–303. 8. Deco G, Rolls ET, Romo R (2009) Stochastic dynamics as a principle of brain function. Progress in Neurobiology 88: 1–16. 9. Softky WR, Koch C (1993) The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. Journal of Neuroscience 13: 334–350. 10. Amit DJ, Brunel N (1997) Dynamics of a recurrent network of spiking neurons before and following learning. Network 8: 373–404. 11. Miller P, Wang XJ (2006) Power-law neuronal fluctuations in a recurrent network model of parametric working memory. Journal of Neurophysiology 95: 1099–1114. 12. Brunel N, Wang XJ (2001) Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition. Journal of Computational Neuroscience 11: 63–85. 13. Abeles M (1991) Corticonics: Neural Circuits of the Cerebral Cortex. Cambridge: Cambridge University Press. 14. Braitenberg V, Schu¨ tz A (1991) Anatomy of the Cortex. Berlin: Springer- Verlag. 15. Elston GN, Benavides-Piccione R, Elston A, Zietsch B, Defelipe J, et al. (2006) Specializations of the granular prefrontal cortex of primates: implications for cognitive processing. Anatomical Record A Discov Mol Cell Evol Biol 288: 26–35. 16. Rolls ET (2008) Memory, Attention, and Decision-Making. A Unifying Computational Neuroscience Approach. Oxford: Oxford University Press. 17. Brody C, Romo R, Kepecs A (2003) Basic mechanisms for graded persistent activity: discrete attractors, continuous attractors, and dynamic representations. Current Opinion in Neurobiology 13: 204–211. 18. Treves A, Rolls ET (1991) What determines the capacity of autoassociative memories in the brain? Network 2: 371–397. 19. Rolls ET, Treves A (1998) Neural Networks and Brain Function. Oxford: Oxford University Press. 20. Rolls ET, Tovee MJ (1995) Sparseness of the neuronal representation of stimuli in the primate temporal visual cortex. Journal of Neurophysiology 73: 713–726. 21. Rolls ET, Treves A, Tovee M, Panzeri S (1997) Information in the neuronal representation of individual stimuli in the primate temporal visual cortex. Journal of Computational Neuroscience 4: 309–333. 22. Baddeley RJ, Abbott LF, Booth MJA, Sengpiel F, Freeman T, et al. (1997) Responses of neurons in primary and inferior temporal visual cortices to natural scenes. Proceedings of the Royal Society B 264: 1775–1783. 23. Rolls ET, Critchley HD, Treves A (1996) The representation of olfactory information in the primate orbitofrontal cortex. Journal of Neurophysiology 75: 1982–1996. 24. Verhagen JV, Kadohisa M, Rolls ET (2004) The primate insular taste cortex: neuronal representations of the viscosity, fat texture, grittiness, and the taste of foods in the mouth. Journal of Neurophysiology 92: 1685–1699. 25. Rolls ET, Verhagen JV, Kadohisa M (2003) Representations of the texture of food in the primate orbitofrontal cortex: neurons responding to viscosity, grittiness, and capsaicin. Journal of Neurophysiology 90: 3711–3724. 26. Rolls ET, Critchley H, Verhagen JV, Kadohisa M (2010) The representation of information about taste and odor in the primate orbitofrontal cortex. Chemosensory Perception 3: 16–33. 27. Kadohisa M, Rolls ET, Verhagen JV (2005) The primate amygdala: neuronal representations of the viscosity, fat texture, grittiness and taste of foods. Neuroscience 132: 33–48. 28. Kadohisa M, Rolls ET, Verhagen JV (2005) Neuronal representations of stimuli in the mouth: the primate insular taste cortex, orbitofrontal cortex, and amygdala. Chemical Senses 30: 401–419. 29. Rolls ET, Treves A, Robertson RG, Georges-Franc¸ois P, Panzeri S (1998) Information about spatial view in an ensemble of primate hippocampal cells. Journal of Neurophysiology 79: 1797–1813. 30. Treves A, Panzeri S, Rolls ET, Booth M, Wakeman EA (1999) Firing rate distributions and efficiency of information transmission of inferior temporal cortex neurons to natural visual stimuli. Neural Computation 11: 601–631. 31. Franco L, Rolls ET, Aggelopoulos NC, Jerez JM (2007) Neuronal selectivity, population sparseness, and ergodicity in the inferior temporal visual cortex. Biological Cybernetics 96: 547–560. 32. Loh M, Rolls ET, Deco G (2007) A dynamical systems hypothesis of schizophrenia. PLoS Computational Biology 3: e228. doi:10.1371/journal.- pcbi.0030228. 33. Rolls ET, Loh M, Deco G, Winterer G (2008) Computational models of schizophrenia and dopamine modulation in the prefrontal cortex. Nature Reviews Neuroscience 9: 696–709. 34. Rolls ET, Loh M, Deco G (2008) An attractor hypothesis of obsessivecompulsive disorder. European Journal of Neuroscience 28: 782–793. 