References: |
[1] L. Accardi, R. Alicki, A. Frigerio, and Y.G. Lu. An invitation to the weak coupling and low density limits. Quantum Probability and Related Topics VI (1991), 3-61. [2] l. Accardi, Y.G. Lu and I. Volovich. Quantum Theory and its Stochastic Limit. Springer-Verlag, Texts and Mopnographs in Physics, 2000. [3] S. Albeverio, F. Gesztesy, R. Hoegh-Krohn, and H. Holden. Solvable models in quantum mechanics. Springer 1988. [4] S.Albeverio, V.N. Kolokoltsov, O.G. Smolyanov. Continuous Quantum Measurement: Local and Global Approaches. Reviews in Math. Phys. 9:8 (1997), 907-920. [5] H. Araki. Factorisable representations of current algebras. Proc. R.I.M.S., Kyoto 5 (1970/71), 361-422. [6] A. Barchielli, A.S. Holevo. Constructing quantum measurement processes via classical stochastic calculus. Stochastic Processes Appl. 58:2 (1995), 293-317. [7] V.P. Belavkin. A continuous counting observation and posterior quantum dynamics. J. Phys. A Math. Gen. 22 (1989), L1109-L1114. [8] V.P. Belavkin. Nondemolition Principle of Quantum Measurement Theory. Found. of Physics 24:5 (1994), 685-714. [9] V.P. Belavkin. A dynamical Theory of Quantum Measurement and Spontaneous Localization. Russian Journal of Mathematical Physics 3:1 (1995), 3-23. [10] V.P. Belavkin. On Quantum Stochastics as a Dirac Boundary-value Problem and an Inductive Stochastic Limit. In: Evolution Equations and their Applications, Lect. Notes Pure Appl. Math., Marcel Dekker, Inc., New York 2000, 311-334. [11] V.P. Belavkin. Quantum Stochastic Dirac Boundary Value Problem and the Ultra Relativistic Limit. Rep. Math. Phys. 46:3 (2000), 359-386. [12] V.P. Belavkin. Chaotic States and Stochastic Integration in Quantum Systems. Russian Math. Surveys 47:1 (1992), 47-106. [13] V.P. Belavkin. A Quantum Nonadapted Ito Formula and Stochastic Analysis in Fock Scale. J. Funct. Anal. 102:2 (1991), 414-447. [14] V.P. Belavkin, R. Hudson, R. Hirota (Eds.). Quantum Communications and Measurements. Proc. Intern. Workshop held in Nottingham, 1994. Plenum Press 1995. [15] A.M. Chebotarev. The quantum stochastic equation is equivalent to a boundary value problem for the Schrödinger equation. Mathematical Notes 61:4 (1997), 510-518. [16] A.M. Chebotarev. The quantum stochastic equation is equivalent to a symmetric boundary value problem in Fock space. Infinite Dimensional Analysis, Quantum Probability and Related Topics, 1:2 (1998): 175-199. [17] L. Diosi. Continuous quantum measurement and Ito formalism. Phys. Let. A 129 (1988), 419-423. [18] J. Gough. The Stratonovich Interpretation of Quantum Stochastic Approximations. Potential Analysis 11 (1999), 213-233. [19] M.Gregoratti. On the Hamiltonian Operator Associated to Some Quantum Stochastic Differential Equations. Infinite Dimensional Analysis, Quantum Probability and Related Topics, 3:4 (2000), 483-504. [20] R.L. Hudson, K.R. Parthasarathy. Quantum Ito's formula and stochastic evolutions. Comm. Math. Phys. 93:3 (1984), 301-323. [21] V.N. Kolokoltsov. Localisation and Analytic Properties of the Simplest Quantum Filtering equation. Reviews in Math. Phys. 10:6 (1998), 801- 828. [22] V.N. Kolokoltsov. Short deduction and mathematical properties of the main equation of the theory of continuous quantum measurements. In: GROUP21 (Eds. H.-D.Doebner, P.Nattermann, W.Scherer), Proc. XXI Intern. Colloq. on Group Theoret. Methods in Physics July 1996, World Scientific 1997, v.1, 326-330. [23] V.N. Kolokoltsov. The stochastic HJB equation and WKB method. In: Idempotency (Ed. J. Gunawardena), Cambridge Univ. Press 1998, 285- 302. [24] V.N. Kolokoltsov. Semiclassical Analysis for Diffusions and Stochastic Processes Springer Lecture Notes Math. 1724, 2000. [25] V. Koshmanenko. Singular Quadratic Forms in Perturbation Theory. Kluwer Academic 1999. [26] J. von Neumann. Foundations of Quantum Mechanics. Princeton Univ. Press 1955. [27] K.R. Parthasarathy. An Introduction to Quantum Stochastic Calculus. Birkhauser Verlag, Basel, 1992. [28] P. Protter. Stochastic Integration and Differential Equations. Applications of Mathematics 21, Springer-Verlag, 1990. [29] Quantum and Semiclassical Optics 8:1 (1996). Special Issue on Stochastic Quantum Optics. [30] R.F. Streater. Current commutation relations, continuous tensor products, and infinitely divisible group representations. In: Local Quantum Theory (Ed. R. Jost), Academic Press, 1969, 247-263. [31] A. Truman, Z. Zhao. The stochastic H-J equations, stochastic heat equations and Schrödinger equations. In: (Eds. A Truman et al) Stochastic Analysis and Application. World Scientific Press (1996), 441-464. |