University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

This paper is made available online in accordance with publisher policies. Please scroll down to view the document itself. Please refer to the repository record for this item and our policy information available from the repository home page for further information.

To see the final version of this paper please visit the publisher’s website. Access to the published version may require a subscription.

Author(s): Patrick Kiio Munywoki, Fauzat Hamid, Martin Mutunga, Steve Welch, Patricia Cane and D. James Nokes
Article Title: Increased detection of respiratory viruses in paediatric outpatients with acute respiratory illness by real-time polymerase chain reaction using nasopharyngeal flocked swabs
Year of publication: 2011
Link to published article:
http://dx.doi.org/10.1128/JCM.02231-10
Publisher statement: None
Increased detection of respiratory viruses in paediatric outpatients with acute respiratory illness by real-time polymerase chain reaction using nasopharyngeal flocked swabs

Patrick Kiio Munywoki1*, Fauzat Hamid1, Martin Mutunga1, Steve Welch2, Patricia Cane2, D. James Nokes1,3

Institutional affiliations
1. KEMRI - Wellcome Trust Research Programme, Kilifi, Kenya
3. School of Life Sciences, University of Warwick, Coventry, UK

*Corresponding Author
Patrick Kiio Munywoki, Centre for Geographic Medicine Research - Coast, Hospital Road, P.O. Box 230, Kilifi, Kenya; Tel +254 41 522063, email; pmunywoki@kilifi.kemri-wellcome.org

Key words
Respiratory Syncytial Virus, sensitivity, nasopharyngeal flocked swab, nasal wash, Multiplex RT-PCR, Immunofluocesence antibody test

Word count
Abstract (64)
Text (1532)
Tables (1)
Abstract (64 words)

Detection of respiratory viruses by realtime multiplexed PCR (M-PCR) and of RSV by M-PCR and immunofluorescence (IF) was evaluated using specimens collected by nasopharyngeal flocked swab (NFS) and nasal wash (NW). In children with mild respiratory illness, NFS collection was superior to NW collection for detection of viruses by M-PCR (sensitivity 89.6% vs 79.2%, P=0.0043). NFS collection was non-inferior to NW collection in detecting RSV by IF.

Main text (1509 excluding acknowledgement)

Respiratory viruses are major causes of infant and childhood acute respiratory infection (ARI) with respiratory syncytial virus (RSV) contributing significantly to the disease burden (3, 5, 11). Nasopharyngeal aspirates (NPA) and nasal washes (NW) have been the preferred sampling methods for the diagnosis of respiratory viruses (7, 12, 13). However nasopharyngeal flocked swab (NFS) is increasingly recognized as an alternative (1). Possible advantages of NFS over NW and NPA include simplicity of use, improved standardisation in different age groups and between operators, and better acceptability in a wider range of settings. However, there are few published data on the sensitivity of NFS when using realtime multiplex polymerase chain reaction (M-PCR) assays for virus detection (10). We report on a study designed to assess diagnostic performance of NFS relative to NW for detection of RSV by both immunoflorence antibody tests (IF) and M-PCR and for other respiratory viruses by M-PCR only.

In an outpatient health facility serving a rural population in the Kilifi District of coastal Kenya, children (<13 years old) presenting during the peak of a RSV season in 2009 were screened for virus-associated ARI. Children were eligible if identified as having one or more
of the following symptoms: difficulty in breathing, nasal discharge, blocked nose, cough, or
fast breathing for age, unless the symptoms were deemed severe enough to require hospital
referral. Informed consent was sought from the parent/guardian of each child. Ethical
approval for the study was obtained from the Kenya National Ethical Review Committee.
Three trained field assistants participated in this study. For each child a field assistant
collected a NFS specimen from one nostril followed immediately with a NW sample from the
other nostril. Thereafter the caretaker (and children aged 3 years and above) responded to
simple questions on their preferred specimen collection method. The two specimens were
stored in a cool box, with ice packs, and transferred within one hour to a refrigerator at ~4°C.
Samples were transported in a cool box at the end of every day to the laboratory at KEMRI-
Wellcome Trust Research Programme in Kilifi town.

