
The Library
Quasiconformal homogeneity of genus zero surfaces
Tools
Kwakkel, Ferry and Markovic, V. (Vladimir) (2011) Quasiconformal homogeneity of genus zero surfaces. Journal d'Analyse Mathématique, Vol.113 (No.1). pp. 173-195. doi:10.1007/s11854-011-0003-1 ISSN 0021-7670.
Research output not available from this repository.
Request-a-Copy directly from author or use local Library Get it For Me service.
Official URL: http://dx.doi.org/10.1007/s11854-011-0003-1
Abstract
A Riemann surface M is said to be K-quasiconformally homogeneous
if, for every two points p, q ∈ M, there exists a K-quasiconformal homeomorphism
f : M→M such that f (p) = q. In this paper, we show there exists a
universal constant K > 1 such that if M is a K-quasiconformally homogeneous
hyperbolic genus zero surface other than D2, then K ≥ K. This answers a question
by Gehring and Palka [10]. Further, we show that a non-maximal hyperbolic
surface of genus g ≥ 1 is not K-quasiconformally homogeneous for any finite
K ≥ 1.
Item Type: | Journal Article | ||||
---|---|---|---|---|---|
Subjects: | Q Science > QA Mathematics | ||||
Divisions: | Faculty of Science, Engineering and Medicine > Science > Mathematics | ||||
Library of Congress Subject Headings (LCSH): | Quasiconformal mappings, Riemann surfaces | ||||
Journal or Publication Title: | Journal d'Analyse Mathématique | ||||
Publisher: | Magnes Press | ||||
ISSN: | 0021-7670 | ||||
Official Date: | 2011 | ||||
Dates: |
|
||||
Volume: | Vol.113 | ||||
Number: | No.1 | ||||
Page Range: | pp. 173-195 | ||||
DOI: | 10.1007/s11854-011-0003-1 | ||||
Status: | Peer Reviewed | ||||
Publication Status: | Published |
Data sourced from Thomson Reuters' Web of Knowledge
Request changes or add full text files to a record
Repository staff actions (login required)
![]() |
View Item |