References: |
1. Glass L (2001) Synchronization and rhythmic processes in physiology. Nature 410: 277–284. 2. Bezerianos A, Bountis T, Papaioannou G, Polydoropoulos P (1995) Nonlinear time series analysis of electrocardiograms. Chaos 5: 95. 3. Babloyantz A, Destexhe A (1988) Is the normal heart a periodic oscillator? Biol Cybern 58: 203–211. 4. Dingwell J, Cusumano J (2000) Nonlinear time series analysis of normal and pathological human walking. Chaos 10: 848. 5. Little M, McSharry P, Moroz I, Roberts S (2006) Testing the assumptions of linear prediction analysis in normal vowels. J Acoust Soc Am 119: 549. 6. Small M, Judd K, Lowe M, Stick S (1999) Is breathing in infants chaotic? Dimension estimates for respiratory patterns during quiet sleep. J Appl Physiol 86: 359. 7. Haurie C, Dale D, Mackey M (1998) Cyclical neutropenia and other periodic hematological disorders: a review of mechanisms and mathematical models. Blood 92: 2629. 8. Edwards R, Beuter A (2000) Using time domain characteristics to discriminate physiologic and parkinsonian tremors. J Clin Neurophysiol 17: 87. 9. Olsen L, Schaffer W (1990) Chaos versus noisy periodicity: alternative hypotheses for childhood epidemics. Science 249: 499. 10. Goldberger A, Amaral L, Hausdorff J, Ivanov P, Peng C, et al. (2002) Fractal dynamics in physiology: alterations with disease and aging. P Natl Acad Sci Usa 99: 2466. 11. Kantz H, Schreiber T (2004) Nonlinear time series analysis. Cambridge University Press 369 p. 12. Small M (2005) Applied nonlinear time series analysis: applications in physics, physiology and finance. World Scientific Pub Co Inc. 245 p. 13. Grassberger P, Procaccia I (1983) Characterization of strange attractors. Phys Rev Lett 50: 346–349. 14. Wolf A, Swift J, Swinney H, Vastano J (1985) Determining Lyapunov exponents from a time series. Physica D 16: 285–317. 15. Cazelles B (1992) How predictable is chaos? Nature 355: 25–26. 16. Abarbanel H, Brown R, Sidorowich J, Tsimring L (1993) The analysis of observed chaotic data in physical systems. Rev Mod Phys 65: 1331–1392. 17. Small M, Yu D, Harrison R (2001) Surrogate test for pseudoperiodic time series data. Phys Rev Lett 87: 188101. 18. Zhang J, Small M (2006) Complex network from pseudoperiodic time series: Topology versus dynamics. Phys Rev Lett 96: 238701. 19. Zhang J, Sun J, Luo X, Zhang K, Nakamura T, et al. (2008) Characterizing pseudoperiodic time series through the complex network approach. Physica D 237: 2856–2865. 20. Donner R, Zou Y, Donges J, Marwan N, Kurths J (2010) Recurrence networks¡aa novel paradigm for nonlinear time series analysis. New J Phys 12: 033025. 21. Donner R, Zou Y, Donges J, Marwan N, Kurths J (2010) Ambiguities in recurrence-based complex network representations of time series. Phys Rev E 81: 015101. 22. Marwan N, Donges J, Zou Y, Donner R, Kurths J (2009) Complex network approach for recurrence analysis of time series. Phys Lett A 373: 4246–4254. 23. Yang Y, Yang H (2008) Complex network-based time series analysis. Physica A 387: 1381–1386. 24. Lacasa L, Luque B, Ballesteros F, Luque J, Nun˜o J (2008) From time series to complex networks: The visibility graph. P Natl Acad Sci Usa 105: 4972. 25. Tarca A, Carey V, Chen X, Romero R, Draghici S (2007) Machine learning and its applications to biology. PLoS Comput Biol 3: e116. 26. Lee G, Rodriguez C, Madabhushi A (2008) Investigating the efficacy of nonlinear dimensionality reduction schemes in classifying gene and protein expression studies. IEEE ACM T Comput Bi. pp 368–384. 27. Hausdorff J, Peng C, Ladin Z, Wei J, Goldberger A (1995) Is walking a random walk? Evidence for long-range correlations in stride interval of human gait. J Appl Physiol 78: 349. 28. Hausdorff J, Mitchell S, Firtion R, Peng C, Cudkowicz M, et al. (1997) Altered fractal dynamics of gait: reduced stride-interval correlations with aging and Huntington’s disease. J Appl Physiol 82: 262. 29. Bartsch R, Plotnik M, Kantelhardt J, Havlin S, Giladi N, et al. (2007) Fluctuation and synchronization of gait intervals and gait force profiles distinguish stages of Parkinson’s disease. Physica A 383: 455–465. 30. Dingwell J, John J, Cusumano J, Diedrichsen J (2010) Do Humans Optimally Exploit Redundancy to Control Step Variability in Walking. PLoS Comput Biol 6: e1000856. 31. Dingwell J, Kang H, Marin L (2007) The effects of sensory loss and walking speed on the orbital dynamic stability of human walking. J Biomech 40: 1723–1730. 32. Kang H, Dingwell J (2008) Separating the effects of age and walking speed on gait variability. Gait Posture 27: 572–577. 