NFS specimens were collected as described elsewhere(4) using a commercially available
device that has a fine nylon flock on the tip of a flexible plastic rod (Cat # 503CS01; Copan,
Italia). Briefly, the swab was gently passed up the nostril towards the pharynx for a distance
equal to that between the patient’s nares and earlobe, rotated 2-3 times, held in place for 5
seconds then withdrawn gently and put in 2 ml of viral transport medium – locally prepared
as described elsewhere(8, 15). For NW, normal saline (3-10ml according to age) was squirited
into the patient’s nasal cavity using a soft rubber bulb and immediately sucked out. Fluid
escaping from the other nostril was collected in a suitable receptacle. The NW process was
repeated in the other nostril if less than 1ml of fluid was retrieved(7, 12). The two procedures
were performed while the child was in a sitting position, head slightly tilted backward, with
or without support from their caretaker.
NW samples were screened for RSV by commercial IF kit (Cat # 3125; Millipore Light Diagnostics, Temecula, CA 92590 USA) as previously described(12) and if found positive the paired NFS sample was also screened by IF. Slides for IF were prepared using a cytology centrifuge (Cytospin 3, Thermo Shandon Ltd, Cheshire UK) (13). For all pairs of NW/NFS samples nucleic acid was extracted using QIAamp Viral RNA mini kit (Cat # 52906; Qiagen, UK) and tested by M-PCR method, using the ABI-7500 platform (Applied Biosystems, Inc; California, USA), as described elsewhere(6) for 16 respiratory pathogens, namely RSV A and B, adenovirus, rhinovirus, human metapneumovirus(hMPV), human coronavirus (NL63, OC43, 229E), parainfluenza (PIV 1, 2, 3, 4), influenza (A, B, C) and *Mycoplasma pneumoniae* (Mpn). Specimens were assigned positive for a particular pathogen if the cycle threshold (Ct) value was ≤35.0, otherwise they were considered negative(2). The laboratory technicians were blinded to specimen pairing.

The sensitivity for detection of RSV by IF on NFS collections was determined using NW IF results as the reference. For M-PCR data, a sample was considered a true positive if either of the specimens was positive and comparisons made using McNemar’s chi-square test. The Binomial Exact method was used to determine 95% confidence limits for prevalence and sensitivities (one-sided 97.5% reported if sensitivity was 100%). The mean (95% CI) of the Ct values by specimen collection method was calculated and comparisons made using paired t-test for each virus. Each comparison was limited to sample pairs for which either had Ct values ≤35.0: ‘undetermined’ Ct values (negatives) were coded as 40 for this analysis. Statistical analyses were done in STATA 11.1 (Stata-Corp LP, College Station, TX, USA).

A total of 299 children had paired NW and NFS samples collected between 28th January 2009 and 17th April 2009. The median age (interquartile range) was 1.8 (0.9 to 4.2) years, with
infants (<1 year of age) accounting for 89 (29.8%) of the samples. Male participants were
145 (48.5%).

There were 43 (14.4%) NW specimens positive for RSV by IF: all 43 were also positive by IF
on the paired NFS collections. The number of RSV positives detected increased to 64
(21.4%) and 70 (23.4%) by M-PCR on NW and NFS, respectively. Overall 199 (66.6%) children had at least one virus detected from either NW or NFS by M-PCR with 12 being
detected from NW only and 30 from NFS only. The proportion of individuals positive for at
least one virus was higher in NFS compared to NW (187/299, 62.5% (95% CI; 56.8 – 68.0)
and 169/299, 56.5% (50.7 – 62.2)), respectively, McNemar’s chi-square test, P=0.008).

Rhinovirus was the most frequently detected virus (79, 26.4%), followed by RSV (73,
24.4%), PIV (36, 12.0%), adenovirus (22, 7.4%), human coronaviruses (22, 7.4%) and hMPV
(15, 5.0%). Influenza (A) virus was detected in one patient - in both NFS and NW
specimens. There was no detection of influenza B and C, human coronavirus 229E and
OC43, and Mpn. The sensitivities of the M-PCR for detection of respiratory viruses on NW
and NFS are shown in Table 1. A total of 172 viruses were detected from both NW and NFS
collections while 26 viruses were detected from NW only and 52 from NFS only by M-PCR.
The sensitivity of NW and NFS in detection of respiratory viruses by M-PCR was 198/259,
79.2% (95% CI; 73.6 – 84.1) and 224/250, 89.6% (85.1 – 93.1), McNemar’s chi-square test,
P=0.0043.

A total of 74 RSV infections were detected by either IF or M-PCR assay. One participant had
both samples positive by IF but all negative by M-PCR. The sensitivity for detection of RSV
was higher for NFS (94.6% (86.7 – 98.5) and NW (87.8% (78.2 – 94.3) by M-PCR assay
relative to NW IF (58.1% (46.1 – 69.5%), p<0.001). Though there was no statistically
significant difference in M-PCR RSV sensitivity using NFS compared with NW, the mean
RSV Ct values were significantly lower (i.e. an indication of higher viral load) in NFS collections relative to NW; and this was the case for rhinovirus and adenovirus (p-values <0.05.) However, these differences were in the 1 – 2 Ct range (data not shown).

