# The Library

### Factors of Gibbs measures for subshifts of finite type

Tools

Kempton, Tom.
(2011)
*Factors of Gibbs measures for subshifts of finite type.*
Bulletin of the London Mathematical Society, Vol.43
(No.4).
pp. 751-764.
ISSN 0024-6093

**Full text not available from this repository.**

Official URL: http://dx.doi.org/10.1112/blms/bdr010

## Abstract

We give sufficient conditions for the image under projection of a Gibbs measure supported on a subshift of finite type to be a Gibbs measure.

[error in script] [error in script]Item Type: | Journal Article |
---|---|

Subjects: | Q Science > QA Mathematics Q Science > QC Physics |

Divisions: | Faculty of Science > Mathematics |

Library of Congress Subject Headings (LCSH): | Measure theory, Probabilities, Markov processes |

Journal or Publication Title: | Bulletin of the London Mathematical Society |

Publisher: | Cambridge University Press |

ISSN: | 0024-6093 |

Date: | 2011 |

Volume: | Vol.43 |

Number: | No.4 |

Page Range: | pp. 751-764 |

Identification Number: | 10.1112/blms/bdr010 |

Status: | Peer Reviewed |

Publication Status: | Published |

References: | 1. L. E. Baum and T. Petrie, ‘Statistical inference for probabilistic functions of finite state Markov chains’, Ann. Math. Statist. 37 (1966) 1554–1563. 2. R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Mathematics 470 (Springer, Berlin, 2008), revised edition, with a preface by David Ruelle, edited by Jean-Ren´e Chazottes. 3. M. Boyle and K. Petersen, ‘Hidden Markov processes in the context of symbolic dynamics’, Entropy of hidden Markov processes and connections to dynamical systems, London Mathematical Society Lecture Notes, Series No. 385 (eds B. Marcus, K. Petersen and T. Weissman; London Mathematical Society, London, to appear). 4. J. R. Chazottes and E. Ugalde, ‘Projection of Markov measures may be Gibbsian’, J. Statist. Phys. 111 (2003) 1245–1272. 5. J. R. Chazottes and E. Ugalde, ‘Preservation of Gibbsianness under amalgamation of symbols’, Entropy of hidden Markov processes and connections to dynamical systems, London Mathematical Society Lecture Notes, Series No. 385 (eds B. Marcus, K. Petersen and T. Weissman; London Mathematical Society, London, to appear). 6. A. H. Fan and M. Pollicott, ‘Non-homogeneous equilibrium states and convergence speeds of averaging operators’, Math. Proc. Cambridge Philos. Soc. 2000 (129) 99–115. 7. T. Kempton and M. Pollicott, ‘Factors of Gibbs measures for full shifts’, Entropy of hidden Markov processes and connections to dynamical systems, London Mathematical Society Lecture Notes, Series No. 385 (eds B. Marcus, K. Petersen and T. Weissman; London Mathematical Society, London, to appear). 8. E. Verbitskiy, ‘Thermodynamics of hidden Markov processes’, Entropy of hidden Markov processes and connections to dynamical systems, London Mathematical Society Lecture Notes, Series No. 385 (eds B. Marcus, K. Petersen and T. Weissman; London Mathematical Society, London, to appear). |

URI: | http://wrap.warwick.ac.uk/id/eprint/38646 |

Data sourced from Thomson Reuters' Web of Knowledge

### Actions (login required)

View Item |