33. Gates D, Dingwell J (2007) Peripheral neuropathy does not alter the fractal dynamics of stride intervals of gait. J Appl Physiol 102: 965. 34. Roweis S, Saul L (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290: 2323. 35. Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput 15: 1373–1396. 36. Zhang J, Luo X, Small M (2006) Detecting chaos in pseudoperiodic time series without embedding. Phys Rev E 73: 016216. 37. Zhang K, Kwok J (2009) Density-weighted Nystro¨m method for computing large kernel eigensystems. Neural Comput 21: 121–146. 38. Zhang K, Kwok J (2010) Clustered Nystro¨m Method for Large Scale Manifold Learning and Dimension Reduction. IEEE T Neural Networ 21: 1576–1587. 39. Pikovsky A, Rosenblum M, Kurths J (2001) Synchronization A Universal Concept in Nonlinear Sciences. Cambridge University Press 432 p. 40. Arenas A, Daz-Guilera A, Kurths J, Moreno Y, Zhou C (2008) Synchronization in complex networks. Phys Rep 469: 93–153. 41. Pecora L, Carroll T (1990) Synchronization in chaotic systems. Phys Rev Lett 64: 821–824. 42. Lin W, He Y (2005) Complete synchronization of the noise-perturbed Chuas circuits. Chaos 15: 023705. 43. Lin W, Ma H (2010) Synchronization Between Adaptively Coupled Systems With Discrete and Distributed Time-Delays. IEEE T Automat Contr 55: 819–830. 44. Kocarev L, Parlitz U (1996) Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems. Phys Rev Lett 76: 1816–1819. 45. Rosenblum M, Pikovsky A, Kurths J (1996) Phase synchronization of chaotic oscillators. Phys Rev Lett 76: 1804–1807. 46. Schiff S, So P, Chang T, Burke R, Sauer T (1996) Detecting dynamical interdependence and generalized synchrony through mutual prediction in a neural ensemble. Phys Rev E 54: 6708–6724. 47. Quiroga R, Arnhold J, Grassberger P (2000) Learning driver-response relationships from synchronization patterns. Phys Rev E 61: 5142–5148. 48. Peng C, Havlin S, Stanley H, Goldberger A (1995) Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5: 82. 49. Marwan N, Carmen Romano M, Thiel M, Kurths J (2007) Recurrence plots for the analysis of complex systems. Phys Rep 438: 237–329. 50. Amigo´ J, Zambrano S, Sanjua´n M (2010) Permutation complexity of spatiotemporal dynamics. Europhys Lett 90: 10007. 51. Amigo´ J, Zambrano S, Sanjua´n M (2007) True and false forbidden patterns in deterministic and random dynamics. Europhys Lett 79: 50001. 52. Amigo´ J, Zambrano S, Sanjua´n M (2008) Combinatorial detection of determinism in noisy time series. Europhys Lett 83: 60005. 53. Brovelli A, Ding M, Ledberg A, Chen Y, Nakamura R, et al. (2004) Beta oscillations in a large-scale sensorimotor cortical network: directional influences revealed by Granger causality. P Natl Acad Sci Usa 101: 9849. 54. Kamin´ ski M, Ding M, Truccolo W, Bressler S (2001) Evaluating causal relations in neural systems: Granger causality, directed transfer function and statistical assessment of significance. Biol Cybern 85: 145–157. 55. Guo S, Wu J, Ding M, Feng J (2008) Uncovering interactions in the frequency domain. Plos Comput Biol 4: e1000087. 56. Ge T, Kendrick K, Feng J (2009) A Novel Extended Granger Causal Model Approach Demonstrates Brain Hemispheric Differences during Face Recognition Learning. Plos Comput Biol 5: 172–181. 57. Chon K, Mullen T, Cohen R (1996) A dual-input nonlinear system analysis of autonomic modulation of heart rate. IEEE T Bio-Med Eng 43: 530–544. 58. Luchinsky D, Millonas M, Smelyanskiy V, Pershakova A, Stefanovska A, et al. (2005) Nonlinear statistical modeling and model discovery for cardiorespiratory data. Phys Rev E 72: 21905. 59. Rustici G, Mata J, Kivinen K, Lio´ P, Penkett C, et al. (2004) Periodic gene expression program of the fission yeast cell cycle. Nat Genet 36: 809–817. 60. Wichert S, Fokianos K, Strimmer K (2004) Identifying periodically expressed transcripts in microarray time series data. Bioinformatics 20: 5. 61. Friston K, Holmes A, Poline J, Grasby P, Williams S, et al. (1995) Analysis of fMRI time-series revisited. Neuroimage 2: 45–53. 62. Worsley K, Friston K (1995) Analysis of fMRI time-series revisited¡aagain. Neuroimage 2: 173–181. 63. Friston K, Harrison L, Penny W (2003) Dynamic causal modelling. Neuroimage 19: 1273–1302. 64. Bullmore E, Brammer M, Williams S, Rabe-Hesketh S, Janot N, et al. (1996) Statistical methods of estimation and inference for functional MR image analysis. Magn Reson Med 35: 261–277. 65. Marchini J, Ripley B (2000) A new statistical approach to detecting significant activation in functional MRI. Neuroimage 12: 366–380. 66. Guy C, ffytche D, Brovelli A, Chumillas J (1999) fMRI and EEG responses to periodic visual stimulation. Neuroimage 10: 125–148. |