Of the 275 caretakers and 153 participants who responded to questionnaire on acceptability of the specimen collection methods, 60.0% and 71.9% preferred NFS, 35.3% and 22.2% preferred NW, while there was no preference for either method by 4.7% and 5.9%, respectively. The 3 trained field assistants participating in this study preferred using NFS over NW in 80.2% of the 268 collections for which data were recorded. In all instances above there was evidence of a statistically significant preference for NFS over NW ($H_0=50\%$, Pearson’s Chi-square $P<0.02$).

We found no evidence of inferiority of the NFS compared to the NW for the detection of RSV by IF. Relative to IF, the use of M-PCR significantly increased the proportion of RSV positive cases (from 14% to ~22% of 299 participants) but with no marked difference between collection device. The sensitivity of NFS was significantly higher than NW (89.6% versus 79.2%. $P=0.0043$) for the detection of at least one of the 16 respiratory pathogens tested in the children with ARI managed as outpatients. Individually, the detection of rhinovirus and adenovirus using NFS had a statistically higher sensitivity relative to the NW and this was reflected in lower (improved) Ct values in NFS relative to NW. This could be attributed to greater collection variability associated with NW and a dilution effect of saline in NW. NFS have been previously shown to yield adequate numbers of respiratory epithelial cells for detection of viruses(4). This evidence suggests NFS is a suitable alternative sampling device for detection of viruses as reported elsewhere (4, 9). NFS sensitivity estimates of above 90% for a range of viruses have been reported in a study comparing NFS
and NPA using M-PCR assays(4). However, conflicting findings were reported when per-
nasal (shallow) flocked swabs and NPA were compared in immuno-compromised
patients(14). Posterior nasopharyngeal sampling seems to be a prerequisite to achieving
comparable sensitivity to NPA or NW.

We conclude that NFS collection offers a suitable alternative to NW collection based on
performance and acceptability for detection of RSV by IF and for detection of common
respiratory viruses in general by M-PCR.

The project work was funded by the Bill and Melinda Gates Foundation through PERCH
(Pneumonia Etiology Research for Child Health). PKM is supported by Wellcome Trust
grants (Ref 076278 and 090853). Sincere thanks to the clinical and laboratory staff for their
hard work in collection and processing of the specimens, respectively. Many thanks to Dr.
Rory Gunson and Prof. Bill Carman, West of Scotland Specialist Virology Centre, Glasgow,
for providing M-PCR methods and for their help and support. We acknowledge with thanks
the role of Mr. Moses Chapa Kiti in data management and Prof. Graham F. Medley for
commenting on an earlier version of this manuscript. This article is published with
permission from the Director of the Kenya Medical Research Institute.

References
Comparison between pernasal flocked swabs and nasopharyngeal aspirates for
detection of common respiratory viruses in samples from children. J Clin Microbiol

Table 1: Sensitivity of real-time multiplex PCR for detection of respiratory viruses on nasal wash vs. posterior nasopharyngeal flocked swab collections

<table>
<thead>
<tr>
<th>Respiratory virus</th>
<th>No. of viruses detected by:</th>
<th>Sensitivity (95% CI*) for:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Both NW only</td>
<td>NFS only</td>
</tr>
<tr>
<td>Rhinovirus</td>
<td>50</td>
<td>8</td>
</tr>
<tr>
<td>RSV</td>
<td>61</td>
<td>4</td>
</tr>
<tr>
<td>RSV A</td>
<td>26</td>
<td>4</td>
</tr>
<tr>
<td>RSV B</td>
<td>35</td>
<td>0</td>
</tr>
<tr>
<td>PIV</td>
<td>25</td>
<td>7</td>
</tr>
<tr>
<td>Adenovirus</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>Corona virus</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>hMPV</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>172</td>
<td>26</td>
</tr>
</tbody>
</table>

KEY: NW, nasal wash; NFS, nasopharyngeal flocked swab; RSV, respiratory syncytial virus; PIV, parainfluenza virus 1, 2, 3 & 4; hMPV, human metapneumovirus; CI: confidence interval; * one-sided 97.5% CI reported if sensitivity was 100%; $^\$ Virus positive by either NW or NFS was considered the true positives for the sensitivity analysis; $^\$ Exact McNemar’s significance probability values comparing sensitivities for NW and NFS; $^{&1}$ includes one co-infection of RSV A and B; $^{&2}$ includes one co-infection of PIV3 and 4; $^\$ shows all viruses detected which includes one influenza A infection detected in both NFS and NW.