References: |
1. R.F. Bass. Uniqueness in law for pure jump type Markov processes. Probab. Theory Related Fields 79 (1988), 271-287. 2. H. Bliedtner, W. Hansen. Potential Theory - An Analytic Approach to Bal- ayage. Universitext, Springer-Verlag, Berlin/Heidelberg/New York/Tokyo, 1986. 3. J.A. van Casteren. On martingales and Feller semigroups. Results in Mathematics 21 (1992), 274-288. 4. Mu Fa Chen. From Markov Chains to Non-Equilibrium Particle Systems. World Scientific 1992. 5. A. M. Etheridge. An Introduction to Superprocesses. University Lecture Series 20. AMS, Providence, Rhode Island. 6. S.N. Ethier, Th. G. Kurtz. Markov Processes { Characterization and Convergence. Wiley Series in Probability and Mathematical Statistics, New York Chicester: Wiley 1986. 7. G. Fichera. Sulla equazioni differenziali lineari elliptico-paraboliche del secondo ordine. Atti Naz. Lincei Mem., Ser 8 5 (1956), 1-30. 8. M. Freidlin. Functional Integration and Partial Differential Equations. Princeton Univ. Press, Princeton, NY 1985. 9. W. Hoh. The martingale problem for a class of pseudo differential operators. Math. Ann. 300 (1994), 121-147. 10. W. Hoh. Pseudodifferential operators with negative definite symbols and the martingale problem. Stochastics and Stochastics Reports 55 (1995), 225-252. 11. W. Hoh, N. Jacob. On the Dirichlet Problem for Pseudodifferential Oper- ators Generating Feller Semigroups. Journ. Funct. Anal. 137:1 (1996), 19-48. 12. N. Jacob. Further pseudo differential operators generating Feller semi- groups and Dirichlet forms. Rev. Mat. Iberoam. 9 (1993), 373-407. 13. N. Jacob. Non-local (semi-) Dirichlet forms generated by pseudo differential operators. In: Z.M. Ma et al (Eds.). Dirichlet Forms and Stochastic Processes. Proc. Intern. Conf. Beijing 1993, de Gruyter, Berlin, 1995, 223-233. 14. N. Jacob, R.L. Schilling. L¶evy-Type Processes and Pseudodifferential Operators. In: O.E. Barndorff-Nielsen et al (Eds). Levy Processes, Theory and Applications. Birkhauser 2001, p. 139-168. 15. M.V. Keldys. On certain cases of degeneration of equations of elliptic type on the boundary of a domain. Dokl. Acad. Nauk SSSR 77 (1951), 181-183. 16. J.J. Kohn and L. Nirenberg. Non-Coercive Boundary Value Problems. Comm. Pure Appl. Math. 18 (1965), 443-492. 17. J.J. Kohn and L. Nirenberg. Degenerate elliptic-parabolic equations of second order. Comm. Pure Appl. Math. 20:3 (1967), 443-492. 18. V. Kolokoltsov. Symmetric Stable Laws and Stable-like Jump-diffusions. Proc. London Math. Soc. 80:3 (2000), 725-768. 19. V. Kolokoltsov. Measure-valued limits of interacting particle systems with k-nary interaction I. Probab. Theory Relat. Fields 126 (2003), 364-394. 20. V. Kolokoltsov. Measure-valued limits of interacting particle systems with k-nary interaction II. To appear in Stochastics and Stochastics Reports. 21. V. Kolokoltsov. Measure-valued limits of interacting particle systems with k-nary interaction III. Submitted to J. Statistical Physics. 22. V. Kolokoltsov. On Extensions of Mollified Boltzmann and Smoluchovski Equations to Particle Systems with a k-nary Interaction. Russian Journal Math. Phys. 10:3 (2003), 268-295. 23. V.N. Kolokoltsov, R.L. Schilling, A.E. Tyukov. Transience and non- explosion of certain stochastic newtonian systems. Electronic Journal of Probability 7 (2002), Paper no. 19. 24. P. Mandl. Analytic Treatment of One-dimensional Markov Processes. Springer Verlag 1968. 25. V.P. Maslov. Complex Markov chains and the Feynman Path Integral. Moscow, Nauka (in Russian), 1976. 26. R. Mikulevicius, H. Pragarauskas. On the uniqueness of solutions to a martingale problem associated with a degenerate L¶evy operator. Lith. Math. J. 33:4 (1993), 352-367. 27. O.A. Oleinik and E.V. Radkevich. Second Order Equations with Nonneg- ative Characteristic Form. Itogi Nauki Moscow, 1971 (in Russian); English transl., AMS, Providence, RI and Plenum Press, New York 1973. 28. D. Stroock, S.R.S. Varadhan. On Degenerate Elliptic-Parabolic Operators of Second Order and Their Associated Diffusions. Comm. Pure Appl. Math. XXV (1972), 651-713. 29. K. Taira. On the existence of Feller semigroups with Dirichlet conditions. Tsukuba J. Math. 17 (1993), 377-427. 30. K. Taira. Boundary value problems for elliptic pseudo-differential operators II. Proc. Royal Soc. Edinburgh 127 A (1997), 395-405. 31. K. Taira. On the Existence of Feller Semigroups with Boundary Conditions. Memoirs of the American Mathematical Society, v. 99, Number 475, 1992. 32. K. Taira, A. Favini and S. Romanelli. Feller semigroups and degenerate elliptic operators with Wentzell boundary conditions. Studia Mathematica 145: 1 (2001), 17-53. |