35. Rolls ET, Deco G (2011) A computational neuroscience approach to schizophrenia and its onset. Neuroscience and Biobehavioral Reviews 35: 1644–1653. 36. Rolls ET (2011) Glutamate, obsessive-compulsive disorder, schizophrenia, and the stability of cortical attractor neuronal networks. Pharmacology, Biochemistry and Behavior: Epub 23 June. 37. Rolls ET, Treves A (2011) Information encoding in the brain. Progress in Neurobiology: in press. 38. Rolls ET, Grabenhorst F, Deco G (2010) Choice, difficulty, and confidence in the brain. Neuroimage 53: 694–706. 39. Rolls ET, Grabenhorst F, Deco G (2010) Decision-making, errors, and confidence in the brain. Journal of Neurophysiology 104: 2359–2374. 40. Deco G, Rolls ET (2005) Synaptic and spiking dynamics underlying reward reversal in the orbitofrontal cortex. Cerebral Cortex 15: 15–30. 41. Buehlmann A, Deco G (2008) The neuronal basis of attention: rate versus synchronization modulation. Journal of Neuroscience 28: 7679–7686. 42. Smerieri A, Rolls ET, Feng J (2010) Decision time, slow inhibition, and theta rhythm. Journal of Neuroscience 30: 14173–14181. 43. Nordlie E, Gewaltig MO, Plesser HE (2009) Towards reproducible descriptions of neuronal network models. PLoS Computational Biology 5: e1000456. 44. Knight B (2000) Dynamics of encoding in neuron populations: some general mathematical features. Neural Computation 12: 473–518. 45. Burkitt AN (2006) A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input. Biological Cybernetics 95: 1–19. 46. Hertz J, Krogh A, Palmer RG (1991) Introduction to the Theory of Neural Computation. Wokingham, UK: Addison Wesley. 47. Rolls ET, Treves A, Foster D, Perez-Vicente C (1997) Simulation studies of the CA3 hippocampal subfield modelled as an attractor neural network. Neural Networks 10: 1559–1569. 48. Rolls ET, Treves A (1990) The relative advantages of sparse versus distributed encoding for associative neuronal networks in the brain. Network 1: 407–421. 49. Loh M, Rolls ET, Deco G (2007) Statistical fluctuations in attractor networks related to schizophrenia. Pharmacopsychiatry 40: S78–84. 50. Marti D, Deco G, Mattia M, Gigante G, Del Giudice P (2008) A fluctuationdriven mechanism for slow decision processes in reverberant networks. PLoS ONE 3: e2534. doi:10.1371/journal.pone.0002534. 51. Rolls ET, Webb TJ (2011) Cortical attractor network dynamics with diluted connectivity. Brain Research: in press. 52. Beamish D, Bhatti S, MacKenzie I, Wu J (2006) Fifty years later: a neurodynamic explanation of Fitts’ law. Journal of The Royal Society Interface 3: 649–654. 53. Ratcliff R, Rouder JF (1998) Modeling response times for two-choice decisions. Psychological Science 9: 347–356. 54. Ratcliff R, Zandt TV, McKoon G (1999) Connectionist and diffusion models of reaction time. Psychological Reviews 106: 261–300. 55. Panzeri S, Biella G, Rolls ET, Skaggs WE, Treves A (1996) Speed, noise, information and the graded nature of neuronal responses. Network 7: 365–370. 56. Rolls ET, Tovee MJ, Panzeri S (1999) The neurophysiology of backward visual masking: information analysis. Journal of Cognitive Neuroscience 11: 335–346. 57. Panzeri S, Rolls ET, Battaglia F, Lavis R (2001) Speed of feedforward and recurrent processing in multilayer networks of integrate-and-fire neurons. Network: Computation in Neural Systems 12: 423–440. 58. Rolls ET (2003) Consciousness absent and present: a neurophysiological exploration. Progress in Brain Research 144: 95–106. 59. Furman M, Wang XJ (2008) Similarity effect and optimal control of multiplechoice decision making. Neuron 60: 1153–1168. 60. Liu YH, Wang XJ (2008) A common cortical circuit mechanism for perceptual categorical discrimination and veridical judgment. PLoS Computational Biology. e1000253. 61. Churchland AK, Kiani R, Shadlen MN (2008) Decision-making with multiple alternatives. Nature Neuroscience 11: 693–702. 62. Albantakis L, Deco G (2009) The encoding of alternatives in multiple-choice decision making. Proceedings of the National Academy of Sciences USA 106: 10308–10313. 63. Shannon CE (1948) A mathematical theory of communication. AT&T Bell Laboratories Technical Journal 27: 379–423. 64. Levy WB, Baxter RA (1996) Energy efficient neural codes. Neural Computation 8: 531–543. 23. 65. de Polavieja GG (2002) Errors drive the evolution of biological signalling to costly codes. Journal of Theoretical Biology 214: 657–664. |