References: |
[1] L. Addario-Berry, N. Broutin, and C. Goldschmidt, The continuum limit of critical random graphs, Probab. Theory Related Fields, to appear. [2] D. Aldous and J. Fill, Reversible Markov chains and random walks on graphs, Preprint http://www.stat.berkeley.edu/∼aldous/RWG/book.html [3] M.T. Barlow, A.A. J´arai, T. Kumagai and G. Slade, Random walk on the incipient infinite cluster for oriented percolation in high dimensions, Comm. Math. Phys. 278 (2008), 385– 431. [4] I. Benjamini, G. Kozma and N. Wormald, The mixing time of the giant component of a random graph, preprint. [5] P. B´erard, G. Besson and S. Gallot, Embedding Riemannian manifolds by their heat kernel, Geom. Funct. Anal. 4 (1994), 373–398. [6] C. Borgs, J.T. Chayes, R. van der Hofstad, G. Slade and J. Spencer, Random subgraphs of finite graphs: I. The scaling window under the triangle condition, Random Structures Algorithms, 27 137–184, 2005. [7] D. Burago, Y. Burago, and S. Ivanov, A course in metric geometry, Graduate Studies in Mathematics, vol. 33, American Mathematical Society, Providence, RI, 2001. [8] G.-Y. Chen and L. Saloff-Coste, The cutoff phenomenon for ergodic Markov processes, Electron. J. Probab. 13 (2008), 26–78. [9] D. A. Croydon, Scaling limit for the random walk on the largest connected component of the critical random graph, Publ. RIMS. Kyoto Univ., to appear. [10] , Convergence of simple random walks on random discrete trees to Brownian motion on the continuum random tree, Ann. Inst. Henri Poincar´e Probab. Stat. 44 (2008), 987– 1019. [11] , Volume growth and heat kernel estimates for the continuum random tree, Probab. Theory Related Fields 140 (2008), 207–238. [12] , Random walk on the range of random walk, J. Stat. Phys. 136 (2009), 349–372. [13] , Scaling limits for simple random walks on random ordered graph trees, Adv. in Appl. Probab. 42 (2010), 528–558. [14] D. A. Croydon and B. M. Hambly, Local limit theorems for sequences of simple random walks on graphs, Potential Anal. 29 (2008), 351–389. [15] T. Duquesne, A limit theorem for the contour process of conditioned Galton-Watson trees, Ann. Probab. 31 (2003), 996–1027. [16] T. Duquesne and J.-F. Le Gall, Probabilistic and fractal aspects of L´evy trees, Probab. Theory Related Fields 131 (2005), 553–603. [17] P. Erd˝os and S. J. Taylor, Some intersection properties of random walk paths, Acta Math. Acad. Sci. Hungar. 11 (1960), 231–248. [18] N. Fountoulakis and B.A. Reed, The evolution of the mixing rate of a simple random walk on the giant component of a random graph, Random Structures Algorithms, 33 (2008), 68–86. [19] M. Fukushima, Y. Oshima and M. Takeda, Dirichlet forms and symmetric Markov processes, de Gruyter Studies in Mathematics, 19. Walter de Gruyter & Co., Berlin, 2011. [20] B. V. Gnedenko and A. N. Kolmogorov, Limit distributions for sums of independent random variables, Addison-Wesley Publishing Company, Inc., Cambridge, Mass., 1954, Translated and annotated by K. L. Chung. With an Appendix by J. L. Doob. [21] S. Goel, R. Montenegro, and P. Tetali, Mixing time bounds via the spectral profile, Electron. J. Probab. 11 (2006), 1–26. [22] A. Greven, P. Pfaffelhuber, and A. Winter, Convergence in distribution of random metric measure spaces (Λ-coalescent measure trees), Probab. Theory Related Fields 145 (2009), 285–322. [23] M. Heydenreich and R. van der Hofstad, Random graph asymptotics on high-dimensional tori II. Volume, diameter and mixing time, Probab. Theory Related Fields, 149 (2011), 397–415. [24] A. Kasue and H. Kumura, Spectral convergence of Riemannian manifolds, Tˆohoku Math. J. 46 (1994), 147–179. [25] D. P. Kennedy, The distribution of the maximum Brownian excursion, J. Appl. Probab. 13 (1976), 371–376. [26] J. Kigami, Resistance forms, quasisymmetric maps and heat kernel estimates, Memoirs AMS, to appear. [27] J. Kigami, Hausdorff dimensions of self-similar sets and shortest path metrics, J. Math. Soc. Japan 47 (1995), 381–404. [28] J. Kigami, Harmonic calculus on limits of networks and its application to dendrites, J. Funct. Anal. 128 (1995), 48–86. [29] J. Kigami, Analysis on fractals, Cambridge Tracts in Mathematics, vol. 143, Cambridge University Press, Cambridge, 2001. [30] T. Kumagai, Homogenization on finitely ramified fractals, Stochastic analysis and related topics in Kyoto, Adv. Stud. Pure Math., vol. 41, Math. Soc. Japan, Tokyo, 2004, pp. 189– 207. [31] T. Kumagai and S. Kusuoka, Homogenization on nested fractals, Probab. Theory Related Fields 104 (1996), 375-398. [32] T. Kumagai and J. Misumi, Heat kernel estimates for strongly recurrent random walk on random media, J. Theoret. Probab. 21 (2008), 910–935. [33] J.-F. Le Gall, Random real trees, Ann. Fac. Sci. Toulouse Math. (6) 15 (2006), 35–62. [34] D. Levin, Y. Peres and E. Wilmer, Markov chains and mixing times, Amer. Math. Soc., Providence, RI, 2009. [35] A. Nachmias and Y. Peres, Critical random graphs: diameter and mixing time, Ann. Probab. 36 (2008), 1267–1286. [36] A. Nachmias and Y. Peres, The critical random graph, with martingales, Israel J. Math. 176 (2010), 29–41. |