The Library
On embeddings and dimensions of global attractors associated with dissipative partial differential equations
Tools
Pinto de Moura, Eleonora (2010) On embeddings and dimensions of global attractors associated with dissipative partial differential equations. PhD thesis, University of Warwick.

PDF
WRAP_THESIS_PintoDeMoura_2010.pdf  Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader Download (664Kb) 
Official URL: http://webcat.warwick.ac.uk/record=b2341202~S15
Abstract
Hunt and Kaloshin (1999) proved that it is possible to embed a compact subset X of a Hilbert space with upper boxcounting dimension d into RN for any N > 2d+1, using a linear map L whose inverse is Hölder continuous with exponent α < (N  2d)/N(1 + τ(X)/2), where τ(X) is the 'thickness exponent' of X. More recently, Ott et al. (2006) conjectured that "many of the attractors associated with the evolution equations of mathematical physics have thickness exponent zero". In Chapter 2 we study orthogonal sequences in a Hilbert space H, whose elements tend to zero, and similar sequences in the space c0 of null sequences. These examples are used to show that Hunt and Kaloshin's result, and a related result due to Robinson (2009) for subsets of Banach spaces, are asymptotically sharp. An analogous argument shows that the embedding theorems proved by Robinson (2010), in terms of the Assouad dimension, for the Hilbert and Banach space case are asymptotically sharp. In Chapter 3 we introduce a variant of the thickness exponent, the Lipschitz deviation dev(X). We show that Hunt and Kaloshin's result and Corollary 3.9 in Ott et al. (2006) remain true with the thickness replaced by the Lipschitz deviation. We then prove that dev(X) = 0 for the attractors of a wide class of semilinear parabolic equations, thus providing a partial answer to the conjecture of Ott, Hunt, & Kaloshin. In Chapter 4 we study the regularity of the vector field on the global attractor associated with parabolic equations. We show that certain dissipative equations possess a linear term that is logLipschitz continuous on the attractor. We then prove that this property implies that the associated global attractor A lies within a small neighbourhood of a smooth manifold, given as a Lipschitz graph over a finite number of Fourier modes. This provides an alternative proof that the global attractor A has zero Lipschitz deviation. In Chapter 5 we use shape theory and the concept of cellularity to show that if A is the global attractor associated with a dissipative partial differential equation in a real Hilbert space H and the set A  A has finite Assouad dimension d, then there is an ordinary differential equation in Rm+1, with m > d, that has unique solutions and reproduces the dynamics on A. Moreover, the dynamical system generated by this new ordinary differential equation has a global attractor X arbitrarily close to LA, where L is a homeomorphism from A into Rm+1.
Item Type:  Thesis or Dissertation (PhD) 

Subjects:  Q Science > QA Mathematics 
Library of Congress Subject Headings (LCSH):  Embeddings (Mathematics), Attractors (Mathematics), Differential equations, Partial, Hilbert space 
Date:  September 2010 
Institution:  University of Warwick 
Theses Department:  Mathematics Institute 
Thesis Type:  PhD 
Publication Status:  Unpublished 
Supervisor(s)/Advisor:  Robinson, James C. (James Cooper), 1969 
Sponsors:  Brazil. Coordenação do Aperfeiçoamento de Pessoal de Nível Superior (CAPES) 
Extent:  v, 94 leaves 
Language:  eng 
URI:  http://wrap.warwick.ac.uk/id/eprint/3922 
Actions (login required)
View Item 