The Library
Finite size scaling in the solar wind magnetic field energy density as seen by WIND
Tools
Hnat, B., Chapman, Sandra C., Rowlands, G. (George), Watkins, Nicholas W. and Farrell, W. M. (William M.). (2002) Finite size scaling in the solar wind magnetic field energy density as seen by WIND. Geophysical Research Letters, Vol.29 (No.10). ISSN 00948276
PDF (Article)
WRAP_Rowlands_Finite_Size_scaling.pdf  Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader Download (351Kb) 


PDF (Cover sheet)
WRAP_rowlands_coversheet.pdf  Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader Download (38Kb) 
Official URL: http://dx.doi.org/10.1029/2001GL014587
Abstract
Statistical properties of the interplanetary magnetic field fluctuations can provide an important insight into the solar wind turbulent cascade. Recently, analysis of the Probability Density Functions (PDF) of the velocity and magnetic field fluctuations has shown that these exhibit nonGaussian properties on small time scales while large scale features appear to be uncorrelated. Here we apply the finite size scaling technique to explore the scaling of the magnetic field energy density fluctuations as seen by WIND. We find a single scaling sufficient to collapse the curves over the entire investigated range. The rescaled PDF follow a non Gaussian distribution with asymptotic behavior well described by the Gamma distribution arising from a finite range Lévy walk. Such mono scaling suggests that a FokkerPlanck approach can be applied to study the PDF dynamics. These results strongly suggest the existence of a common, nonlinear process on the time scale up to 26 hours.
Item Type:  Journal Article 

Subjects:  Q Science > QB Astronomy 
Divisions:  Faculty of Science > Physics 
Library of Congress Subject Headings (LCSH):  Solar wind, Magnetohydrodynamic waves, Sun  Corona  Magnetic fields, Interplanetary magnetic fields  Statistical methods 
Journal or Publication Title:  Geophysical Research Letters 
Publisher:  American Geophysical Union 
ISSN:  00948276 
Date:  2002 
Volume:  Vol.29 
Number:  No.10 
Identification Number:  10.1029/2001GL014587 
Status:  Peer Reviewed 
Access rights to Published version:  Open Access 
Funder:  Leverhulme Trust (LT), Particle Physics and Astronomy Research Council (Great Britain) (PPARC) 
References:  Bardou, F., and J.P. Bouchaud, A. Aspect and C. CohenTannoudji, Le´vy Statistics and Laser Cooling, Cambridge University Press, Cambridge, 2002. Bohr, T., M. H. Jensen, G. Paladin, and A. Vulpiani, Dynamical Systems Approach to Turbulence, Cambridge University Press, Cambridge, 1998. Burlaga, L. F., Lognormal and multifractal distributions of the heliospheric magnetic field, J. Geophys. Res., 106, 15,917– 15,927, 2001. Castaing, B., Y. Gagne, and E. J. Hopfinger, Velocity Probability Density Functions of High Reynolds Number Turbulence, Physica D, 46, 177– 200, 1990. Freeman, M. P., N. W. Watkins, and D. J. Riley, Evidence for a solar wind origin of the power law burst lifetime distribution of the AE indices, Geophys. Res. Lett., 27, 1087– 1090, 2000a. Freeman, M. P., N. W. Watkins, and D. J. Riley, Power law distribution of burst duration and interburst interval in the solar wind: Turbulence or dissipative selforganized criticality?, Phys. Rev. E, 62, 8794 – 8797, 2000b. Frisch, U., Turbulence. The legacy of A.N. Kolmogorov, Cambridge University Press, Cambridge, 1995. Goldstein, M. L., and D. A. Roberts, Magnetohydrodynamic Turbulence in the solar wind, Phys. Plasmas, 6, 4154–4160, 1999. Kolmogorov, A. N., A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number, J. Fluid Mech., 13, 82– 85, 1962. Lepping, R. P., M. Acuna, L. Burlaga, W. Farrell, J. Slavin, K. Schatten, F. Mariani, N. Ness, F. Neubauer, Y. C. Whang, J. Byrnes, R. Kennon, P. Panetta, J. Scheifele, and E. Worley, The WIND Magnetic Field Investigation, Space Sci. Rev., 71, 207, 1995. Mantegna, R. N., and H. E. Stanley, Scaling behaviour in the dynamics of an economic index, Nature, 376, 46– 49, 1995. Mantegna, R. N., and H. E. Stanley, An Introduction to Econophysics, Cambridge University Press, Cambridge, 2000. Milovanov, A. V., and L. M. Zelenyi, Fracton excitations as a driving mechanism for the selforganized dynamical structuring in the solar wind, Astrophys. Space Sci., 264, 317– 345, 1998. Naert, A., B. Castaing, B. Chabaud, B. He´bral, and J. Peinke, Conditional statistics of velocity fluctuations in turbulence, Physica D, 113, 73– 78, 1998. Padhye, N. S., C. W. Smith, and W. H. Matthaeus, Distribution of magnetic field components in the solar wind plasma, J. Geophys. Res., 106, 18,635– 18,650, 2001. Schertzer, D., L. Larcheveˆque, J. Duan, V. V. Yanovsky, and S. Lovejoy, Fractional FokkerPlanck equation for nonlinear stochastic differential equations driven by nonGaussian Le´vy stable noise, J. Math. Phys., 41, 200– 212, 2001. Sornette, D., Critical Phenomena in Natural Sciences; Chaos, Fractals, Selforganization and Disorder: Concepts and Tools, SpringerVerlag, Berlin, 2000. SorrisoValvo, L., V. Carbone, P. Veltri, G. Consolini, and R. Bruno, Intermittency in the solar wind turbulence through probability distribution functions of fluctuations, Geophys. Res. Lett., 26, 1801 – 1804, 1999. SorrisoValvo, L., V. Carbone, P. Giuliani, P. Veltri, R. Bruno, V. Antoni, and E. Martines, Intermittency in plasma turbulence, Planet. Space Sci., 49, 1193–1200, 2001. Tu, C.Y., and E. Marsch, MHD Structures, Waves and Turbulence in the Solar Wind: Observations and Theories, Space Sci. Rev., 73, 1–210, 1995. van Atta, C., and J. T. Park, Statistical SelfSimilarity and Inertial Subrange Turbulence, Lecture Notes in Physics, Volume 12, edited by M. Rosenblatt and C. Van Atta, Springer Verlag, Berlin, 1972, pp. 402– 426. van Kampen, N.G., Stochastic Processes in Physics and Chemistry, North Holland, Amsterdam, 1992. 
URI:  http://wrap.warwick.ac.uk/id/eprint/3839 
Actions (login required)
View Item 